Tensor renormalization group approach to four-dimensional lattice field theories

Shinichiro Akiyama (University of Tsukuba)

Based on

S. A., D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP09(2020)177

S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, arXiv:2009.11583[hep-lat]

2020.11.10 @ Osaka University

Contents

- 1. Introduction
- 2. 4d lattice field theories w/ the TRG approach

✓ Nambu—Jona-Lasinio model at finite density

3. Summary

Tensor renormalization group approach

Tensor Network (TN)

-> Contractions of the tensors locating on a real-space lattice

Tensor Renormalization Group (TRG)

-> A variant of real-space renormalization group to coarse grain tensor networks

Procedures

1) **TN representation for** X : (# of tensors in TN) = (# of lattice sites)

$$X \rightarrow \Sigma_{abcd} ... T_{aiw} ... T_{bjx} ... T_{cky} ... T_{dlz} ... \cdots$$

2) **TRG** : Block-spin trans. for *T* to reduce # of tensors in TN

$$\approx \Sigma_{a'b'c'd'} \cdots T'_{a'i'w'} \cdots T'_{b'j'x'} \cdots T'_{c'k'y'} \cdots T'_{d'l'z'} \cdots \cdots$$

1) Construct the TN representation for the target function X defined on lattice ex. Partition function, Path integral

2) Approximately perform the tensor contraction with TRG

TN rep. for 2d Ising model w/ PBC

Decompose nearest-neighbor interactions

Remark TN rep. is not unique

 $\Sigma_{x_n,y_n,x'_n,y'_n}T_{x_ny_nx'_ny'_n}M_{x_n\tilde{x}_n}M_{y_n\tilde{y}_n}M_{x'_n\tilde{x}'_n}^{-1}M_{y'_n\tilde{y}'_n}^{-1} = \tilde{T}_{\tilde{x}_n\tilde{y}_n\tilde{x}'_n\tilde{y}'_n}$

How to construct TN rep.

Partition function w/ discrete dof (Ref. Talks by Tao Xiang in TNQMP2016)

-> Exact TN rep. is easily available (ex. Ising, Potts,)

<u>Path integral w/ continuous dof</u> (Ref. Liu et al, PRD88(2013)056005) -> Some approximation is necessary to derive TN rep.

Path integral in fermion systems w/ Grassmann numbers

-> No approximation is necessary to derive TN rep.

• Taylor expansion: $e^{\overline{\psi}\psi} = \Sigma_m (\overline{\psi}\psi)^m$ (discussed later)

Shimizu-Kuramashi, PRD90(2014)014508, Takeda-Yoshimura, PTEP2015(2015)043B01

Auxiliary fermion fields

SA-Kadoh, arXIv:200507570 [hep-lat]

We cannot perform the contractions in TN rep. exactly (too many d. o. f.) Idea of real-space renormalization group Iterate a simple transformation w/ approximation and we can investigate thermodynamic properties

 $\frac{\text{Information compression}}{w/ \text{ the Singular Value Decomposition (SVD)}}$ $A_{ij} = \Sigma_k U_{ik} \sigma_k V_{jk} \approx \Sigma_{k=1}^D U_{ik} \sigma_k V_{jk}$ $w/ \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{\min(m,n)} \ge 0$ $(A: m \times n \text{ matrix}, U: m \times m \text{ unitary}, V: n \times n \text{ unitary})$

TRG employs the SVD to reduce d. o. f. and perform the tensor contraction approximately

TRG w/ SVD of T

of tensors are reduced to half

Largest D singular values in T are kept (D: bond dimension)

TRG w/ isometry insertion

Sequential coarse-graining along with each direction

of tensors are reduced to half

Largest *D* singular values in *TT* are kept (*D*: bond dimension)

Example: 2d Ising model w/ HOTRG

Example: 3d Ising model w/ HOTRG

Xie et al, PRB86(2012)045139

ritical point	` ''	• 1		
	rit	tical	po	Int

Method	T_c
HOTRG $(D = 16, \text{ from } U)$	4.511544
HOTRG $(D = 16, \text{ from } M)$	4.511546
Monte Carlo ³⁷	4.511523
Monte Carlo ³⁸	4.511525
Monte Carlo ³⁹	4.511516
Monte Carlo ³⁵	4.511528
Series expansion ⁴⁰	4.511536
CTMRG ¹²	4.5788
TPVA ¹³	4.5704
CTMRG ¹⁴	4.5393
TPVA ¹⁶	4.554
Algebraic variation ⁴¹	4.547

-> Good agreement with the Monte Carlo results

Advantage of TRG approach

Tensor renormalization group is a deterministic numerical method

- No sign problem
- The computational cost scales logarithmically w.r.t. the system size
- Direct evaluation of the Grassmann integrals (w/o introducing pseudo-fermions)
- Direct evaluation of the partition functions

TRG has been successfully applied to various 2d or 3d models w/ or w/o the sign problem Meurice et al, arXiv:2010.06539 (review paper)

Today's message TRG is an efficient approach also in 4d !

11/24

Computational cost of TRGs

D: bond dimension, *L*: linear system size

Algorithm	Computational Time	Target
Levin-Nave TRG Levin and Nave, PRL99(2007)120601	D ⁶ lnL	2-dim
HOTRG Xie et al, PRB86(2012)045139	$D^{4d-1} \ln L$	<i>d</i> -dim
Anisotropic TRG (ATRG) Adachi et al, PRB102(2020)054432	$D^{2d+1} \ln L$	<i>d</i> -dim
Triad RG Kadoh-Nakayama, arXiv:1912.02414	$D^{d+3} \ln L$	<i>d</i> -dim

We need economic TRG algorithms to investigate 4d systems

12/24

ATRG (= TRG w/ SVD): Benchmarking w/ 2d Ising model

-> Sequential coarse-graining along with each direction

Internal Energy

Relative error of free energy Adachi et al, PRB102(2020)054432

-> Accuracy with the fixed computational time is improved

	2d ATRG	2d HOTRG	TRG
Memory	$O(D^3)$	$O(D^4)$	$O(D^4)$
Time	$O(D^5)$	$O(D^7)$	$O(D^6)$

Status of TRG approach in 4d system

Model	TRG algorithm
Ising model	HOTRG (Xie et al, PRB86(2012)045139)
SA et al, PRD100(2019)054510	w/ parallel computation
Ising model	ATRG (Adachi et al, PRB102(2020)054432)
SA et al, PoS(LATTICE2019)138	w/ parallel computation
Complex ϕ^4 theory at finite density SA et al, JHEP09(2020)177	ATRG w/ parallel computation
NJL model at finite density	Grassmann ATRG
SA et al, arXiv:2009.11583[hep-lat]	w/ parallel computation

Parallel computation helps us carry out the large multi-linear algebra in TRG

4d ATRG with parallel computation

ATRG is a coarse-graining (direct truncation) method based on SVD

	4d ATRG	4d HOTRG
Memory	$O(D^5)$	$O(D^{8})$
Time	$O(D^9)$	$O(D^{15})$

 $O(D^9)$ calculations in 4d ATRG -> SVD and tensor contraction

Our implementation

	SVD	contraction
Strategy	Randomized SVD	Parallel computing
Time	$O(D^7)$	$O(D^8)$

-> Parallel computation reduces the computational cost from $O(D^9)$ to $O(D^8)$

4d Nambu–Jona-Lasinio model at finite density

S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, arXiv:2009.11583[hep-lat]

Expected phase diagram of the NJL model

T

✓ Effective theory of QCD

Nambu—Jona-Lasinio, PRD122(1961)345-358 Nambu—Jona-Lasinio, PRD124(1961)246-254

Chiral restoration is expected in cold & dense region

Asakawa-Yazaki, NPA504(1989)668-684

 Severe sign problem in cold & dense region

We apply the Tensor Renormalization Group (TRG) approach to investigate the 1st order chiral phase transition in cold & dense region

NJL model at finite density

✓ w/ the Kogut-Susskind fermion

-> Single-component Grassmann variables w/o the Dirac structure

-> Staggered sign function $\eta_{\nu}(n) = (-1)^{n_1 + \dots + n_{\nu-1}}$ with $\eta_1(n) = 1$

✓ μ : chemical potential

$$S_{\text{lat}} = \frac{1}{2} a^3 \Sigma_{n \in \Lambda} \Sigma_{\nu=1}^4 \eta_{\nu}(n) \left[e^{\mu a \delta_{\nu,4}} \bar{\chi}(n) \chi(n+\hat{\nu}) - e^{-\mu a \delta_{\nu,4}} \bar{\chi}(n+\hat{\nu}) \chi(n) \right]$$
$$+ m a^4 \Sigma_{n \in \Lambda} \bar{\chi}(n) \chi(n) - g_0 a^4 \Sigma_{n \in \Lambda} \Sigma_{\nu=1}^4 \bar{\chi}(n) \chi(n) \bar{\chi}(n+\hat{\nu}) \chi(n+\hat{\nu})$$
$$(\text{This formulation follows Lee-Shrock, PRL59(1987)14})$$

 \checkmark Continuous chiral symmetry for vanishing m :

$$\chi(n) \to e^{i\alpha\epsilon(n)}\chi(n), \qquad \bar{\chi}(n) \to \bar{\chi}(n)e^{i\alpha\epsilon(n)}$$

w/ $\alpha \in \mathbb{R}$ and $\epsilon(n) = (-1)^{n_1+n_2+n_3+n_4}$

of lattice sites are reduced to half $\Lambda^{(0)} \to \Lambda^{(1)}$

Uniform structure in *t*-direction

of lattice sites are reduced to half $\Lambda^{(1)} \to \Lambda^{(2)}$

Uniform structure in *t*-, *z*-directions

of lattice sites are reduced to half $\Lambda^{(2)} \to \Lambda^{(3)}$

Uniform structure in *t*-, *z*-, *y*-directions

of lattice sites are reduced to half $\Lambda^{(3)} \to \Lambda^{(4)}$

Uniform structure in all directions

Converging behavior in bond dimension

with m = 0.01, $g_0 = 32$, L = 1024

 $\delta \lesssim 10^{-4}$ has been achieved up to D = 55 at $\mu \approx \mu_c$

21/24

Chiral symmetry is restored in the region with $\mu \gtrsim 3.0$ A discontinuity at $\mu \approx 3.0$ indicates the 1st order transition

Ingredients of the equation of state

with m = 0.01, $g_0 = 32$, D = 55

Current numerical results clearly show that the chiral phase transition in cold & dense region is 1st order

23/24

Summary

- The TRG is a variant of RSRG, which is a deterministic numerical method
- 1st order chiral transition in the NJL model at finite density has been detected w/ the parallelized Grassmann ATRG
 (the first application of the TRG approach to 4d fermionic QFT)
- This work shows that the TRG approach does not suffer from the sign problem and nicely works to evaluate the observables on almost thermodynamic lattice
- TRG will be an efficient numerical approach to other types of 4d QFT