Phenomenological aspects of a light pseudoscalar in Type-X 2HDM

PLB 774 (2017), PRD 98 (2018)
PLB 802 (2020), JHEP (2020)

Tanmoy Mondal

Korea Institute for Advanced Study
Seoul, South Korea

November 17th, 2020
BSM Models often involve extended Higgs sector:

- $U(1)_{B-L}$, Some DM models: SM Higgs + Scalar singlet
- MSSM: SM Higgs + Scalar doublet (2HDM)
- LR model, type-II seesaw: SM Higgs + Scalar triplet

Motivations for 2HDM:
- Explaining baryon asymmetry of the Universe
- PQ symmetry
- Radiative neutrino mass generation, Dark matter etc.
- Muon anomalous magnetic moment.

Type-X 2HDM can explain Muon $g-2$ with a light pseudoscalar & large tan β
Introduction

BSM Models often involve extended Higgs sector:

- $U(1)_{B-L}$, Some DM models: SM Higgs + Scalar singlet
- MSSM: SM Higgs + Scalar doublet (2HDM)
- LR model, type-II seesaw: SM Higgs + Scalar triplet

Motivations for 2HDM:

- Explaining baryon asymmetry of the Universe
- PQ symmetry
- Radiative neutrino mass generation, Dark matter etc.
- Muon anomalous magnetic moment.
BSM Models often involve extended Higgs sector:

- $U(1)_{B-L}$, Some DM models: SM Higgs + Scalar singlet
- MSSM: SM Higgs + Scalar doublet (2HDM)
- LR model, type-II seesaw: SM Higgs + Scalar triplet

Motivations for 2HDM:

- Explaining baryon asymmetry of the Universe
- PQ symmetry
- Radiative neutrino mass generation, Dark matter etc.
- Muon anomalous magnetic moment.

Type-X 2HDM

- Can explain Muon $g - 2$ with a light pseudoscalar & large $\tan \beta$
- I will discuss some of the phenomenological aspects of a light pseudoscalar in Type-X 2HDM.
The Model: 2HDM Type X
The 2HDM scalar potential

The scalar potential

\[
V_{2\text{HDM}} = m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 - \left[m_{12}^2 \Phi_1^\dagger \Phi_2 + \text{h.c.} \right] \\
+ \frac{1}{2} \lambda_1 (\Phi_1^\dagger \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) \\
+ \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1) + \frac{1}{2} \lambda_5 \left\{ (\Phi_1^\dagger \Phi_2)^2 + (\Phi_2^\dagger \Phi_1)^2 \right\}
\]

- The doublets contain 4 real fields each ⇒ 8 total fields.

\[
\Phi_i = \left(\begin{array}{c} \phi_i^\pm \\ \frac{\nu_i}{\sqrt{2}} + \phi_i^r + i \phi_i^i \end{array} \right)
\]

- After SSB we have 5 physical scalar fields: \(H^\pm, h, H, A\).
The scalars of 2HDM

Masses of the scalars and quartic couplings

\[
\lambda_1 = \frac{m_H^2 c_\alpha^2 + m_h^2 s_\alpha^2 - m_{12}^2 \tan \beta}{v^2 c_\beta^2},
\]

\[
\lambda_2 = \frac{m_H^2 s_\alpha^2 + m_h^2 c_\alpha^2 - m_{12}^2 \cot \beta}{v^2 s_\beta^2},
\]

\[
\lambda_3 = \frac{(m_H^2 - m_h^2)c_\alpha s_\alpha + 2m_{H\pm}^2 s_\beta c_\beta - m_{12}^2}{v^2 s_\beta c_\beta},
\]

\[
\lambda_4 = \frac{(m_A^2 - 2m_{H\pm}^2)s_\beta c_\beta + m_{12}^2}{v^2 s_\beta c_\beta}, \quad \lambda_5 = \frac{m_{12}^2 - m_A^2 s_\beta c_\beta}{v^2 s_\beta c_\beta}.
\]

\[
m_H^2 \approx m_A^2 + \lambda_5 v^2, \quad m_{H^+}^2 \approx m_A^2 + \frac{1}{2} (\lambda_5 - \lambda_4) v^2.
\]

If \(\lambda_5 \approx -\lambda_4\) we will have \(m_A \ll m_H \approx m_{H^+}\).
Yukawa Sector

Since we have two doublets the general Yukawa structure will be:

\[\mathcal{L} = y^1_{ij} \bar{\psi}_i \psi_j \Phi_1 + y^2_{ij} \bar{\psi}_i \psi_j \Phi_2 \]

\[\Rightarrow m^f_{ij} = y^1_{ij} \frac{v_1}{\sqrt{2}} + y^2_{ij} \frac{v_2}{\sqrt{2}} \]

In general both \(y^1_{ij} \) and \(y^2_{ij} \) will not be simultaneously diagonalizable which leads to couplings like \((\bar{d} \ s \ \phi)\). FCNC

- Experimental limit on FCNC scalar mass \(\sim 10 \text{ TeV} \).

- So we demand: No tree level FCNC.

Paschos-Glashow-Weinberg Theorem

A necessary and sufficient condition for the absence of FCNC at tree level is that all fermions of a given charge and helicity transform according to the same irreducible representation of SU(2), correspond to the same eigenvalue of \(T_3 \) and that a basis exists in which they receive their contributions in the mass matrix from a single source.

or

RH fields with same quantum number should couple to only one type of Higgs.
Paschos-Glashow-Weinberg Theorem

RH fields with same quantum number should couple to only one type of Higgs.

<table>
<thead>
<tr>
<th>Model</th>
<th>(u^i_R)</th>
<th>(d^i_R)</th>
<th>(e^i_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>(\Phi_2)</td>
<td>(\Phi_2)</td>
<td>(\Phi_2)</td>
</tr>
<tr>
<td>Type II</td>
<td>(\Phi_2)</td>
<td>(\Phi_1)</td>
<td>(\Phi_1)</td>
</tr>
<tr>
<td>Lepton-specific</td>
<td>(\Phi_2)</td>
<td>(\Phi_2)</td>
<td>(\Phi_1)</td>
</tr>
<tr>
<td>Flipped</td>
<td>(\Phi_2)</td>
<td>(\Phi_1)</td>
<td>(\Phi_2)</td>
</tr>
</tbody>
</table>
2HDM X: Yukawa structure

\[\mathcal{L}_Y = -Y^u \bar{Q}_L \phi_2 u_R + Y^d \bar{Q}_L \phi_2 d_R + Y^e \bar{\ell}_L \phi_1 e_R + h.c. \]
$\mathcal{L}_Y = -Y^u \bar{Q}_L \tilde{\Phi}_2 u_R + Y^d \bar{Q}_L \Phi_2 d_R + Y^e \bar{\ell}_L \Phi_1 e_R + h.c.$

After symmetry breaking in terms of physical scalars the Yukawa couplings are

$$\mathcal{L}_{\text{Physical Yukawa}}^{\text{Physical Yukawa}} = - \sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_f^f \bar{h} f h + \xi_f^f \bar{H} f H - i \xi_f^f \bar{\gamma}_5 A f \right)$$

$$- \left\{ \frac{\sqrt{2} V_{ud}}{v} \bar{u} \left(m_u \xi_A^u P_L + m_d \xi_A^d P_R \right) H^+ d$$

$$+ \frac{\sqrt{2} m_l}{v} \xi_A^l \bar{\nu}_L H^+ l_R + h.c. \right\},$$

<table>
<thead>
<tr>
<th>ξ^u_h</th>
<th>ξ^d_h</th>
<th>ξ^l_h</th>
<th>ξ^u_H</th>
<th>ξ^d_H</th>
<th>ξ^l_H</th>
<th>ξ^u_A</th>
<th>ξ^d_A</th>
<th>ξ^l_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_α</td>
<td>c_α</td>
<td>$-s_\alpha$</td>
<td>s_α</td>
<td>s_α</td>
<td>c_α</td>
<td>c_α</td>
<td>$-c_\alpha$</td>
<td>$\cot \beta$</td>
</tr>
<tr>
<td>s_β</td>
<td>s_β</td>
<td>c_β</td>
<td>c_β</td>
<td>s_β</td>
<td>c_β</td>
<td>s_β</td>
<td>c_β</td>
<td>$\tan \beta$</td>
</tr>
</tbody>
</table>

Table: The multiplicative factors of Yukawa interactions
Gauge-Higgs sector:

\[g_{hVV} = \sin(\beta - \alpha)g_{hVV}^{\text{SM}}, \quad g_{HVV} = \cos(\beta - \alpha)g_{hVV}^{\text{SM}}, \quad g_{AVV} = 0, \]

where \(V = Z, W^\pm \).

Relevant vertices

\[hAZ_\mu : \frac{g_Z}{2} \cos(\beta - \alpha)(p + p'_\mu), \quad HAZ_\mu : -\frac{g_Z}{2} \sin(\beta - \alpha)(p + p'_\mu), \]

\[H^\pm A W^\mp_\mu : \frac{g}{2} (p + p'_\mu) \]

where \(p_\mu (p'_\mu) \): outgoing four-momenta of the first (second) scalars.
Interesting parameter space in 2HDM-X: Muon \((g - 2)\) and other constraints
2HDM-X: Muon \((g - 2)\) and other constraints

- **Muon \(g - 2\)**

- Higgs signal strength

- \(B_s \to \mu^+ \mu^-\) or \(B_s \to X_s \gamma\)

- EWPD

- Lepton universality
2HDM-X: Muon \((g-2)\) and other constraints

- **Muon \(g-2\)**
 - \(a_{\mu}^{\exp} = (11659209.1 \pm 6.3) \times 10^{-10}\)
 - \(a_{\mu}^{\text{th}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had,VP}} + a_{\mu}^{\text{had,LbL}}\)
 - \(\{(11658471.9 \pm 0.007) + (15.36 \pm 0.1)\} \times 10^{-10}\)
 - \(\{(684.68 \pm 2.42) + (9.8 \pm 2.6)\} \times 10^{-10}\)
 - \(\Delta a_{\mu} = (27.06 \pm 7.26) \times 10^{-10}\)

- **Higgs signal strength**

- **\(B_s \rightarrow \mu^+\mu^-\) or \(B_s \rightarrow X_s\gamma\)**

- **EWPD**

- **Lepton universality**

Tanmoy Mondal, KIAS, Seoul
Osaka University, Osaka
Light Pseudoscalar Phenomenology in 2HDM - X
2HDM-X : Muon \((g - 2)\) and other constraints

- **Muon \(g - 2\)**
- Higgs signal strength
- \(B_s \rightarrow \mu^+ \mu^-\) or \(B_s \rightarrow X_s \gamma\)
- EWPD
- Lepton universality

1-loop: contribution from \(h, H\) are positive and \(A\) contributes negatively.

- \(m_H < 5\) GeV to explain experimental data.
- Barr-Zee 2-Loop contribution with \(\tau\) loop and low \(m_A\) comes to rescue.
2HDM-X : Muon \((g - 2)\) and other constraints

- Muon \(g - 2\)
- Higgs signal strength
- \(B_s \to \mu^+\mu^-\) or \(B_s \to X_s\gamma\)
- EWPD
- Lepton universality

\[
\begin{align*}
\tan \beta - m_A \text{ Plane} \\
\end{align*}
\]

and many more
2HDM-X: Muon $(g - 2)$ and other constraints

- Muon $g - 2$
- Higgs signal strength
- $B_s \to \mu^+ \mu^-$ or $B_s \to X_s \gamma$
- EWPD
- Lepton universality
2HDM-X: Muon \((g - 2)\) and other constraints

- Muon \(g - 2\)
- Higgs signal strength
- \(B_s \rightarrow \mu^+ \mu^-\) or \(B_s \rightarrow X_s \gamma\)
- EWPD
- Lepton universality

Wrong Sign Limit

\[\ell \ell \ell \text{ coupling} : \frac{-s_\alpha}{c_\beta} \simeq \sin(\beta - \alpha) - \tan \beta \cos(\beta - \alpha) \]

So, when \(\tan \beta \cos(\beta - \alpha) \sim 2\) Higgs coupling to leptons flip sign.
2HDM-X : Muon \((g - 2)\) and other constraints

- Muon \(g - 2\)
- Higgs signal strength
 - \(B_s \rightarrow \mu^+ \mu^-\) or \(B_s \rightarrow X_s \gamma\)
- EWPD
- Lepton universality

\[
\frac{m_t}{t_\beta} P_L \frac{m_b}{t_\beta} P_R \quad (X, I)
\]

\[
\frac{m_t}{t_\beta} P_L + m_b t_\beta P_R \quad (II, Y)
\]

- For type X : \(\sim 1\)
- For type II : \((\tan \beta)^2\)

- 2HDM-II : \(b \rightarrow s \gamma : m_{H^\pm} > 580\text{GeV}\). \(\text{BELLE, 1608.02344}\)
- \(BR(B_s \rightarrow \mu \mu) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}\) \(\text{LHCb, 1703.05747}\)
- Limit on type-II 2HDM : \(\tan \beta < 7\) for \(m_A < 70\text{ GeV}\)
2HDM-X: Muon \((g - 2)\) and other constraints

- Muon \(g - 2\)
- Higgs signal strength
 - \(B_s \rightarrow \mu^+ \mu^-\) or \(B_s \rightarrow X_s \gamma\)
- EWPD
- Lepton universality

\[\tan \beta < 7 \text{ for } m_A < 70 \text{ GeV}\]

GFitter: 1803.01853
2HDM-X : Allowed parameter space

- Muon $g - 2$
- Higgs signal strength
- $B_s \rightarrow \mu^+ \mu^-$ or $B_s \rightarrow X_s \gamma$
- EWPD
- Lepton universality

M_{H^\pm} should be very close to either M_H or M_A.

JHEP 11 (2014) 058
GFitter : 1803.01853
2HDM-X: Muon \((g - 2) \) and other constraints

- Muon \(g - 2 \)
- Higgs signal strength
- \(B_s \rightarrow \mu^+ \mu^- \) or \(B_s \rightarrow X_s \gamma \)
- EWPD
- Lepton universality

Limits coming from:
\[
\frac{\Gamma(\tau \rightarrow \mu \nu \nu)}{\Gamma(\tau \rightarrow e \nu \nu)}, \quad \frac{\Gamma(\tau \rightarrow e \nu \nu)}{\Gamma(\mu \rightarrow e \nu \nu)} \text{ etc}
\]
2HDM-X : Muon \((g - 2)\) and other constraints

- Muon \(g - 2\)
- Higgs signal strength
- \(B_s \rightarrow \mu^+ \mu^-\) or \(B_s \rightarrow X_s \gamma\)
- EWPD
- Lepton universality
2HDM-X : Muon $(g - 2)$ and other constraints

- Muon $g - 2$
- Higgs signal strength
- $B_s \rightarrow \mu^+ \mu^-$ or $B_s \rightarrow X_s \gamma$
- EWPD
- Lepton universality

Allowed space

- Blue : τ Decay
- Red : Z decay
- Solid : $M_H = M_{H'} = 200$ GeV
- Dashed : $M_H = M_{H'} = 400$ GeV

References:
- JHEP 1507 (2015) 064
- JHEP 07 (2016) 110
2HDMX at LHC
LHC phenomenology of 2HDM-X

- No direct production of the new scalars since the coupling to quarks are suppressed.
- All the signals will be tau rich.
- Different multi tau signal has been studied

\[pp \rightarrow W^{\pm} \rightarrow H^{\pm} H / A \rightarrow (\tau^{\pm}\nu)(\tau^{+}\tau^{-}) \]
\[pp \rightarrow Z / \gamma \rightarrow HA \rightarrow (\tau^{+}\tau^{-})(\tau^{+}\tau^{-}) \]
\[pp \rightarrow Z / \gamma \rightarrow H^{+} H^{-} \rightarrow (\tau^{+}\nu)(\tau^{-}\nu) \]

S.Kanemura et.al. (1111.6089), E.J.Chun et.al. (1507.08067)

- However, it is not possible to reconstruct the masses of the scalars from tau only final states.
- Also for light A only tau-rich final state is hard to trigger.
- We proposed to look for 2HDM-X signal at the LHC and reconstruct the light pseudoscalar in \(2\mu2\tau\) final state.
- Also we have shown how to reconstruct the heavy charged/neutral scalars.

Chun,Dwivedi,TM,Mukhopadhyaya PLB 774 (2017)
Chun,Dwivedi,TM,Mukhopadhyaya,Rai PRD 98 (2018) 7
We can produce a pair of pseudoscalars from Higgs decay.

Since coupling of A to leptons is proportional to mass of the leptons, A will predominantly decay to a pair of taus leading to 4τ signal.

As argued, we can't reconstruct mass of A from this final state.

However a very small portion of A decays to muons with $\text{BR}(A \to \mu\mu) \approx 0.35\%$

This channel can be used to estimate mass of the pseudoscalar.
Signal of a light A : An analysis for the LHC

<table>
<thead>
<tr>
<th>Parameters</th>
<th>M_A (GeV)</th>
<th>$\tan \beta$</th>
<th>$\cos(\beta - \alpha)$</th>
<th>λ_{hAA}/ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1</td>
<td>50</td>
<td>60</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>BP2</td>
<td>60</td>
<td>60</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

$p p \rightarrow h \rightarrow A A \rightarrow \mu^+\mu^- \tau^+\tau^- \rightarrow \mu^+\mu^- j_{\tau} j_{\tau} + \text{MET}$

$\sigma \sim 0.021 \text{ pb}$
Signal of a light A : An analysis for the LHC

<table>
<thead>
<tr>
<th>Parameters</th>
<th>M_A (GeV)</th>
<th>$\tan \beta$</th>
<th>$\cos(\beta - \alpha)$</th>
<th>λ_{hAA}/ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1</td>
<td>50</td>
<td>60</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>BP2</td>
<td>60</td>
<td>60</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

$$pp \rightarrow h \rightarrow AA \rightarrow \mu^+\mu^- \tau^+\tau^- \rightarrow \mu^+\mu^- j_\tau j_\tau + MET$$

$$\sigma \sim 0.021 \text{ pb}$$

Backgrounds:

- $pp \rightarrow \mu^+\mu^- + jets \quad \sigma \sim 2100 \text{ pb}$
- $pp \rightarrow VV + jets (V = Z, W, \gamma^*) \quad \sigma \sim 6.2 \text{ pb}$
- $pp \rightarrow t\bar{t} + jets. \quad \sigma \sim 0.03 \text{ pb}$
Collider signature of light A

- We have a light A (mass < 60 GeV) decaying to two tau which further decays hadronically.

- If minimum p_T for the tau tagged jets is close to $M_A/2$ then the neutrinos can not take large amount of tau momentum.

- In that case invariant mass of tau-jets will peak at parent mass(!!)
Collider signature of light A

- We have a light A (mass < 60 GeV) decaying to two tau which further decays hadronically.

- If minimum p_T for the tau tagged jets is close to $M_A/2$ then the neutrinos can not take large amount of tau momentum.

- In that case invariant mass of tau-jets will peak at parent mass(!!)

$\tau_j \tau_j \ M_{10} \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90 \ \tau_j \tau_j /dM \ \sigma \ d\sigma \ 1/0 \ 0.02 \ 0.04 \ 0.06 \ 0.08 \ 0.1 \ = 50$ GeV

$\tau_j \tau_j (jT\ P) > 25$ GeV

$\tau_j \tau_j \ M_{10} \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90 \ \tau_j \tau_j /dM \ \sigma \ d\sigma \ 1/0 \ 0.02 \ 0.04 \ 0.06 \ 0.08 \ 0.1 \ = 60$ GeV

$\tau_j \tau_j (jT\ P) > 25$ GeV

Chun, Dwivedi, TM, Mukhopadhyaya PLB 774 (2017)
Collider signature of light A

The same argument holds if we construct invariant mass using 2μ and 2 τ-tagged jet.

\[
M_{2\mu 2\tau}, \ M_A = 50 \text{ GeV}
\]

Chun, Dwivedi, TM, Mukhopadhyaya PLB 774 (2017)
Simulation cuts

- Signal contains 2 isolated muons and 2 tau-tagged jets.
- Preselection:
 - $p_T(\mu) > 10$ GeV and $|\eta| < 2.5$.
 - $p_T(j_\tau) > 20/25$ GeV $|\eta(j_\tau)| < 2.5$.
- The invariant mass of the di-muon system ($M_{\mu\mu}$) satisfies the window: $|M_{\mu\mu} - M_A| < 7.5$ GeV.
- The invariant mass of the two tau-tagged jets ($M_{j_\tau j_\tau}$) satisfies:
 - for $p_T(j_\tau) > 20$ GeV: $(M_A - 20) < M_{j_\tau j_\tau} < (M_A + 10)$ GeV
 - for $p_T(j_\tau) > 25$ GeV: $|M_{j_\tau j_\tau} - M_A| < 15$ GeV.
- The invariant mass of two muons and two tau jets ($M_{2\mu2j_\tau}$) lies within the range:
 - for $p_T(j_\tau) > 20$ GeV: $(M_h - 20) < M_{2\mu2j_\tau} < (M_h + 10)$ GeV.
 - for $p_T(j_\tau) > 25$ GeV: $|M_{2\mu2j_\tau} - M_h| < 15$ GeV.
- Asymmetric cuts for low p_T since the distribution peaks at lower value.
Result

Significance = \(S = \sqrt{2 \left[(S + B) \ln \left(1 + \frac{S}{B} \right) - S \right]} \)

- Large \(p_T(j) \) results in better invariant mass peaks but provides fewer number of events which decreases the discovery prospect.
- At 3 \(ab^{-1} \) it is possible to rule out \(\text{BR}(h \rightarrow aa) < 1\% \).

Chun, Dwivedi, TM, Mukhopadhyaya PLB 774 (2017)

Tanmoy Mondal, KIAS, Seoul
Osaka University, Osaka
Light Pseudoscalar Phenomenology in 2HDM - X
CMS limit
Collider searches for H and H^\pm
Branching fraction of H^\pm

There are two possible decay modes for the charged Higgs

$$\Gamma(H^\pm \to W^\pm A) \sim \frac{m_{H^\pm}}{16\pi} \left(\frac{m_{H^\pm}}{\nu}\right)^2$$

$$\Gamma(H^\pm \to \tau^+ \nu_\tau) \sim \frac{m_{H^\pm}}{16\pi} \left(\frac{\sqrt{2}m_\tau}{\nu}\tan \beta\right)^2$$

WA channel dominates when $m_{H^\pm} > \sqrt{2} m_\tau \tan \beta$

![Graph showing branching ratio as a function of M_{H^+} for different values of M_A and $\tan \beta$.]
Branching fraction of H^\pm

There are two possible decay modes for the charged Higgs

\[\Gamma(H^\pm \rightarrow W^\pm A) \sim \frac{m_{H^\pm}}{16\pi} \left(\frac{m_{H^\pm}}{v} \right)^2 \]

\[\Gamma(H^\pm \rightarrow \tau^+ \nu_{\tau}) \sim \frac{m_{H^\pm}}{16\pi} \left(\frac{\sqrt{2} m_\tau}{v} \tan \beta \right)^2 \]

WA channel dominates when $m_{H^\pm} > \sqrt{2} m_\tau \tan \beta$

Same is true for neutral heavy Higgs and $BR(H \rightarrow ZA)$ is substantial.
Collider searches for H and H^\pm

- EWPD forces the heavy scalars to be almost degenerate.

- Signal at LHC

$$p\ p \rightarrow (H^\pm)A \rightarrow (W^\pm A) \ A \rightarrow (jj\ 2\mu)\ 2\tau$$

- Added contribution from heavy Higgs H

$$p\ p \rightarrow (H)A \rightarrow (ZA) \ A \rightarrow (jj\ 2\mu)\ 2\tau$$

- Signal: 2 light jets, 2 muon and at least one τ tagged jet

- Benchmark the signal for $m_A = 40, 50$ and 60 GeV. For each, m_{H^\pm} and m_H lies in $150 - 300$ GeV.

- Invariant mass distribution of $jj\ 2\mu$ system will peak at the parent particle mass.
Collider searches for H and H^\pm

- **Signal**: $2\ j + 2\ \mu + \geq 1\ j_\tau$

- **Dominant Backgrounds**:
 - $p\ p \rightarrow \mu^+\mu^- + jets$
 - $p\ p \rightarrow t\bar{t} + jets$

- **Preselection Cuts (a)**: Two oppositely charged muons with $p_T > 10$ GeV accompanied with two light jets and at least one tau-tagged jet of $p_T > 20$ GeV.

- **Preselection Cuts (b)**: b-veto on the final state to suppress the $t\bar{t} + jets$ and $tW + jets$ background.

- The invariant mass of the di-muon system ($M_{\mu\mu}$) satisfies $|M_{\mu\mu} - M_A| < 2.5$ GeV.

- Other cuts from kinematic distributions.
Collider searches for H and H^\pm

Kinematic distributions - I

The 2μ system originates from a light A which in turn comes from heavy H/H^\pm decay. Expected to be boosted.
Collider searches for H and H^\pm

Kinematic distributions - I

The 2μ system is originates from a light A which in turn comes form heavy H/H^\pm decay. Expected to be boosted.

Kinematic distributions - II

Azimuthal separation between the $\mu\mu$ & the τ-jet.

The H^\pm and A are expected to be almost back-to-back.
Low M_{H^\pm}: Significance decreases as not enough branching to $W^\pm A$.

Also low boost for the $\mu\mu$ system.

High M_{H^\pm}: Low production cross-section.
CMS reported $2\mu 2\tau$ search in 2018

$$\lambda_{hAA} = \frac{-1}{\nu} \left[2m_A^2 + \xi^\ell m_h^2 - (s_\beta^2 m_h - \alpha + \xi_h s_\beta m_h) m_H^2 \right].$$

λ_{hAA} can be very small in Wrong Sign limit due to cancellation when $m_H \gg m_h / m_A$.

- Can not restrict the light A – large $\tan \beta$ scenario.
- Q. Can we explore light pseudiscalar without any additional information?

JHEP 11 (2018) 018
CMS reported $2\mu2\tau$ search in 2018

\[\lambda_{hAA} = \frac{-1}{v} \left[2m_A^2 + \xi^\ell m_h^2 - (s_\beta^2 - \alpha + \xi^\ell s_\beta - \alpha)m_H^2 \right]. \]

\[\lambda_{hAA} \] can be very small in Wrong Sign limit due to cancellation when $m_H \gg m_h/m_A$.

Can not restrict the light A – large tan β scenario.

Q. Can we explore light pseudiscalar without any additional information?

\[\text{A. ILC} \]
Searches for light A in 2HDMX at ILC250

- The channel $Z \rightarrow h_{125}A$ is not possible since the relevant coupling is proportional to $\cos(\beta - \alpha)$.

- At ILC250 $Z \rightarrow HA$ may not be feasible when H is heavier than 200 GeV.

- Possible search option: $Z \rightarrow \tau\tau \rightarrow \tau\tau A \rightarrow 4\tau$. So called Yukawa production.

This is the equivalent to ttH searches at LHC. Independent probe of Yukawa structure. At the ILC all the 4 τs can be reconstructed using collinear approximation.

This enables to measure mass of the light particle.
The channel $Z \to h_{125}A$ is not possible since the relevant coupling is proportional to $\cos(\beta - \alpha)$.

At ILC250 $Z \to HA$ may not be feasible when H is heavier than 200 GeV.

Possible search option: $Z \to \tau\tau \to \tau\tau A \to 4\tau$. So called Yukawa production.

This is the equivalent to ttH searches at LHC. Independent probe of Yukawa structure.

At the ILC all the 4τ s can be reconstructed using collinear approximation.

This enables to measure mass of the light particle.
Searches for light A in 2HDMX at ILC250

Signal: \(Z \rightarrow \tau\tau \rightarrow \tau\tau A \rightarrow 4\tau \)

- Dominant Backgrounds: \(e^+e^- \rightarrow Z(\gamma^*) \ Z(\gamma^*) \rightarrow 4\tau \)
- Also \(e^+e^- \rightarrow Z(\gamma^*) \ Z(\gamma^*) \rightarrow 2\tau 2j \) with mis-identified jets
- Other background: \(e^+e^- \rightarrow Zh \rightarrow 4\tau \)
- Parton level total \(4\tau \) BG cross-section \(\simeq 6.6 \text{ fb} \). \(2\tau 2j \simeq 100 \text{ fb} \).
Searches for light A in 2HDMX at ILC250

- MadGraph → aMC@NLO → PYTHIA8 → Delphes3 + ILD card
- Signal: 3 τ-tagged jets + X (= τ-jet/untagged jet/lepton) so that total number of object = 4.
- Jets and leptons should have minimum energy of 20 GeV and should be in the central region with $|\eta| < 2.3$ i.e. $\cos \theta < 0.98$.
- τ-tagging efficiency: 60% (From LHC) or 90% (Hopefully at ILC).
- Mis-identification of jets: 0.5%

Collinear approximation: Reconstruction of the taus

- The collinear approximation: Assume that the missing energy in the decay of a tau lepton is collinear to the visible part of the decay.
- Energy momentum equations are,

$$ \vec{p}(\tau_1) + \vec{p}(\tau_2) + \vec{p}(\tau_3) + \vec{p}(\tau_4) = \vec{0}, $$
$$ E(\tau_1) + E(\tau_2) + E(\tau_3) + E(\tau_4) = \sqrt{s}. $$

- Visible part of the tau decay take z_i fraction of the tau momentum:

$$ p^\mu(j_i) = z_i \ p^\mu(\tau_i) $$

- Solve for z_i where we should have $0 < z_i < 1$. However to account for the detector resolution etc we assume 10% relaxation in the upper limit of z_i.
Reconstruction of the pseudoscalar

- We have 4 tau jets. However, the highest energy τ out of the four is unlikely to come from the pseudoscalar since the maximum available energy for A is $125 \text{ GeV}(\sqrt{s}/2)$, whereas energy of highest τ can also be 125 GeV.

- It is reasonable to assume that the highest energy tau is coming from the decay of Z and did not radiate an A.

- From the remaining 3 taus there are two possible OS combinations.

- Choose the combination which gives highest transverse momentum(p_T) since they are likely to come from the decay of A. The invariant mass calculated from this combination is denoted as $m_A(\text{Reco})$.

- The invariant mass from the other opposite sign tau pair is denoted as m_{Other}.
Searches for light A in 2HDMX at ILC250

Reconstruction of the pseudoscalar $m_A = 40$ GeV and $\tan\beta = 50$

For different m_A

Ilion@2000 fb$^{-1}$ $m_A, t\beta = 40$ GeV, 50

Normalized # of events / 2 GeV

Tanmoy Mondal, KIAS, Seoul
Osaka University, Osaka

Light Pseudoscalar Phenomenology in 2HDM - X
Searches for light A in 2HDMX at ILC250

Reconstruction of the pseudoscalar

$m_A = 40$ GeV and $\tan \beta = 50$

For different m_A

Chun, TM PLB 802 (2020) 135190
Searches for light A in 2HDMX at ILC250: Result

Reach of ILC250. $\epsilon_T = 60\%$

- Solid: 2000 fb$^{-1}$
- Dashed: 500 fb$^{-1}$

$\tan\beta$

m_A (GeV)

$m_{H^\pm} = m_H = 250$ GeV

ILC@250 GeV
Reach of ILC250. $\epsilon_\tau = 60\%$

Chun, TM PLB 802 (2020) 135190
Explaining electron and muon anomalous magnetic moment in 2HDM-X
Electron and muon $g - 2$ anomalies

Electron anomalous magnetic moment:

$$\delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -(8.8 \pm 3.6) \times 10^{-13}$$

Muon anomalous magnetic moment:

$$\delta a_\mu = a_\mu^{\text{EXP}} - a_\mu^{\text{SM}} = (2.706 \pm 0.726) \times 10^{-9}$$

- Deviations are in opposite directions
- Also $$\frac{\delta a_\mu}{\delta a_e} \neq \frac{m_\mu^2}{m_e^2}$$
- Possibly of different origin \Rightarrow light A in 2HDM-X can not explain both.
- Q. What minimal modification in 2HDM-X can explain both $\delta a_e/\mu$?
Electron and muon $g - 2$ anomalies

2HDM + Vector-like leptons ($L_{L,R}$ and $E_{L,R}$)

\[-\mathcal{L} \supset y_e \bar{\ell}_L e_R \Phi_1 + \lambda_L \bar{\ell}_L e_R \Phi_1 + \lambda_E \bar{\ell}_L E_R \Phi_1 + \lambda \bar{\ell}_L E_R \Phi_1 + \bar{\lambda} \Phi_1^\dagger \bar{E}_L L_R + M_L \bar{\ell}_L L_R + M_E \bar{E}_L E_R + \text{h.c.}\]

Mass matrix for charged leptons:

\[
\mathcal{L}_{mass} = (\bar{\ell}_L, \bar{\ell}_L^-, \bar{E}_L) \mathcal{M}_E \begin{pmatrix} \ell_{Rj} \\ L_R^- \\ E_R \end{pmatrix} + \text{h.c.}
\]

\[
\mathcal{M}_E = \begin{pmatrix}
\frac{1}{\sqrt{2}} y_{e,ij} v_1 & 0 & \frac{1}{\sqrt{2}} \lambda_{E_i} v_1 \\
\frac{1}{\sqrt{2}} \lambda_{L_j} v_1 & M_L & \frac{1}{\sqrt{2}} \lambda v_1 \\
0 & \frac{1}{\sqrt{2}} \bar{\lambda} v_1 & M_E
\end{pmatrix},
\]

- Mass diagonalization: $\tilde{U}_L^\dagger \mathcal{M}_E \tilde{U}_R = \text{diag}(m_e, m_\mu, m_\tau, m_1, m_2)$
- We assume $\lambda_{E_2}, \lambda_{E_3}, \lambda_{L_2}, \lambda_{L_3} = 0$
Electron and muon $g-2$ anomalies

- Electron $g-2$ diagrams mediated by W and Z bosons is small.
- When VLL is heavier than H/A, then H and A contribution will cancel partially.

<table>
<thead>
<tr>
<th>$v_1 [\lambda_{L/E}]/M_{L/E}$</th>
<th>$\lambda, \bar{\lambda}$</th>
<th>$M_L(\text{GeV})$</th>
<th>$\Delta M = \frac{M_E - M_L}{M_E + M_L}$</th>
<th>$M_A(\text{GeV})$</th>
<th>$\tan \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(10^{-1}, 10^{-5})$</td>
<td>$(-\sqrt{4\pi}, \sqrt{4\pi})$</td>
<td>(500, 1000)</td>
<td>(0.01, 0.10)</td>
<td>(30, 150)</td>
<td>(30, 100)</td>
</tr>
</tbody>
</table>
Electron and muon $g - 2$ anomalies

Log10 $\frac{|\lambda_L v_1|}{M_L}$ vs Log10 $\frac{|\lambda_E v_1|}{M_E}$

Red: $m_A = m_{H^±} = 250$ GeV
Blue: $m_A = m_{H^±} = 1$ TeV

The dashed lines in the left plot are constraints coming from Z pole observables:

$v_1 |\lambda_E| \leq 0.04$ and $v_1 |\lambda_L| \leq 0.02$.

The right plot shows solid (dashed) lines as upper limits on $\tan \beta$ from $Z \rightarrow \ell \ell$ for $M_H = 250(1000)$ GeV.

Contribution $\propto \left(\frac{\lambda}{\bar{\lambda}} \frac{v_1}{M_L} \right)$.

Tanmoy Mondal, KIAS, Seoul Osaka University, Osaka
The dashed lines in left plot are constraints coming from Z pole observables:

$$\frac{\nu_1 |\lambda_E|}{M_E} \leq 0.04 \quad \text{and} \quad \frac{\nu_1 |\lambda_L|}{M_L} \leq 0.02.$$

Right plot: Solid(dashed) lines are upper limit on $\tan \beta$ from $Z \rightarrow \ell \ell$ for $M_H = 250(1000)\text{GeV}$.

The VLL loop contribution for $(g - 2)_\mu$ is small due to chiral mass insertion in the fermion loop in BZ diagram. Contribution $\propto \left(\frac{\lambda/\bar{\lambda} \nu_1}{M_L/E} \right)$.

E J Chun, TM JHEP 2020
Electron and muon $g-2$ anomalies

The model has interesting signature at the LHC

- VLL couples dominantly to new scalars ($A/H/H^{\pm}$) as gauge boson couplings are proportional to small vev v_1

- Hence the doublet VLL ($\equiv (L^0, L^-)^T$) signature at the LHC:

 $$p \ p \rightarrow W^{*+} \rightarrow L^0 \ L^+ \rightarrow (H^+ e^-)(H/A \ e^+) \rightarrow e^+e^- H^+ H/A.$$

- Depending on M_A and $\tan \beta$, $H(H^{\pm})$ decays to $\tau \tau (\tau \nu)$ or $ZA(WA)$

- Since $M_L \gg M_A \Rightarrow L^+ \rightarrow e^+ A$ will produce a highly boosted A:

 $$p_T(A) \sim \frac{m_{L^+}^2 - m_A^2}{2 \ m_{L^+}}$$

- The tau pair from the A will be collimated and appear as merged jet

- ‘di-τ’ tagger by ATLAS can be used to look for such light boosted pseudoscalar

- Another signature will be a lepton in the close proximity of a tau-jet.
2HDM : one of the simplest BSM scalar structure.
Type-X 2HDM : Can explain muon $g - 2$ anomaly. Constrained by lepton universality.
The allowed parameter space can be explored at the LHC.
Conventional signature at LHC : multi τ-tagged jets.
Can’t reconstruct the mass of mediator. Hard to trigger for low mass pseudoscalar.
One needs to look for $\mu\mu\tau\tau$ final state.
Due to light A, the tau-tagged jets takes almost all the momentum from the taus.
This enables us to reconstruct $M_{j\tau j\tau}$ and $M_{2\mu 2j\tau}$. We can restrict $h \rightarrow AA$ branching ratio.
Using the associated production the heavy scalar/charged higgs can be reconstructed.
Sweet spot : $M_{H^\pm} \sim [200 - 240]$ GeV with $M_A \sim [40 - 50]$ GeV.
Conclusion - II

- Due to hadrophobic nature it is hard to probe light A at the LHC.
- Lepton collider can be ideal to test the model.
- We can utilize ILC *Higgs Factory* for testing the light A scenario independent of the mass scale of the other scalars (H/H^\pm).
- It is possible to reconstruct the mass of the resonance using collinear approximation.
- 500 fb^{-1} is enough to explore the relevant parameter space.
- Recent measurement of electron $g - 2$ can not be explained the pure Type-X 2HDM.
- A family of vector-like lepton doublet and singlet can explain both the anomalies.
- The model has interesting collider signature which can explore the model independently.
Conclusion - II

- Due to hadrophobic nature it is hard to probe light A at the LHC.
- Lepton collider can be ideal to test the model.
- We can utilize ILC *Higgs Factory* for testing the light A scenario independent of the mass scale of the other scalars (H/H^\pm).
- It is possible to reconstruct the mass of the resonance using collinear approximation.
- 500 fb^{-1} is enough to explore the relevant parameter space.
- Recent measurement of electron $g-2$ can not be explained the pure Type-X 2HDM.
- A family of vector-like lepton doublet and singlet can explain both the anomalies.
- The model has interesting collider signature which can explore the model independently.

Thank You