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Tensor renormalization group approach

Tensor Network (TN)
-> Contractions of the tensors locating on a real-space lattice

Tensor Renormalization Group (TRG)
-> A variant of real-space renormalization group to coarse grain tensor networks

Procedures

1) Construct the TN representation for the target function ! defined on lattice
ex. Partition function, Path integral

2) Approximately perform the tensor contraction with TRG 

! → Σ!"#$⋯$!&'⋯$"()⋯$#*+⋯$$,-⋯⋯

≈ Σ!!"!#!$!⋯$.!!&!'!⋯$."!(!)!⋯$.#!*!+!⋯$.$!,!-!⋯⋯
2) TRG : Block-spin trans. for ! to reduce # of tensors in TN  

1) TN representation for " : # of tensors in TN = (# of lattice sites)
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TN rep. for 2d Ising model w/ PBC

4 = Σ{"#±%}Π',)exp 9:;';'*+)

Decompose nearest-neighbor interactions

exp %&'!'!"#$ =)
%!

*%!+ '! , -! *%!+ '!"#$ , -! =)
%!
. '! , -! . '!"#$ , -!

4 = Tr Π'!,&-&,&' -&'

/!/!"
0!

0!"
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/(!)!(!" )!" specifies the details of the model 
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/(!)!(!" )!" ≔ )
*!+±-

. '! , 1! . '! , 2! . '! , 1!. . '! , 2!.
.!" ≔ .!#%̂, 0!" ≔ 0!#&'

2 2 + 1/2 − 1/

2 + 10

2 − 10
1/
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Real Space TN rep. for 4

5

# $, & ≔ (()($, &)



Remark TN rep. is not unique

6 = Tr Π!5,!-!,!" -!"
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6 = Tr Π! ;5 .,! .-! .,!" .-!"Both represent the same 6

=
< = =/0 Inserting a matrix and its inverse, 

one obtains a different TN rep. for the same 6

;55

Σ,!,-!,,!" ,-!"5,!-!,!" -!"=,! .,!=-! .-!=,!" .,!"
/0 =-!" .-!"

/0 = ;5 .,! .-! .,!" .-!"

1/

10



How to construct TN rep.

Partition function w/ discrete dof
-> Exact TN rep. is easily available (ex. Ising, Potts, …… ) 

Path integral in fermion systems w/ Grassmann numbers
-> No approximation is necessary to derive TN rep.

Shimizu-Kuramashi, PRD90(2014)014508, Takeda-Yoshimura, PTEP2015(2015)043B01

SA-Kadoh, arXIv:200507570 [hep-lat]

・Auxiliary fermion fields

Path integral w/ continuous dof
-> Some approximation is necessary to derive TN rep.     

・Taylor expansion: e122 = Σ3 @AA 3 ( discussed later )
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( Ref. Liu et al, PRD88(2013)056005 )

( Ref. Talks by Tao Xiang in TNQMP2016 )



Basic concept of TRG algorithm
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Information	compression	
w/	the	Singular	Value	Decomposition	(SVD)

Y45 = Σ6Z46[6\56 ≈ Σ6708 Z46[6\56

w/   [0 ≥ [9 ≥ ⋯ ≥ [:;< 3,! ≥ 0

( Y:a×2 matrix, Z:a×a unitary, \: 2×2 unitary )

Idea	of	real-space	renormalization	group
Iterate a simple transformation w/ approximation
and we can investigate thermodynamic properties

TRG employs the SVD to reduce d. o. f. 
and perform the tensor contraction approximately

+
→

We cannot perform the contractions 
in TN rep. exactly ( too many d. o. f. ) 



TRG w/ SVD of !
Ex. Levin-Nave TRG      Levin and Nave, PRL99(2007)120601

SVD

ContractionIteration

Largest f singular values in 5 are kept
( f: bond dimension )
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TRG w/ isometry insertion

(B)

(C)

(A)

HOSVD

ContractionIteration

Ex. Higher-order TRG (HOTRG)      Xie et al, PRB86(2012)045139

Largest f singular values in 55 are kept
( f: bond dimension )
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Z Z=

SequenLal coarse-graining 
along with each direcLon

1/
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# of tensors are reduced to half



Example: 2d Ising model w/ HOTRG
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Example: 3d Ising model w/ HOTRG
Xie et al, PRB86(2012)045139

-> Good agreement with
the Monte Carlo results 
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COARSE-GRAINING TENSOR RENORMALIZATION BY . . . PHYSICAL REVIEW B 86, 045139 (2012)
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FIG. 7. (Color online) Graphical representation for the determi-
nation of the bond density matrix ρ(n)

zw,xy from the environment tensor
E

(n+2)
lrf bud in three dimensions.

the Monte Carlo result.27 Our result for the specific heat agrees
with the Monte Carlo one. At the critical temperature, Tc =
4.511544, the internal energy is found to be Uc = −0.995592
for D = 14. This value of Uc, as shown in Table I, also agrees
well with other published data.

From the temperature dependence of the specific heat
around the critical point, one can estimate the critical exponent
of the specific heat with the formula,

C ∼ t−α, (16)

where t = |1 − T/Tc|. However, as the specific heat data are
obtained simply from the numerical derivative of the internal
energy, the accuracy of the specific heat data is much less than
that of the internal energy, especially around the critical point.
This causes a big error in the determination of the exponent α
with the above formula. This problem can be solved by directly
evaluating this exponent from the temperature dependence of
the internal energy. From the temperature integration of the
specific heat, it is simple to show that the internal energy
should exhibit the following critical behavior:

U = Uc + at + bt1−α, (17)

FIG. 8. (Color online) The internal energy and the specific heat
for the 3D Ising model obtained by the HOTRG with D = 14.
The Monte Carlo result (black curve) obtained from an empirical
fit formula given in Ref. 27 is shown for comparison.

TABLE I. Comparison of the internal energy at the critical
temperature Uc for the 3D Ising model obtained by different methods.

Method Uc

HOTRG (D = 16) − 0.990842(3)
Series expansion30 − 0.991(1)
Series expansion31 − 0.9902(1)
Series expansion32 − 0.99218(15)
Monte Carlo27 − 0.990604(4)
Monte Carlo33 − 0.9904(8)
Monte Carlo34 − 0.990(4)

where a and b are unknown parameters which can be
determined by fitting.

Figure 9 shows the fitting curves for the internal energy
around the critical point obtained with Eq. (17). The critical
exponent is found to be α = 0.1023 and 0.1137 for the tem-
perature higher and lower than the critical value, respectively.
These values of the critical exponent are consistent with the
result obtained from the series expansion,28 0.104, and the
Monte Carlo calculation,29 0.111.

Figure 10 shows the temperature dependence of the sponta-
neous magnetization M obtained by the HOTRG with D = 14.
Our data agree well with the Monte Carlo results.35 From the
singular behavior of M , we find that the critical temperature
Tc = 4.511615 for D = 14. Furthermore, by fitting the data of
M in the critical regime with the formula,

M ∼ tγ , (18)

we find that the exponent γ = 0.3295, consistent with the
Monte Carlo29 (0.3262) and series expansion36 (0.3265)
results.

Figure 11 shows the critical temperature Tc determined
from the singular points of the internal energy as well as the
magnetization for D up to 16. The values of Tc obtained from
these two quantities agree with each other. For D = 16, Tc

obtained from the internal energy and the magnetization are
4.511544 and 4.511546, respectively. The relative difference
is less than 10−6. But Tc does not vary monotonically with

FIG. 9. (Color online) The internal energy (D = 14) and its fitting
curves with Eq. (17) around the critical point for the 3D Ising model.
α is the critical exponent for the specific heat.

045139-5

Critical point
" = 14



Advantage of TRG approach

Tensor renormalization group is a deterministic numerical method

・No sign problem
・The computational cost scales logarithmically w. r. t. the system size
・Direct evaluation of the Grassmann integrals (w/o introducing pseudo-fermions)

・Direct evaluation of the partition functions

TRG has been successfully applied to various 2d or 3d models w/ or w/o the 
sign problem                                                      Meurice et al, arXiv:2010.06539 ( review paper )
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Today’s message TRG is an efficient approach also in 4d !



Computational cost of TRGs
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Algorithm Computational Time Target

Levin-Nave TRG
Levin and Nave, PRL99(2007)120601

f>lng 2-dim

HOTRG
Xie et al, PRB86(2012)045139

f?@/0lng h-dim

Anisotropic TRG (ATRG)
Adachi et al, PRB102(2020)054432

f9@A0lng h-dim

Triad RG
Kadoh-Nakayama, arXiv:1912.02414

f@ABlng h-dim

f: bond dimension, g: linear system size

We need economic TRG algorithms to investigate 4d systems
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! = 10

9 = 91

Adachi et al, PRB102(2020)054432
Internal Energy Relative error of free energy

2d ATRG 2d HOTRG TRG

Memory i(fB) i(f?) i(f?)

Time i(fC) i(fD) i(f>)

∼ Computational time

-> Accuracy with the fixed  
computational time is improved

-> Sequential coarse-graining along with each direction

ADACHI, OKUBO, AND TODO PHYSICAL REVIEW B 102, 054432 (2020)
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FIG. 4. Absolute error of the free energy density of the two-
dimensional Ising model at T = Tc as a function of leading-order
computation time τ [Eq. (16)] calculated by TRG (black squares),
HOTRG (blue circles), and ATRG (red diamonds). ATRG achieves
the most accurate results among the three methods with fixed com-
putation time.

computation time τ (dimensionless quantity) defined as

τ =
{

χ5 for TRG and ATRG

χ7 for HOTRG
(16)

based on their leading computation cost. In Fig. 4, we plot the
absolute error of the free energy density as a function of τ for
the three methods. With fixed τ , ATRG has the smallest error
among the three methods. In ATRG, partial SVD is the most
expensive operation, while it is the contraction in HOTRG.
In practice, the partial SVD takes a much longer time than the
contraction, even when their computation costs are in the same
order. Thus, the actual performance difference between ATRG
and HOTRG is smaller than Fig. 4, though ATRG becomes
more and more advantageous for larger χ due to the difference
in the order in computation cost [Eq. (16)].

It should be mentioned that the present method suffers
from larger and nonmonotonic fluctuations in the convergence
of the error. This observed behavior is probably related to
the two independent truncations in the ATRG renormalization
procedure. Because ATRG optimizes only the local tensors in
each truncation, increasing χ does not necessarily improve the
accuracy of the free energy, which is determined by the global
tensor network. The nonmonotonic convergence in ATRG
should be subjected to further investigation.

Next, we move to the three-dimensional Ising model
on a simple cubic lattice. In the three-dimensional case,
we compare ATRG with HOTRG. In Fig. 5, we show the
free energy density as a function of τ at T = Tc = 4.5115
[2,36–38]. Here, we again define the leading-order computa-
tion time τ for three dimensions as

τ =
{

χ7 for ATRG

χ11 for HOTRG.
(17)

In the present case, we calculate up to χ = 56 (χ = 27) for
ATRG (HOTRG). In Fig. 5, it is demonstrated again that the
ATRG gives the better (lower) free energy density than that of
HOTRG for the same leading-order computation time τ . We
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FIG. 5. Free energy density of the three-dimensional Ising model
at T = Tc as a function of leading-order computation time τ

[Eq. (17)] calculated by HOTRG (blue circles) and ATRG (red
diamonds). ATRG achieves much lower free energy than HOTRG
with fixed computation time.

expect that the advantage of ATRG over HOTRG should be
more pronounced in higher dimensions.

IV. SUMMARY

In this paper, we proposed the ATRG method that can
perform tensor renormalization operations with computation
cost of O(χ2d+1) and memory footprint of O(χd+1) for d-
dimensional hyper cubic lattices. The computation cost and
the memory footprint of the proposed method are much lower
than that of the conventional HOTRG, O(χ4d−1) and O(χ2d ),
respectively, which enables us to apply the tensor renormal-
ization method in higher dimensions. Unlike HOTRG, our
algorithm involves the truncation of the bond dimension by
using SVD when we swap the bonds of two tensors. Due to
this additional approximation, the accuracy in the final result
degrades compared with HOTRG. However, this disadvantage
is compensated by the drastic reduction of the computation
cost from O(χ4d−1) to O(χ2d+1). We confirmed that for two-
and three-dimensional Ising models, our method achieves
higher accuracy than HOTRG with fixed leading-order com-
putational time. Since ATRG is a real space renormalization
method similar to HOTRG and preserves the lattice topology
after the renormalization, it can be applied to various lattice
systems in arbitrary dimensions.

Finally, as we pointed out already, the partial SVD is the
most expensive operation in ATRG. The performance of the
partial SVD is thus essential in ATRG, and the development
of more efficient and stable partial SVD algorithms is desired
for future application of ATRG to large-scale complex lattice
systems.
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Status of TRG approach in 4d system

Model TRG algorithm

Ising model
SA et al, PRD100(2019)054510

HOTRG (Xie et al, PRB86(2012)045139)
w/ parallel computation

Ising model
SA et al, PoS(LATTICE2019)138

ATRG (Adachi et al, PRB102(2020)054432)
w/ parallel computation

Complex jE theory at finite density
SA et al, JHEP09(2020)177 ATRG w/ parallel computation

NJL model at finite density
SA et al, arXiv:2009.11583[hep-lat]

Grassmann ATRG 
w/ parallel computation

Parallel computation helps us carry out the large multi-linear algebra in TRG
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4d ATRG with parallel computation 

ATRG is a coarse-graining (direct truncation) method based on SVD

4d ATRG 4d HOTRG

Memory i(fC) i(fF)

Time i(fG) i(f0C)

% !" calculations in 4d ATRG  ->  SVD and tensor contraction 

Our implementation

SVD contraction

Strategy Randomized SVD Parallel computing
Time i(fD) i(fF)

-> Parallel computation reduces the computational cost from ! "3 to ! "4

14/24



4d Nambu–Jona-Lasinio model at finite density

S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, arXiv:2009.11583[hep-lat]



Expected phase diagram of the NJL model

NambuーJona-Lasinio, PRD122(1961)345-358

✔ Effective theory of QCD
&

'

1st

2nd Critical end point

()) ≠ 0 ()) = 0

✔ Chiral restoration is expected 
in cold & dense region

✔ Severe sign problem 
in cold & dense region

Asakawa-Yazaki, NPA504(1989)668-684

NambuーJona-Lasinio, PRD124(1961)246-254

We apply the Tensor Renormalization Group (TRG) approach
to investigate the 1st order chiral phase transition in cold & dense region 
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NJL model at finite density

✔w/ the Kogut-Susskind fermion
-> Single-component Grassmann variables w/o the Dirac structure
-> Staggered sign function kH 2 = −1 !#A⋯A!$%# with k0 2 = 1

✔ ' : chemical potential

mJKL =
1
2
oBΣ!∈NΣH70? kH 2 eOPQ$,'q̅ 2 q 2 + ŝ − e/OPQ$,'q̅ 2 + ŝ q 2

+ao?Σ!∈Nq̅ 2 q 2 − tRo?Σ!∈NΣH70? q̅ 2 q 2 q̅ 2 + ŝ q 2 + ŝ

✔ Continuous chiral symmetry for vanishing + :

, - → e#$% & , - , ,̅ - → ,̅ - e#$% &

w/ 2 ∈ ℝ and 5 - = −1 &2'&3'&4'&5

( This formulation follows Lee-Shrock, PRL59(1987)14 )

16/24



7

1

3

8

6 05

2

1

3

0

3 22

1 0

0

0

0

1 1

3

3
5

5

Tensor network rep. & Grassmann ATRG

7 = Σ∫ Π&∈)(7);&;+,-.+9,9-9.9
(0) -> consists of 8 types of tensor

u

v

0

/

v

u
0
/

kH 2 = −1 !#A⋯A!$%# with k0 2 = 1

# of lattice sites are reduced to half
Λ(R) → Λ(0)

Uniform structure
in v-direction 

/-, 0-, u-directions : PBC
v-directions : Anti-PBC

17/24



0

0

0

1 1

3

3

0

0
2

1

3

3

1 00

2

1

3

0

3 22

1 0

Tensor network rep. & Grassmann ATRG

7 = Σ∫ Π&∈)(2);&;+,-.+9,9-9.9
(2) -> consists of 4 types of tensor

u

v

0

/

v

u
0
/

# of lattice sites are reduced to half
Λ(0) → Λ(9)

Uniform structure
in v-, u-directions 

/-, 0-, u-directions : PBC
v-directions : Anti-PBC

18/24



1

10 1

0 1 0

0

0

0

0

0

1

1

11

0

0

0

1 1

0

0
0

0

Tensor network rep. & Grassmann ATRG

7 = Σ∫ Π&∈)(3);&;+,-.+9,9-9.9
(3) -> consists of 2 types of tensor

u

v

0

/

v

u
0
/

# of lattice sites are reduced to half
Λ(9) → Λ(B)

Uniform structure
in v-, u-, 0-directions 

/-, 0-, u-directions : PBC
v-directions : Anti-PBC

19/24



0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0
0

0

0 0

Tensor network rep. & Grassmann ATRG
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Λ(B) → Λ(?)

Uniform structure
in all directions 

/-, 0-, u-directions : PBC
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with A: = 32, G = 55
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< → 0D = 1024A
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Current numerical results clearly show that 
the chiral phase transition in cold & dense region is 1st order 
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Summary

• The TRG is a variant of RSRG, which is a deterministic numerical 
method

• 1st order chiral transition in the NJL model at finite density has been 
detected w/ the parallelized Grassmann ATRG 
( the first application of the TRG approach to 4d fermionic QFT )

• This work shows that the TRG approach does not suffer from the sign 
problem and nicely works to evaluate the observables on almost 
thermodynamic lattice 

• TRG will be an efficient numerical approach to other types of 4d QFT
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