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Motivation: the bulk point

singularity



• We are interested in what kinds of singularities can arise in

correlation functions in conformal field theory.

• In Euclidean signature there is just the OPE singularity,

〈O(x1)O(x2) · · · 〉 ∼ 1

|x1 − x2|2∆
.

• In Lorentzian signature there are singularities at noncoincident

points. The obvious example is the light cone singularity. There are

also Landau singularities, which occur when we can draw a Feynman

diagram with lightlike lines in position space.

• Perturbatively this exhausts the list of singularities. But there could

be more nonperturbatively.
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• We can look for new singularities using holography.

• Lightning review: conformal theories in d dimensions are dual to

string theories in d + 1 dimensional anti de Sitter space,

ds2 = −(r2 + 1) dt2 + (r2 + 1)−1 dr2 + r2dΩ2
d−1.

• Correlation functions in the boundary theory are obtained by

extrapolating bulk correlation functions,

〈O(x1)O(x2)〉 = lim
r→∞

r2∆〈Φ(r , x1)Φ(r , x2)〉.

• This means that in order to study the singularities of correlation

functions in a conformal field theory, it suffices to find the

singularities of bulk correlators in the dual gravitational theory.
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• In the holographic regime there are Landau diagrams in the bulk,

which lead to singularities in boundary correlators (called bulk point

singularities1). For example,〈
4∏

i=1

O(xi )

〉
=

1

(z − z)4∆−3
as z → z .

• For these kinematics there is no Landau diagram on the boundary.

So this seems like a genuinely new singularity.

• However, field theory in the bulk is only applicable if we take the

strict limit λ,N →∞. If we instead keep λ finite and sum up the

stringy corrections, we find that the singularity is smoothed out by

the Gross-Mende expansion of the worldsheet2.

1Gary, Giddings, Penedones ’09
2Maldacena, Simmons-Duffin, Zhiboedov ’15 4



• In general, the only singularities of correlators in holographic theories

occur when there is a boundary Landau diagram3. We can try to

extend this result to non-vacuum states, like thermal ensembles.

• At finite temperature conformal invariance is broken so the form of

the two-point function is no longer determined. We are interested in

the singularities of the function

〈O(t, φ)O(0, 0)〉β .

• At infinite volume in 1+1 dimensions, we can conformally map to

the plane so the only singularity is at t = ±φ. In free field theory,

one can directly compute this function and again there are no new

singularities.

• In the rest of this talk we will discuss the holographic limit of this

correlator. Are there any new singularities, and if so, are they

resolved at finite λ?

3MD, Ooguri ’19
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The light cone of an AdS black

hole



• Singularities of the boundary two point function occur when the

boundary points are null separated4. So we should study null

geodesics in the AdSd+1 black hole,

ds2 = −f (r) dt2 + f (r)−1 dr2 + r2dΩ2
d−1, f (r) = r2 + 1− M

rd−2
.

• The conserved quantities are E , L. Null geodesics are parameterized

by E/L. The radial motion is determined by

1

2
ṙ2 =

1

2
E 2 − V (r), V (r) =

L2

2

(
1 +

1

r2
− M

rd−2

)
.

• The photon sphere is at the maximum of this potential. For any

d > 2 there are geodesics with both endpoints at r =∞. These give

singularities in the two point function.

4Hubeny, Liu, Rangamani ’06 6



• Using the potential, we can understand the schematic behavior of

the geodesics. First, there are geodesics that stay at the boundary:

• Second, there are geodesics that stay far away from the black hole.

These have ∆φ ∼ π, since they are approximately AdS geodesics.

• Finally there are geodesics that wrap the photon sphere many times,
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• We can compute the location of the singularities by integrating the

geodesic equations,

dφ

dr
=

1√
(E/L)2 − 1

√
(r2 − r2

+)(r2 − r2
−)

=
Ef (r)

L

dt

dr
.

Here r± are the zeroes of ṙ .

• The integrals are elliptic. For instance

∆φ =
2r−√
M

K

(
r2
−
r2
+

)
,

• After reaching the boundary, the geodesic can bounce back into the

bulk, leading to infinitely more branches of the singularity.
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• To understand the singularities better, let us take some limits. In the

early time limit, the turning point r+ approaches infinity. Then we

have ∆t ∼ ∆φ ∼ π.

• In the late time limit, the geodesic wraps around the photon sphere

many times. Therefore the singularity approaches a straight line,

with velocity

vphoton =

√
gtt
gφφ

∣∣
rphoton

=

√
1 +

1

4M
.

• Identifying φ ∼ φ+ 2π, we see that the singularities can intersect at

caustic points.
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• Now we will study the form of the correlator as we approach the

singularity. When the two points are connected by a slightly

spacelike geodesic, the geodesic approximation gives

〈O(t, φ)O(0, 0)〉β = e−mlren

• Using the radial geodesic equation, we can compute the

renormalized length,

lren = 2

∫ rmax

r+

dr

ṙ
− log r2

max = − log(E 2 − L2).

• Finally, we can trade E , L for boundary variables by integrating the

geodesic equations for slightly spacelike geodesics,

∆φ = ∆φnull(E/L)− 2L

E 2 − L2
, ∆t = ∆tnull(E/L)− 2E

E 2 − L2
.

• These equations are easily solved in various limits. For example at

late times we have a simple power law behavior,

〈O(t, φ)O(0, 0)〉β ∼ (vphotont − φ)−2m
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Review of string theory in the

Penrose limit



• We have found new singularities in the thermal two point function

which are absent in free field theory. Should these be trusted, or are

they an artifact of infinite λ like the bulk point singularity?

• It is not immediately obvious how to address this question, since

string theory in a black hole background is not yet solved. Luckily,

we only need to study the worldsheet theory in the vicinity of a given

null geodesic.

• We need some way to zoom in on a null geodesic. This is known as

taking the Penrose limit. Given a metric gµν and a null geodesic γ,

the Penrose metric is given by

ds2 = 2du dv + Aab(u)xaxb du2 + d~x2, Aab(u) = −
(
RiujuE

i
aE

j
b

)
|γ

Here E is a pseudo-orthonormal frame for γ, with ∂u tangent to γ.

• The plane-wave matrix Aab captures the effects of tidal forces on

extended objects near the null geodesic. In our case, these extended

objects will be strings.
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• There are several well-known cases of the Penrose limit. First, the

Penrose limit of a maximally symmetric spacetime has Aab = 0,

implying that there is no tidal force near a null geodesic.

• Second, in the plane-wave limit of AdS/CFT, one considers a null

geodesic in S5 for the spacetime AdS5 × S5. In this case Aab is

constant.

• For point particles, the worldline Lagrangian becomes

L = u̇v̇ +
1

2
Aab(u)xaxbu̇2 +

1

2
ẋaẋa

• This still looks tricky. To make the simplicity of the Penrose limit

manifest, we fix light cone gauge, u = pvτ . Then the equations of

motion become

ẍa = p2
vA

a
b(pvτ)xb.

• This is a collection of harmonic oscillators with time-dependent

frequency. For vacuum solutions we have Tr A = 0, so some of the

eigenvalues of A are positive, leading to unstable directions.
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• Now let us move on to strings5. Expanding into Fourier modes,

there are now an infinite number of harmonic oscillators,

Ẍ a
n =

(
p2
vA

a
b(pvτ)− n2δab

)
X b
n .

• In general, several approximations might be applicable. First, if

p2
vA

a
b(pvτ) is localized in a small range of τ , then it can be

approximated by a delta function. This will be the case at early

times. The analysis is then similar to strings in a shockwave6.

• Second, if the frequency is approximately constant, then we can

apply the adiabatic approximation. This will be the case at late

times. Note that if an eigenvalue of p2
vA

a
b(pvτ) is large and

positive, then there are many unstable modes.

5Horowitz and Steif ’90
6Giddings, Gross, Maharana ’07
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• For an AdS5 black hole,

A11 =
4L2M

r6
= −2A22 = −2A33.

Here A22 and A33 are along the S3 directions, and A11 is along a

combination of the (r , t, φ) directions.

• For instance, suppose we start with a circular string near the null

geodesic,

• It will be tidally disrupted by the curvature of the black hole,
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Singularity resolution at early

times



• We are interested in the behavior of the boundary two point function

near (t, φ) = (π, π). In this talk I will compute a slightly simpler

quantity, the bulk-to-bulk propagator near the light cone.

• The propagator is Weyl invariant since it is the path integral with

two D-instanton boundary states.7 The worldsheet path integral is∫ X a(τf ,σ)=xa
f

X a(τi ,σ)=xa
i

dX a e iS[X a] =
G0(pv , x

a
f , x

a
i , τf , τi )∏3

a=1

∏∞
n=1 det (−∂2

τ − n2 + p2
vAaa(pvτ))

• The determinants can be calculated using the Gelfand-Yaglom

theorem. Instead I will compute the magnitude of the determinants,

which will give a bound on the propagator on the light cone.

• The magnitude of the determinants has a simple interpretation. We

have time dependent harmonic oscillators, so there is particle

production. Then we can represent

|〈out, n, a|in, n, a〉| =
1

|det (−∂2
τ − n2 + p2

vAaa(pvτ))|
7Cohen, Moore, Nelson, Polchinski 1986
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• Let us now compute the particle production. At early times, we have

p2
vAaa(pvτ) ∼ M

(εr+)2

(
ε2

τ 2 + ε2

)3

, ε =
r2
+

pvL
.

So for large pv , we can use the shockwave approximation. The

equations of motion for X1 are

lim
δ→0

(X ′1n(δ)− X ′1n(−δ)) =
3πpvLM

2r4
+

X1n(0).

• Making the ansatz

X1n = a†ne
inτ + ane

−inτ for τ < 0,

X1n = b†ne
inτ + bne

−inτ for τ > 0,

we find

bn =

(
1 +

3πiMpvL

4nr4
+

)
an +

3πiMpvL

4nr4
+

a†n.

• It follows that

|〈out, n, a = 1|in, n, a = 1〉| =

(
1 +

(
3πMpvL

4nr4
+

)2
)−1/2

� 1 for small n.
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• Multiplying all the determinants gives∏
n,a

|〈out, n, a = 1|in, n, a = 1〉| ∼ (pvL)3/2√
sinh

(
3πMpvL

4r4
+

)
sinh

(
3πMpvL

8r4
+

) .
• Finally, we need the zero mode dependence on pv . Since

G0(x2) ∼ (x2)−3/2 near the light cone, we have G0(pv ) ∼ √pv . Said

differently, the propagator is singular on the light cone because∫ ∞
0

dpv
√
pv =∞.

• Once we include the stringy modes, we get

|G (x2 = 0)| ≤
∫ ∞

0

dpv
√
pv

(pvL)3/2√
sinh

(
3πMpvL

4r4
+

)
sinh

(
3πMpvL

8r4
+

)
The integrand is exponentially suppressed at large pv , so the answer

is finite and the light cone singularity is resolved.

• The interpretation is that at very large pv , many stringy modes are

produced, so the probability for a particle to remain localized on the

light cone is small. 18



Singularity resolution at late

times



• We now turn to the opposite limit, where the geodesic winds around

the photon sphere many times. This geodesic is approximately

circular for a long time, so we can apply the WKB approximation.

• From the unstable direction, we have a large number of growing

modes at large pv , with imaginary frequencies

ω2
n = n2 − 4p2

vL
2M

r2
photon

< 0.

This is negative for n < nmax ∼ pv .

• The growing solution in the adiabatic approximation is

x1n(u) ∼ exp

(∫ u

du′ |ωn(u′)|
)

The number of produced particles near the photon sphere is then

〈Nn〉 = exp

(
2

∫ uout

uin

du′ |ωn(u′)|
)
.

19



• Plugging in ωn, we find

〈Nn〉 ∼ (r+/rphoton − 1)−4
√

1−n2/n2
max

Since the geodesic passes very close to the photon sphere, this is

large.

• The overlap between the in and out state is then

|〈out|in〉| =

(
nmax∏
n=1

〈Nn〉

)−1

= exp

(
−π|pv |L

4
√

2M
log(1/(r+ − rphoton))

)
This is exponentially suppressed at large pv .

• Finally we can bound the magnitude of the propagator on the light

cone,

|G (x2 = 0)| ≤
∫ ∞

0

dpv G0(pv ) exp

(
−π|pv |L

4
√

2M
log(1/(r+ − rphoton))

)
.

The exponential suppression again smooths out the divergence.
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More general black holes



• We can generalize the previous analysis to Kerr black holes. This

corresponds to a boundary ensemble at finite temperature and

nonzero rotation parameter.

• Let us consider equatorial geodesics. Then we have two photon

spheres, one for prograde and one for retrograde orbits. For extremal

rotation parameter, the prograde photon sphere is on the horizon.

• We take the four-dimensional case for simplicity. For equatorial

geodesics, the Penrose plane wave matrix is

A11 =
3(L− aE )2M

r5
= −A22.

For nonequatorial geodesics the matrix is no longer diagonal, so

there is mixing between the oscillators.
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• So far we described the situation for AdS black holes, because we

were primarily motivated by singularities in the boundary field

theory. What happens in the asymptotically flat case, if we compute

the propagator at some large rmax?

• In fact everything is essentially the same, except that geodesics

cannot bounce off the boundary, so the singularity has only one

branch.

• The singularity is again resolved by string theory. This leads to a

sharp criterion for stringy behavior near a black hole:

α′ 6= 0⇒ G (x2 = 0) <∞.
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Summary and future directions



• Our goal was to understand the singularities of the thermal two point

function. We first derived nontrivial singularities in the holographic

setting, and then showed how they were resolved by strings. This

suggests that the only singularity is on the boundary light cone.

• We only dealt with the one-sided case here. There is a similar

singularity in the two-sided correlator, and the corresponding

geodesic probes the black hole singularity8. We are currently trying

to understand if this singularity is resolved in string theory.

• For extremal Kerr black holes, particles shot in from infinity collide

at high energies near the horizon9. Does this have some visible

signature in the bulk point singularity?

• The black hole image is obtained by convolving the Green’s function

with a source, and is dominated by light rays from the source to the

observer10. If the light cone singularity is resolved by string theory,

the black hole image could be modified. Is this consistent with data?
8Fidkowski,Hubeny,Kleban,Shenker ’03
9Banados, Silk, West ’09

10Hashimoto, Kinoshita, Murata ’19
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Questions?

23


	Motivation: the bulk point singularity
	The light cone of an AdS black hole
	Review of string theory in the Penrose limit
	Singularity resolution at early times
	Singularity resolution at late times
	More general black holes
	Summary and future directions

