2020/10/27

@Osaka Univ. Seminary

Electroweak Axion String and **Superconductivity** Yoshihiko Abe (Kyoto Univ.) Collaboration with

Yu Hamada and Koichi Yoshioka (Kyoto Univ.) Ref. arXiv:2010.02834[hep-ph]

ELECTROWEAK AXION STRING

Axion string core (Core)

Region III Axion "cloud"

Electroweak flux tube

ELECTROWEAK AXION STRING Electroweak Axion String

Electroweak flux tube (Frankfurt)

Axion "cloud" (Delicious smell)

Axion string core (Stick)

TALK STRUCTURE

- 1. Introduction
- 2. DFSZ Model
- 3. Type-A, B, C EW Axion Strings
- 4. Superconductivity
- 5. Summary

1. Introduction

STRONG CP-PROBLEM

• QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_s^2} \operatorname{tr}(G_{\mu\nu})^2 + \frac{i\theta}{8\pi^2} \operatorname{tr}(G_{\mu\nu}\tilde{G}^{\mu\nu}) + \mathcal{L}_{\text{matter}}$$

- The θ -term produces the non-zero electric di-pole moment of neutron.
- However, the di-pole moment is highly restricted by the experiments.

[C. A. Baker et al. '06] $|d_n| < 2.9 \times 10^{-26} e \text{ cm}$ $|\theta| \lesssim 10^{-10}$ [P. G. Harris et al. '99]

Why so small ?

PQ MECHANISM

[Peccei-Quinn '77]

- Introducing anomalous U(1) sym. so called Peccei-Quinn (PQ) sym.
- SSB of $U(1)_{PQ} \rightarrow NG$ boson appears (axion a) $\theta_{eff} = \frac{\langle a \rangle}{f_a} + \theta \rightarrow 0$ Promoting parameter θ to a dynamical field
- Realizations
 - KSVZ model [Kim '79, Shifman-Vainshtein-Zakhrov, '80]

Extra heavy quark + singlet PQ scalar

• DFSZ model [Zhitnitsky, '80, Dine-Fischler-Srednicki, '83]

Two Higgs doublets + singlet PQ scalar

AXION STRING

• Global vortex string associated with $U(1)_{PQ}$ breaking

SUPERCONDUCTING STRINGS

• Axion string contains fermionic zero mode inside it. [Lazarides-Shafi '85, Lazarides-Panagiotakopoulos-Sfafi '88, Ganolis-Lazarides '89, Iwazaki '97]

$$\begin{split} \mathcal{L} \supset -y\phi\overline{\Psi_0}\Psi_0, \quad \phi(x) \sim v_{\phi}e^{i\theta} \\ & \text{[Witten '80]} \\ & \text{Ind}(i\not\!\!\!D + y\phi(x)) = 1 \\ \end{split} \quad \begin{array}{l} \text{Jackiw-Rossi '81,} \\ \text{Callan-Harvey '85]} \\ \end{split}$$

The confined zero mode carries electric current.

 \rightarrow superconducting string [Witten '85]

$$\partial_{\mu}J^{\mu} = \frac{e^2}{16\pi}E_z$$

• Max. amount of the current:

$$J_{\rm max} \sim M_{\rm fermion}$$

Phenomenology, cosmology see

Fukuda-Manohar-Murayama-Telem arXiv:2010.02763 [hep-ph] 9

MESSAGES OF OUR WORK

- Axion strings in DFSZ model should be more complicated after EW symmetry breaking.
 - → We call electroweak(EW) axion strings
- EW axion string can be superconducting string containing large current without heavy fermions!

 \rightarrow DFSZ model is as interesting as KSVZ model!

2. DFSZ Model

[Zhitnitsky '80 , Dine-Fischler-Srednicki '81]

• Particle contents

Two Higgs doublet model + SM singlet scalar

	H_1	H_2	S
$SU(2)_W$	2	2	1
$U(1)_Y$	1	1	0
$U(1)_{\rm PQ}$	X_1	X_2	X_s

- Scalar potential $V(H,S) = V_H + V_S + V_{mix}$ $V_H = m_{11}^2 |H_1|^2 + m_{22}^2 |H_2|^2 + \frac{\beta_1}{2} |H_1|^4 + \frac{\beta_2}{2} |H_2|^4$ $+ \beta_3 |H_1|^2 |H_2|^2 + \beta_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1)$ $V_S = -m_S^2 |S|^2 + \lambda_S |S|^4$ $V_{mix} = (\kappa S^2 H_1^{\dagger} H_2 + h.c.) + \kappa_{1S} |S|^2 |H_1|^2 + \kappa_{2S} |S|^2 |H_2|^2$
- Charge relation

$$2X_S - X_1 + X_2 = 0$$

Covariant derivative

$$D_{\mu}H_{i} = \partial_{\mu}H_{i} - \frac{ig}{2}W_{\mu}^{a}\sigma_{a}H_{i} - \frac{ig'}{2}Y_{\mu}H_{i}$$

• Scalar VEVs

$$\langle H_1 \rangle = \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle H_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \quad \langle S \rangle = v_s$$

• Electroweak scale

$$v_{\rm EW}^2 = 2(v_1^2 + v_2^2)$$

• Electroweak gauge sector

$$\left(\begin{array}{c} Z_{\mu} \\ A_{\mu} \end{array}\right) = \left(\begin{array}{c} \cos\theta_{W} \\ \sin\theta_{W} \end{array}\right)$$

$$\begin{array}{c} -\sin\theta_W \\ \cos\theta_W \end{array} \right) \left(\begin{array}{c} W^3_\mu \\ Y_\mu \end{array} \right)$$

mixing angle

$$\cos\theta_W = \frac{g}{\sqrt{g^2 + g'^2}}, \quad \sin\theta_W = \frac{g'}{\sqrt{g^2 + g'^2}}$$

• Gauge boson mass

$$m_W = \frac{gv_{\rm EW}}{2}, \quad m_Z = \frac{gv_{\rm EW}}{2\cos\theta_W}$$

• Symmetry breaking pattern

 $SU(2)_W \times U(1)_Y \times U(1)_{PQ} \longrightarrow U(1)_{EM}$

- Scalar fields
 - 3 scalars \rightarrow these are massive (h, h_2, h_3) The lightest *h* is identified to the 125 GeV SM-like Higgs
 - 3 pseudo-scalars
 - \rightarrow massive + axion + NGB eaten by Z-boson
 - 2 complex scalars
 - \rightarrow charged Higgs + NGB eaten by W-boson

PQ CHARGE

• The mass matrix of pseudo-scalars

$$\kappa \left(\begin{array}{ccc} -\frac{v_2 v_s^2}{v_1} & v_s^2 & 2v_2 v_s \\ v_s^2 & -\frac{v_1 v_s^2}{v_2} & -2v_1 v_s \\ 2v_2 v_s & -2v_1 v_s & -4v_1 v_2 \end{array} \right)$$

• PQ transformations are defined so that the $U(1)_{\rm PQ}$ current does not couple to the Z-boson

$$H_1 \mapsto e^{2i\alpha \sin^2 \beta} H_1, \quad H_2 \mapsto e^{-2i\alpha \cos^2 \beta} H_2, \quad S \mapsto e^{i\alpha} S$$

• PQ charge

$$\begin{array}{ccc} H_1 & H_2 & S \\ 2\sin^2\beta & -2\cos^2\beta & 1 \end{array}$$

3. Type-A, B, C EW Axion Strings

AXION STRING in DFSZ MODEL

• Assume that the electroweak sym. is not broken, but $U(1)_{PQ}$ is spontaneously broken.

$$S \sim v_s e^{i\theta}$$
$$H_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$H_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

ELECTROWEAK AXION STRINGS

- Electroweak sym. is also broken
- The Higgs doublet also develop non-zero VEVs

Axion string

Electroweak axion string

 There are three types of EW axion strings depending on the winding patterns of Higgs → Type-A, B, C

ELECTROWEAK AXION STRINGS

TYPE-A EW AXION STRING

Type-A EW axion string is characterized by

$$S \sim v_{s} e^{i\theta}$$

$$H_{1} \sim e^{i\theta} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}$$

$$V_{\text{mix}} \supset \kappa S^{2} H_{1}^{\dagger} H_{2} + \text{h.c.}$$

$$H_{1} \sim e^{i\theta} \begin{pmatrix} 0 \\ v_{1} \end{pmatrix}$$

$$H_{2} \sim e^{-i\theta} \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

 H_1

TYPE-A EW AXION STRING

Type-A EW axion string is characterized by _____

$$S \sim v_{s}e^{i\theta}$$

$$H_{1} \sim e^{i\theta}\begin{pmatrix} 0\\v_{1} \end{pmatrix} = e^{2i\theta\sin^{2}\beta}e^{-i\theta\sigma_{3}\cos 2\beta}\begin{pmatrix} 0\\v_{1} \end{pmatrix}$$

$$H_{2} \sim e^{-i\theta}\begin{pmatrix} 0\\v_{2} \end{pmatrix} = e^{-2i\theta\cos^{2}\beta}e^{-i\theta\sigma_{3}\cos 2\beta}\begin{pmatrix} 0\\v_{2} \end{pmatrix}$$

$$U(1)_{PQ} \text{ winding}$$

$$U(1)_{Z} \text{ winding}$$

NB: $U(1)_Z$ winding is needed to ensure single-valuedness unless tan $\beta = 1$.

TYPE-A EW AXION STRING

 There is the non-zero Z-boson field. $g_Z \equiv \sqrt{g^2 + q'^2}$ $S \sim v_s e^{i\theta}$ $H_1 \sim e^{2i\theta \sin^2 \beta} e^{-i\theta \sigma_3 \cos 2\beta} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}$ $Z_{\theta} \sim \frac{-2\cos 2\beta}{g_Z}$ $H_2 \sim e^{-2i\theta\cos^2\beta} e^{-i\theta\sigma_3\cos2\beta} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$ Z-flux Z flux $\sim v_{\rm EW}^{-1} \quad \Phi_Z = \int F^Z = \frac{-4\pi\cos\beta}{g_Z}$ String core NB: $\tan \beta = 1 \Rightarrow \Phi_Z = 0$ $\sim v_s^{-1}$

TYPE-B EW AXION STRINGS

Z-boson and Z-flux

$$Z_{\theta} \sim \frac{-4\cos^2\beta}{g_Z}$$

$$\Phi_Z = \frac{-8\pi\cos^2\beta}{g_Z}$$

TYPE-B EW AXION STRING

core

25

ELECTROWEAK AXION STRING

Can we get "superconducting" strings ?

Electroweak flux tube (Frankfurt)

Axion "cloud" (Delicious smell)

Axion string core (Stick)

TYPE-C EW AXION STRING

- The last one, type-C, may seem more exotic: $S \sim v_s e^{i\theta}$

TYPE-C EW AXION STRING

 Inside the string, the field configuration is described by the "smeared ansatz":

$$H_{1} = \frac{1}{2}v_{1}e^{i\theta} \left(\begin{array}{c} f(r)e^{2i\theta} - h(r) \\ f(r)e^{2i\theta} + h(r) \end{array}\right), \quad H_{2} = \frac{1}{2}v_{2} \left(\begin{array}{c} h(r) - f(r)e^{-2i\theta} \\ h(r) + f(r)e^{-2i\theta} \end{array}\right)$$

- $U(1)_{EM}$ is spontaneously broken \rightarrow Superconducting
- Current carrier: charged components of Higgs and Wboson

40

 $v_1 = v_2 = 0.2, v_s = 2$

20

r

30

10

EW AXION STRINGS

- We have seen three types of the EW axion strings Type-A (w/ Z-flux), type-B (w/ Z-flux), type-C (w/ Z and W-flux)
- The next question...

Which types of the EW string is realized ? Type-C string is exotic... Is this really?

• The tensions of the strings depends on the Higgs couplings.

STRING TENSIONS

• Compare the tensions of the three EW axion strings

• Type-C string can be the most stable string

 \rightarrow favored in some parameter space

• The axion string necessarily become type-C string after the electroweak sym. breaking.

4. Superconductivity

• How should we evaluate the current traveling along the EW axion string?

[Alford-Benson-Coleman-March-Russell-Wilczek '91] Background $\tilde{S}(r, \theta), \tilde{H}_{1,2}, (r, \theta), \tilde{W}_{\mu}(r, \theta)$

~ $v_{\rm EW}^{-1}$ $U(1)_{\rm EM}$ is broken in the axion string \rightarrow there exists the zero mode

[YA-Hamada-Yoshioka '20]

• We consider the (z, t) dependent zero mode $\eta(z, t)$. $\tilde{S}, \tilde{H}_i, \tilde{W}_\mu, \tilde{Y}_\mu$ denote the type-C backgrounds. $S = \tilde{S}$

$$\begin{split} H_i &= \exp\left[i\hat{Q}_{\rm EM}\eta(z,t)\xi(r)\right]\tilde{H}_i\\ W_\mu &= \tilde{W}_\mu - \frac{\eta(z,t)}{g}D_\mu(\xi(r)n)\\ Y_\mu &= \tilde{Y}_\mu + \frac{\eta(z,t)}{g'}\partial_\mu\xi(r) \end{split} \qquad n^a \equiv \frac{H^{\dagger}\sigma_a H_1}{H_1^{\dagger}H_1} = \frac{H_2^{\dagger}\sigma_a H_2}{H_2^{\dagger}H_2} \end{split}$$

• EOMs

$$\left(D_{\nu}W^{\nu\mu}\right)^{a} = -j_{W}^{\mu,a}, \quad \partial_{\nu}Y^{\nu\mu} = -j_{Y}^{\mu}, \quad D_{\mu}D^{\mu}H_{i} = -\frac{\delta V}{\delta H_{i}^{\dagger}}$$

• Linearized EOM at large r

$$(\partial_z^2 - \partial_t^2)\eta(z, t) = 0, \quad \xi(r) \sim \log r$$

 $\eta(z,t)$ is massless excitation along the string

- Static solution $\rightarrow \eta(z, t) = \omega z$ with a constant ω
- EM field strength and electric current

$$F_{rz}^{\rm EM} \sim -\frac{\omega}{er}, \quad J_{\rm EM} \equiv -2\pi r F_{rz}^{\rm EM} \sim \frac{2\pi\omega}{e}$$

MAXIMUM CURRENT IN TYPE-C

 Zero mode η gives "a mass" term to the Higgs fields:

$$\mathcal{L} \supset -(\omega\xi)^2 \frac{v^2}{2} (f-h)^2$$

- $U(1)_{\rm EM}$ is restored and r superconducting state is destroyed. (current quenching)
- Current becomes maximum when this effect is balanced with the negative mass terms in the Higgs potential.

$$m_1^2 \sim C_1 v^2 + C_2 v_s^2$$

• Large current can travel along the string

$$J_{\rm max} \sim v_s$$

INTERACTIONS between STRINGS

Current-induced interaction between the strings

- The axion-induced interaction is repulsive force $F_{\rm axion} \sim \frac{v_s^2}{R^2}$
- Magnetic interaction could affect the time evolution of the string network. → Y-junction ?

Y-(SHAPED) JUNCTION

[Betterncourt-Kibble '94, Betterncourt-Laguna-Matzner '96]

• It has been believed that axion strings always reconnect.

5. Summary

SUMMARY

• DFSZ axion string becomes dressed w/ electroweak gauge fluxes after the electroweak symmetry breaking.

Electroweak axion string ~ Frankfurt

- Type-C electroweak axion string breaks $U(1)_{\rm EM}$ and can be superconducting string using bosonic carriers.
- The maximum current is $J_{\text{max}} \sim v_s$, which is comparable to be scale of the string tension.
- The Y-junctions can be formed.

OUTLOOK

- Study cosmological consequences (vorton, etc.) of superconductivity in the DFSZ model in the same way as [Fukuda et al. arXiv:2010.02763 [hep-ph]]
- Study on Y-junctions may need hard numerical simulations.
 - \rightarrow 2D effective theory ?
- Effect of large Higgs field value around the core \rightarrow BBN ?

Thank you !!

Backup

HIGGS BI-LINEAR FORMALISM

[Grzadkowki-Maniastis-Wudka, '11]

• Introduce the following Higgs matrix:

$$H = (i\sigma_2 H_1^*, H_2)$$

- Covariant derivative $D_{\mu}H = \partial_{\mu}H i\frac{g}{2}\sigma_{a}W_{\mu}^{a}H + i\frac{g'}{2}H\sigma_{3}Y_{\mu}$
- Higgs potential

 $V_H = -m_1^2 \operatorname{tr} |H|^2 - m_2^2 \operatorname{tr} (|H|^2 \sigma_3) + \alpha_1 \operatorname{tr} |H|^4 + \alpha_2 (\operatorname{tr} |H|^2)^2$ $+ \alpha_3 \operatorname{tr} (|H|^2 \sigma_3 |H|^2 \sigma_3) + \alpha_4 \operatorname{tr} (|H|^2 \sigma_3 |H|^2)$

HIGSS BI-LINEAR FORMALISM

[Grzadkowki-Maniastis-Wudka, '11]

• Scalar potential

$$V_{H} = -m_{1}^{2} \operatorname{tr}|H|^{2} - m_{2}^{2} \operatorname{tr}(|H|^{2}\sigma_{3}) + \alpha_{1} \operatorname{tr}|H|^{4} + \alpha_{2} (\operatorname{tr}|H|^{2})^{2} + \alpha_{3} \operatorname{tr}(|H|^{2}\sigma_{3}|H|^{2}\sigma_{3}) + \alpha_{4} \operatorname{tr}(|H|^{2}\sigma_{3}|H|^{2}),$$
$$V_{\text{mix}} = (\kappa S^{2} \det H + \text{h.c.}) + \frac{1}{2} (\kappa_{1S} + \kappa_{2S})|S|^{2} \operatorname{tr}|H|^{2} + \frac{1}{2} (\kappa_{1S} - \kappa_{2S})|S|^{2} \operatorname{tr}(|H|^{2}\sigma_{3})$$

• Parameter relations

$$m_{11}^2 = m_1^2 + m_2^2, \quad m_{22}^2 = m_1^2 - m_2^2,$$

$$\beta_1 = 2(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4), \quad \beta_2 = 2(\alpha_1 + \alpha_2 + \alpha_3 - \alpha_4),$$

$$\beta_3 = 2(\alpha_1 + \alpha_2 - \alpha_3), \quad \beta_3 = 2(\alpha_3 - \alpha_1)$$

YUKAWA INTERACTIONS

• The Yukawa interactions are also controlled by the PQ charge assignment.

$$\mathcal{L}_{\text{Yukawa}} = -y_U \overline{Q} (i\sigma_2 H_1^*) u_R - y_D \overline{Q} H_2 d_R - y_e \overline{L} H_2 e_R + \text{h.c.}$$

• In this work, we leave aside the Yukawa terms

U(1)_{EM} GROUP [Eto-Hamada-Nitta, '20]

• The unbroken $U(1)_{\rm EM}$ is defined as

$$\hat{Q}H \equiv -n^a \frac{\sigma_a}{2}H - H\frac{\sigma_3}{2}$$

where
$$n^{a} \equiv \frac{\sum_{i=1,2} |H_{i}|^{2} n_{i}^{a}}{C} \qquad n_{1}^{a} \equiv \frac{H_{1a}^{\dagger} H_{1}}{|H_{1}|^{2}}, \ n_{2}^{a} \equiv \frac{H_{2}^{\dagger} \sigma_{a} H_{2}}{|H_{2}|^{2}}$$

Positive normalization factor C defined to satisfy $n^a n^a = 1$

• $U(1)_Z$ subgroup in $SU(2)_W \times U(1)_Y$ is defined as

$$\hat{T}_Z H \equiv -^a \frac{\sigma_a}{2} H - \sin^2 \theta_W \hat{Q} H$$

• NB: *H* denotes the Higgs matrix.

U(1)_{EM} GROUP [Eto-Hamada-Nitta, '20]

Z-boson and photon

$$\begin{cases} Z_{\mu} \equiv -n^{a} W_{\mu}^{a} \cos \theta_{W} - Y_{\mu} \sin \theta_{W} \\ A_{\mu} \equiv -n^{a} W_{\mu}^{a} \sin \theta_{W} + Y_{\mu} \cos \theta_{W} \end{cases}$$

• The action of \hat{Q} on Higgs doublets are given by

$$\hat{Q}H_i = \left(-n^a \frac{\sigma_a}{2} + \frac{1}{2}\mathbf{1}\right)H_i,$$
$$\hat{T}_Z H_i = \left(-n^a \frac{\sigma_a}{2} - \sin^2 \theta_W \hat{Q}\right)H_i$$

ANALYSIS

- We analyze the EW axion strings in $\tan \beta = 1$ limit.
- The winding number of the strings are assumed to be unity.

EOMs of TYPE-A STRING

$$f''(r) + \frac{f'(r)}{r} - \frac{f(r)}{r^2}$$

- $\left(2\alpha_{123}v^2f(r)^2 + 2\alpha_2v^2h(r)^2 + \kappa_{1S}v_s^2\phi(r)^2 - m_1^2\right)f(r) - \kappa v_s^2h(r)\phi(r)^2 = 0,$
 $h''(r) + \frac{h'(r)}{r} - \frac{h(r)}{r^2}$
- $\left(2\alpha_{123}v^2h(r)^2 + 2\alpha_2v^2f(r)^2 + \kappa_{1S}v_s^2\phi(r)^2 - m_1^2\right)h(r) - \kappa v_s^2f(r)\phi(r)^2 = 0,$
 $\phi''(r) + \frac{\phi'(r)}{r} - \frac{\phi(r)}{r^2}$
- $\left(2\lambda_Sv_s^2\phi(r)^2 + 2\kappa_{1S}v^2(f(r)^2 + h(r)^2) + 2\kappa v^2f(r)h(r) - m_s^2\right)\phi(r) = 0.$

• Boundary conditions

$$f(0) = h(0) = \phi(0) = 0$$
 $f(\infty) = h(\infty) = \phi(\infty) = 1$

$$\begin{split} & \textbf{EOMs of TYPE-B STRING} \\ f''(r) + \frac{f'(r)}{r} - \frac{(1+z(r))^2}{r^2} f(r) \\ & - \left(2\alpha_{123} v^2 f(r)^2 + 2\alpha_2 v^2 h(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) f(r) - \kappa v_s^2 h(r) \phi(r)^2 = 0, \\ h''(r) + \frac{h'(r)}{r} - \frac{(-1+z(r))^2}{r^2} h(r) \\ & - \left(2\alpha_{123} v^2 h(r)^2 + 2\alpha_2 v^2 f(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) h(r) - \kappa v_s^2 f(r) \phi(r)^2 = 0, \\ \phi''(r) + \frac{\phi'(r)}{r} - \frac{\phi(r)}{r^2} \\ & - \left(2\lambda_S v_s^2 \phi(r)^2 + \kappa_{1S} v^2 (f(r)^2 + h(r)^2) + 2\kappa v^2 f(r) h(r) - m_s^2 \right) \phi(r) = 0, \\ z''(r) - \frac{z'(r)}{r} - \frac{g_Z^2 v^2}{2} f(r)^2 (1+z(r)) - \frac{g_Z^2 v^2}{2} h(r)^2 (-1+z(r)) = 0. \end{split}$$

• Boundary conditions

$$f(0) = \phi(0) = 0, \ \partial_r h|_{r=0} = 0, \ z(0) = 0$$

 $f(\infty) = h(\infty) = \phi(\infty) = z(\infty) = 1$

EOMs of TYPE-C STRING

$$\begin{aligned} f''(r) &+ \frac{f'(r)}{r} - \frac{(1+w(r))^2}{r^2} f(r) \\ &- \left(2(\alpha_1 + \alpha_2)v^2 f(r)^2 + 2(\alpha_2 + \alpha_3)v^2 h(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) f(r) - \kappa v_s^2 h(r) \phi(r)^2 = 0, \\ h''(r) &+ \frac{h'(r)}{r} - \frac{(-1+w(r))^2}{r^2} h(r) \\ &- \left(2(\alpha_1 + \alpha_2)v^2 h(r)^2 + 2(\alpha_2 + \alpha_3)v^2 f(r)^2 + \kappa_{1S} v_s^2 \phi(r)^2 - m_1^2 \right) h(r) - \kappa v_s^2 f(r) \phi(r)^2 = 0, \\ \phi''(r) &+ \frac{\phi'(r)}{r} - \frac{\phi(r)}{r^2} \\ &- \left(2\lambda_S v_s^2 \phi(r)^2 + \kappa_{1S} v^2 (f(r)^2 + h(r)^2) + 2\kappa v^2 f(r) h(r) \right) \phi(r) = 0, \\ w''(r) &- \frac{w'(r)}{r} - \frac{g^2 v^2}{2} f(r)^2 (1+w(r)) - \frac{g^2 v^2}{2} h(r)^2 (-1+w(r)) = 0. \end{aligned}$$

• Boundary conditions

$$f(0) = \phi(0) = 0, \ \partial_r h|_{r=0} = 0, \ w(0) = z(0) = 0$$
$$f(\infty) = h(\infty) = \phi(\infty) = w(\infty) = z(\infty) = 1$$

NUMERICAL ANALYSIS

• Parameter sets

$$\alpha_1 = 1, \quad \alpha_2 = -0.3348, \quad \alpha_3 = 0,$$

 $\lambda_S = 1, \quad \kappa = -2\left(\frac{v}{v_s}\right)^2, \quad \kappa_{1S} = 0.4$

• VEVs of scalar fields

$$v_1 = v_2 = v = \frac{1}{10}v_s$$

PROFILE of STRINGS

r

• Type-A

PROFILE of STRINGS

• Type-B

PROFILE of STRINGS

STRING TENSION

Parameters $v_s = 10v_1, \ m_h^2 = (125 \text{ GeV})^2, \ \tan \beta = 1, \quad \alpha_3 = \frac{1}{8}(\beta_1 + \beta_2 - 2\beta_3)$ $\kappa_{1S} = \kappa_{2S}, \ \kappa = -2(v/v_s)^2, \ \lambda_S = 1$

Length unit: $v_1 = 0.2$

• EOMs $\begin{aligned} \partial^{\alpha}\eta \left(\tilde{D}_{j}\tilde{D}^{j}\chi\right)^{a} &= \frac{-g^{2}}{2}\partial^{\alpha}\eta \left(\chi^{a}\mathrm{Tr}|\tilde{H}|^{2} + \xi\mathrm{Tr}\left[\tilde{H}^{\dagger}\sigma_{a}\tilde{H}\sigma_{3}\right]\right),\\ \partial^{\alpha}\eta\partial_{j}\partial^{j}\xi &= \frac{-g'^{2}}{2}\partial^{\alpha}\eta \left(\xi\mathrm{Tr}|\tilde{H}|^{2} + 2\mathrm{Tr}\left[\tilde{H}^{\dagger}\chi\tilde{H}\sigma_{3}\right]\right),\\ \tilde{D}^{j}\chi \ \partial^{\alpha}\partial_{\alpha}\eta &= 0,\\ \partial^{j}\xi \ \partial^{\alpha}\partial_{\alpha}\eta &= 0,\\ \partial^{\alpha}\partial_{\alpha}\eta(2\chi\tilde{H} + \xi\tilde{H}\sigma_{3}) &= 0. \end{aligned}$

• Linearized EOM for η

$$\partial^{\alpha}\partial_{\alpha}\eta = (\partial_t^2 - \partial_z^2)\eta = 0$$

• Zero mode solutions:

$$\eta(z,t) = \eta^{\pm}(z\pm t)$$

• Static zero mode solution

$$\eta(z) = \omega z$$

• $r \rightarrow \infty$, $U(1)_{\rm EM}$ is restored and the backgrounds satisfy

$$\tilde{H}\sigma_3 + n^a \sigma_a \tilde{H} = 0, \quad n^a = -\frac{\operatorname{tr}(\sigma_3 \tilde{H}^{\dagger} \sigma_a \tilde{H})}{\operatorname{tr}|\tilde{H}|^2}, \quad \left(\tilde{D}_{\mu} n\right)^a = 0, \quad \operatorname{tr}|\tilde{H}|^2 = 2v^2$$

• EOMs lead to the following equations

 $\left(\tilde{D}_j\tilde{D}^j\chi\right)^a = -g^2v^2(\chi^a - n^a\xi), \quad \partial_j\partial^j\xi = -g'^2v^2(\xi - \chi^a n^a)$

• Long-range force $\rightarrow \chi^a - n^a \xi = 0$

$$\frac{1}{r}\partial_r(r\partial_r\xi) = 0$$

59

CURRENT QUENCHING

• Inside the string $r \rightarrow 0$, f and h feel the following mass terms in the Lagrangia:

$$\begin{aligned} -\mathcal{L} \supset & \frac{4v^2}{r^2} f^2 + 2m_{11}^2 v^2 (f^2 + h^2) + \omega^2 \frac{v^2}{2} (f - h)^2 \\ = & v^2 \begin{pmatrix} f & h \end{pmatrix} \begin{pmatrix} \frac{4}{r^2} + 2m_{11}^2 + \frac{\omega^2}{2} & -\frac{\omega^2}{2} \\ -\frac{\omega^2}{2} & 2m_{11}^2 + \frac{\omega^2}{2} \end{pmatrix} \begin{pmatrix} f \\ h \end{pmatrix} \end{aligned}$$

• Determinant of the mass matrix:

$$\det M^2 = (2m_{11}^2)^2 + \frac{4v^2}{r^2} \left(2m_{11}^2 + \frac{\omega^2}{2}\right) + \omega^2 m_{11}^2$$

• Avoiding quenching $\Rightarrow \exists$ region where det $M^2 < 0$

$$|\omega| \lesssim |m_{11}| \sim v_s$$

AXION STRING NETWORK

- The axion strings form a network in the universe.
- Studying the time evolution of the network is very important.

• Y-shaped junctions can affect [Hiramatsu-san's talk at COSMO-17] the time evolution of the string network.

CONSTRAINTS

[Espriu-Mescia-Renau, '15]

• Constraints from the electroweak precision test

