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Tensor renormalization group approach

Tensor Network (TN)
-> Contractions of the tensors locating on a real-space lattice

Tensor Renormalization Group (TRG)
-> A variant of real-space renormalization group to coarse grain tensor networks

Procedures

1) TN representation for X : (# of tensors in TN) = (# of lattice sites)

X - Zabcd---Taiw---Tbjx-o-Tcky---lez---"'

2) TRG : Block-spin trans. for T to reduce # of tensors in TN

~ Za’b’c’d’-~-T’a’i’w’---T’b’j’x’---T,c’k’y’---T,d’l’z’---
1) Construct the TN representation for the target function X defined on lattice

ex. Partition function, Path integral
2) Approximately perform the tensor contraction with TRG
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TN rep. for 2d Ising model w/ PBC

Decompose nearest-neighbor interactions

Z = S sy Ty exp[BJOnonsn] | EEED> | Z= T[Ty, ]
T

X Ynxhyh specifies the details of the model

exp[ﬂlo-no_n+ﬁ] = z ’Aan(Un: ln) Aan(O-n+ﬁ' ln) = z W(O-n' ln)W(Un+ﬁr ln)
fn n W(a,b) = /A,U(a,b)

Tannx;Llez = z W(O-n' xn)W(Unt yn)W(O_n: xrll)W(O-n» y‘r’l)

on=*1 Xn = Xn—2 Yn = Yn-p
Real Space R TN rep. for Z
n+y —o—o
< Yo
Y P N N P .
. < A Yn
y y
= ASRERS
X

=D
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Remark TN rep. is not unique

M M1 Inserting a matrix and its inverse,
&PD— | one obtains a different TN rep. for the same Z
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Z = Tr[HnTxnynxhyh] Both represent the same Z Z = Tr[Hannynfc'{ly{l]
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How to construct TN rep.

Partition function w/ discrete dof (Ref. Talks by Tao Xiang in TNQMP2016 )

-> Exact TN rep. is easily available (ex. Ising, Potts, ...... )

Path integral w/ continuous dof (Ref. Liu et al, PRD88(2013)056005 )

-> Some approximation is necessary to derive TN rep.

Path integral in fermion systems w/ Grassmann numbers

-> No approximation is necessary to derive TN rep.
- Taylor expansion: e¥¥ =X . ()™ ( discussed later )
Shimizu-Kuramashi, PRD90(2014)014508, Takeda-Yoshimura, PTEP2015(2015)043B01

* Auxiliary fermion fields

SA-Kadoh, arXlv:200507570 [hep-lat]
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Basic concept of TRG algorithm

Idea of real-space renormalization group
lterate a simple transformation w/ approximation
and we can investigate thermodynamic properties

We cannot perform the contractions

in TN rep. exactly ( too many d. o. f.)

_I_

Information compression
w/ the Singular Value Decomposition (SVD)

_______ ® © © Q- Al] = ZkUiko-kV}'k ~ 2:}lc)=1UikO-ijk

W/ 01203 2 2 Omin(mm) = 0

yoo o000
‘ ( A:mXn matrix, U: mxm unitary, V: nXxn unitary )
X

\J

TRG employs the SVD to reduce d. o. f. |
and perform the tensor contraction approximately
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TRGw/SVD of T

Ex. Levin-Nave TRG  Levin and Nave, PRL99(2007)120601

Contraction : ™ g

Q

T T T T T T PP T PP P PP PP PP T PP PP PP PPPP PP

Largest D singular values in T are kept

# of tensors are reduced to half (D: bond dimension )
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TRG w/ isometry insertion

Ex. Higher-order TRG (HOTRG)  Xie et al, PRB86(2012)045139

‘ A

=D

Iteration Contraction

Largest D singular values in TT are kept

Sequential coarse-graining ( D: bond dimension )

along with each direction

# of tensors are reduced to half
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Example: 2d Ising model w/ HOTRG

Temperature

Exact

p=2 O
C,
0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Temperature

Exact

p=10 O
C,
0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Internal Energy
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Exact
D=4

0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Temperature

TRG ( red circle ) well reproduces
the exact solution ( solid curve )
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Example: 3d Ising model w/ HOTRG

Xie et al, PRB86(2012)045139

' ' Critical point
Method T.
10k [H(_)TRG (D = 16, from U) 4.51 1544]
) HOTRG (D = 16, from M) 4.511546
Monte Carlo®’ 4511523
Monte Carlo™® 4.511525
Monte Carlo™ 4511516
Monte Carlo™ 4511528
Series expansion’ 4.511536
-1.5F 4  CTMRG" 45788
o HOTRG TPVA" 4.5704
Fitting curve (0=0.1023, T>T) CTMRG" 4.5393
g o e TPVA'® 4.554
OOO Flttlng curve (OL:O. 1137, T< TC) Algebraic variation™ 4.547
O
2.0 - - - :
4.0 4.5 5.0 55 -> Good agreement with

Temperature

the Monte Carlo results
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Advantage of TRG approach

Tensor renormalization group is a deterministic numerical method

* No sign problem

* The computational cost scales logarithmically w. r. t. the system size

- Direct evaluation of the Grassmann integrals (w/o introducing pseudo-fermions)
- Direct evaluation of the partition functions

TRG has been successfully applied to various 2d or 3d models w/ or w/o the
sign problem Meurice et al, arXiv:2010.06539 ( review paper )

Today’s message TRG is an efficient approach also in 4d !
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Computational cost of TRGs

D: bond dimension, L: linear system size

Algorithm Computational Time Target
Levin-Nave TRG DSInL 72-dim
Levin and Nave, PRL99(2007)120601
AOUHE D*d-1]pL d-dim
Xie et al, PRB86(2012)045139
Anisotropic TRG (ATRG) D2d+iyn] d-dim
Adachi et al, PRB102(2020)054432
U] e D+3]nL, d-dim

Kadoh-Nakayama, arXiv:1912.02414

We need economic TRG algorithms to investigate 4d systems
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ATRG (= TRG w/ SVD): Benchmarking w/ 2d Ising model

-> Sequential coarse-graining along with each direction

Internal Energy

Internal Energy

2d ATRG
Memory 0(D3)
Time 0(D>)

Relative error of free energy
Adachi et al, PRB102(2020)054432
=

ATRG o
HOTRG @ 1

10° 10" 10®° 10° 10'° 10%t 10'?
T ~ Computational time

-> Accuracy with the fixed
computational time is improved

2dHOTRG  TRG
0(D%) 0(D%)
0(D") 0(D°)



13/24
Status of TRG approach in 4d system

Model TRG algorithm
Ising model HOTRG (Xie et al, PRB86(2012)045139)
SA et al, PRD100(2019)054510 w/ parallel computation
Ising model ATRG (Adachi et al, PRB102(2020)054432)
SA et al, PoS(LATTICE2019)138 w/ parallel computation

Complex ¢p* theory at finite density
SA et al, JHEP09(2020)177

NJL model at finite density Grassmann ATRG
SA et al, arXiv:2009.11583[hep-lat] w/ parallel computation

ATRG w/ parallel computation

Parallel computation helps us carry out the large multi-linear algebra in TRG



4d ATRG with parallel computation

ATRG is a coarse-graining (direct truncation) method based on SVD

4d ATRG 4d HOTRG
Memory 0(D>) 0(D?®)
Time 0(D?) 0(D)

0(D?) calculations in 4d ATRG -> SVD and tensor contraction

Our implementation

SVD contraction
Strategy Randomized SVD Parallel computing
Time 0(D") 0(D?®)
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-> Parallel computation reduces the computational cost from 0(D?) to O(D?3)



4d Nambu—Jona-Lasinio model at finite density

S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, arXiv:2009.11583[hep-lat]
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Expected phase diagram of the NJL model

T

v Effective theory of QCD

Nambu—Jona-Lasinio, PRD122(1961)345-358
Nambu—Jona-Lasinio, PRD124(1961)246-254

4

v Chiral restoration is expected
in cold & dense region

Asakawa-Yazaki, NPA504(1989)668-684

v Severe sign problem
in cold & dense region

o e
--------
-~
-~
-~
~

S

We apply the Tensor Renormalization Group (TRG) approach
to investigate the 1t order chiral phase transition in cold & dense region
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NJL model at finite density

Vv w/ the Kogut-Susskind fermion
-> Single-component Grassmann variables w/o the Dirac structure
-> Staggered sign function n,,(n) = (—=1)™* -1 withn,(n) = 1

vV u : chemical potential

1 — N —_— — A
= @ e Zioaty ()] 490 Z(n)y (n + 9) — K4 7(n + D)y (n)|

+ma*ZneaX(Mx(M) — goa*LneaZy-1 X Wx M) x(n + Ny (n + 9)

Slat =

( This formulation follows Lee-Shrock, PRL59(1987)14 )

v Continuous chiral symmetry for vanishing m :

iaxe(n)

x(n) = e *MWym),  jpn) - q(n)e

w/ a € Rand e(n) = (—1)™ M2 Ms¥7
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Tensor network rep. & Grassmann ATRG

_ (0) -
Z=3f A Tzt w1z > CONSISts of 8 types of tensor

X-, y-, z-directions : PBC
t-directions : Anti-PBC

() = (—1)MT -1 withnp (n) = 1

# of lattice sites are reduced to half Uniform structure
AO) 5 AD) in t-direction



18/24
Tensor network rep. & Grassmann ATRG

_ (1) -
Z=3f A Ty gty = CONSists of 4 types of tensor

X-, y-, z-directions : PBC
t-directions : Anti-PBC

# of lattice sites are reduced to half Uniform structure
AL 5 A@) in t-, z-directions
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Tensor network rep. & Grassmann ATRG

_ (2) -
Z=3f MA@ Ty st iyt = CONSists of 2 types of tensor

X-, y-, z-directions : PBC
t-directions : Anti-PBC

# of lattice sites are reduced to half Uniform structure
A2 5 AG) in t-, z-, y-directions



20/24

Tensor network rep. & Grassmann ATRG

/Z = Zf HneA(S)T(B) [

ntxyzt' x'y z

-> consists of 1 type of tensor

X-, y-, z-directions : PBC
t-directions : Anti-PBC

# of lattice sites are reduced to half
AB) 5 A(4)

Uniform structure
in all directions
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Converging behavior in bond dimension
withm = 0.01, g, = 32,L = 1024

q T | T T T T | T ]
2 ]
107 E o—opn=2875| 3
n o o—o nu=4.0 ]
10° E E
10% e E
%]
10° & =
10°E _
5 = In Z(D)—In Z(D=55)
- In Z(D=55)

107 & —
C 1 | 1 | 1 | 1 | 1 | 1 i

25 30 35 40 45 50 55

5 < 107%* has been achieved upto D = 55at u =~ p,
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Chiral condensate
with go = 32,D =55

L =1024% m- 0
010 T T T T T T T T T T T T I T T T 010 T T T T T T T T T T T T I T T T
: v—v m=0.01 : : e—a [ =128

. W T h T

0.06 - — 0.06 —
A B T AN B
3 004+ — 3 004 _|
\' - N \% -

002 — 0.02 _

0.00 - &—o—o—o—e— 0.00

002 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 _002 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

0.0 1.0 20 3.0 40 50 00 1.0 20 3.0 40 50

u u

Chiral symmetry is restored in the region with u = 3.0
A discontinuity at u = 3. 0 indicates the 15t order transition
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Ingredients of the equation of state
withm = 0.01, g, = 32,D =55

Pressure :
. : Number density
( ~ Thermodynamic potential )
45 — T T 1 T T T ] T T T [ T T 1 T T 12T T T 1 T T 71 T T L R LN B B
0—a [, =128 —a [ =128
i -+ L=1024 10 |*-+*L=1024
40—
I 0.8
3.5_— 0.6

<n>

A sharp increase

starting from u = 3.0 "4 A jump fromOto 1

30—

02 -
25 -
" 0.0 -
2 .O 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 _0 '2 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
0.0 1.0 20 30 40 50 0.0 10 20 30 40 50
B n

Current numerical results clearly show that
the chiral phase transition in cold & dense region is 15t order



24/24
Summary

The TRG is a variant of RSRG, which is a deterministic numerical
method

15t order chiral transition in the NJL model at finite density has been
detected w/ the parallelized Grassmann ATRG
( the first application of the TRG approach to 4d fermionic QFT )

This work shows that the TRG approach does not suffer from the sign

problem and nicely works to evaluate the observables on almost
thermodynamic lattice

TRG will be an efficient numerical approach to other types of 4d QFT



