Generalized global symmetry and application to Spontaneous symmetry breaking and QCD phase diagram

Yoshimasa Hidaka (KEK)

Outline **Generalized global symmetries** ordinary symmetry higher form symmetries and non-invertible symmetry

Application Spontaneous symmetry breaking •QCD phase diagram

Summary

Ordinary symmetry in (d + 1) dimensions Ex) U(1) symmetry $U(1) \text{ charge: } Q = \int d^d x j^0 = \int_{M^d} j$ **Time independence:** $\frac{d}{dt}Q = \int d^d x \partial_0 j^0 = -\int d^d x \nabla_i j^i = 0$ **Unitary operator:** $U_g(M^d) = e^{i\alpha Q}$ $(g = e^{i\alpha})$ **Group law:** $U_{\varrho}(M^d)U'_{\varrho}(M^d) = U_{\varrho \rho'}(M^d)$ **Charged object** : $\phi(x)$ **Charged object** : $U_{g}(M^{d})\varphi(x)U_{g}^{-1}(M^{d}) = e^{-i\alpha}\varphi(x) = R(g)\varphi(x)$

Graphical representation

Time independence

Graphical representation Symmetry generator is topological

Graphical representation Charged object $U_g\varphi(x)U_{g^{-1}} = R(g)\varphi(x)$

representation matrix

Symmetry generators

=*d* dimensional topological objects labeled by group elements

Charged object transforms under *G*

Brief summary

 M^d

Charged objects = 0-dimensional objects labeled by representation of G

• $\varphi_{\rho}(x)$

 $K_{\rho}(g)$

p-form symmetry

- Charged object: p dimensional object
 - **Symmetry generators:**
- (d p) dimensional topological objects labeled by group elements.
 - Ex) In 2+1 dimensions
 - 1-form symm. 0-form symm. 2-form symm. d - p = 2d - p = 1d - p = 0

symmetry generator

charged object

0-form symmetry

p-form symmetry($p \ge 1$) is abelian

Ex) U(1) gauge theory $S = - \left[d^4 x \frac{1}{4\rho^2} f_{\mu\nu} f^{\mu\nu} = - \right]$

- **Maxwell equations**
 - $\partial_{\mu}f^{\mu\nu} = 0$ =
- $\epsilon^{\mu\nu\rho\sigma}\partial_{\mu}f_{\nu\rho} = 0$
- $W = e^{i \int_C a}$

$$-\int \frac{1}{2e^2} f \wedge \star f \quad \text{where } f = da$$

$$\Rightarrow d \star f = 0$$
$$\Rightarrow df = 0$$

Conservation of electric and magnetic fluxes $U(1)_{F}^{[1]} \times U(1)_{M}^{[1]}$ symmetries $\bigcup U_E = e^{i\frac{\theta_E}{e^2}\int_S \star f} \qquad U_M = e^{i\frac{\theta_M}{2\pi}\int_S f}$

 $H = e^{i \int_C \tilde{a}}$

1-form symmetry = flux conservation, which is broken if there is a dynamical electric field because of screening

Ex) Superfluid

 $S = -\left[d^4x \frac{v^2}{2} (\partial_\mu \phi)^2 = -\left[\frac{v^2}{2} d\phi \star d\phi\right]\right]$

Compact scalar: $\phi \sim \phi + 2\pi$ $d \star d\phi = 0$ $U(1)_{E}^{[0]} \times U(1)_{M}^{[2]}$ symmetries $e^{i\phi}$

conservation law

$$d(d\phi) = 0$$

V world surface of vortex

Non-invertible symmetry (Categorical symmetry)

Bhardwaj, Tachikawa(2017), Chang, Lin, Shao, Wang, Yin (2018), Ji, Wen (2019), Komargodski, Ohmori, Roumpedakis, Seifnashri (2020), Nguyen, Tanizaki, Ünsal (2021), Koide, Nagoya, Yamaguchi ('21)

Ex) O(2) gauge theory cf. Heidenreich, McNamara, Montero, Reece, Rudelius, Valenzuela, 2104.07036

- $O(2) \simeq U(2)$

Three types of representation, 1, det, 2q

- **Corresponding Wilson-loops**

$$(1) \rtimes \mathbb{Z}_2$$

 $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

rotation charge conjugation

 $W_{det}(C) = tr_{det}e^{i\int_C a}$ $W_{2_q}(C) = e^{iq\int_C a} + e^{-iq\int_C a}$

 $T_{\pi}(S) = e^{i\pi \frac{1}{e^2} \int_S \star f}$

These are topological, but not invertible $T_{\theta}(S)T_{\theta'}(S) =$ $T_{\theta}(S)T_{-\theta}(S)$

Fusion rule: $T_a(x)$

cf. Product-to-sum identity

$$= T_{\theta+\theta'}(S) + T_{\theta-\theta'}(S)$$

$$S \approx 1 + T_{2\theta}(S)$$

$$(S)T_b(S) = \sum_{c} N_{ab}^{\ c}T_c(S)$$

 $2\cos(\theta)\cos(\theta') = \cos(\theta + \theta') + \cos(\theta - \theta')$

 $T_{\theta}(S) = e^{i\theta \frac{1}{e^2} \int_{S} \star f} + e^{-i\theta \frac{1}{e^2} \int_{S} \star f}$ $W_{2_{\mathcal{C}}}(C) = e^{iq\int_{C}a} + e^{-iq\int_{C}a}$

 $\rho^{i\theta \frac{1}{e^2}} \int_S \star f_{\rho} iq \int_C a = \rho^{iq\theta} \rho^{iq} \int_C a$

Link between T and W

 $T_{\theta}(S)W_{2_q}(C) = (e^{iq\theta} + e^{-iq\theta})W_{2_q}(C)$ not a phase Linking law: $T_{\theta}(S)W_{2_q}(C) = B_{2_q}(\theta)W_{2_q}(C)$ $B_{2_a}(\theta) = 2\cos q\theta$

Noninvertible symmetry in (d + 1) dimensions

(d-p) dimensional topological object labelled by something e.g., a simple object of fusion category

symmetry generator charged object

p dimensional object labeled by representation ρ

Noninvertible symmetry in (d + 1) dimensions **Fusion rule :** $T_a(M)T_b(M) = \sum N_{ab}^{\ c}T_c(M)$

Associativity: $T_a(M)(T_b(M)T_c(M)) = (T_a(M)T_b(M))T_c(M)$

Link: $T_a(M)W_\rho(C) = B_\rho(a)W_\rho(C)$

Application Spontaneous symmetry breaking QCD phase diagram

Nambu-Goldstone Bosons **Spontanous symmetry breaking 0** form symmetry $\lim \langle \phi^{\dagger}(x)\phi(0)\rangle \simeq \langle \phi^{\dagger}(x)\rangle \langle \phi(0)\rangle \neq 0$ $\chi \rightarrow \infty$ Off diagonal long range order

 $\bullet \cdots \bullet = \bullet \cdots \bullet$ $\langle e^{i\theta}\phi^{\dagger}(x)\phi(y)\rangle = \langle \phi^{\dagger}(x)e^{i\theta}\phi(y)\rangle$

long range correlation

two points = boundary of a line

0-form symmetry breaking $\lim \langle \phi^{\dagger}(x)\phi(0)\rangle \neq 0 \quad \bullet \dots \bullet$ $\chi \rightarrow \infty$

1-form symmetry breaking $\lim \langle W(C) \rangle \neq 0$ $C \rightarrow \infty$

p-form symmetry breaking $\lim \langle W(M^p) \rangle \neq 0$ $M^p \rightarrow \infty$

Order parameter

Nambu-Goldstone theorem p form symmetry version

When a continuous *p* form symmetry is spontaneously broken, a gapless mode appears.

Gaiotto, Kapustin, Seiberg, Willett ('14), Lake ('18), Hofman, Iqbal ('18)

Example) Photons

Gaiotto et al. ('15) cf. Ferrari, Picasso ('71), Hata ('82), Kugo, Terao, Uehara ('85)

Charged objects

Wilson ('t Hooft) loop $H = \exp i \quad \tilde{a}$

Symmetry generator

Surface operator

- $W = \exp i \left[a \right]$ Electric: $U_{\theta} = \exp \frac{i\theta}{e^2} \left[\star f \right]$ **Magnetic:** $U_{\eta} = \exp \frac{i\eta}{2\pi} \int f$
- **Conservation of electric and magnetic flux**

Example) Photons

Photons=NG bosons

Three electric fields but two photons What is the counting rule?

Gaiotto et al. ('15) cf. Ferrari, Picasso ('71), Hata ('82), Kugo, Terao, Uehara ('85)

Image: Constraint of the system Image: Constraint of the system

For () form symmetry, there are two types of NG modes

ex) superfluid phonon

Typically, $\omega \sim k$

 $N_A = N_{\rm BS} - \operatorname{rank}\langle i[Q_a, Q_b] \rangle$

Watanabe, Murayama ('12)

Type-B precession

ex)magnon

$$\omega \sim k^2$$

$$N_B = \frac{1}{2} \operatorname{rank} \langle i[Q_a, Q_b] \rangle$$

Ex.) Nonrelativistic $\mathbb{C}P^1$ model

Type-B Kelvon

 $[P_x, P_y] \propto N$

x translation y translation

1 form symm.

Kobayashi, Nitta, 1403.4031 c.f. Watanabe, Murayama 1401.8139

Type-B Ripplon-Magnon $[P_z, Q] \propto N$

U(1)

z translation

2 form symm.

Kobayashi, Nitta, 1402.6826

Consider a system of interacting photons and domain walls. $S = -\frac{1}{2e^2} \int d^4x \left(\boldsymbol{E}^2 - \boldsymbol{B}^2 \right) + C \int d^4x \pi \boldsymbol{E} \cdot \boldsymbol{B}$

If $\partial_z \pi = \text{const} \quad \clubsuit \quad \omega_k \sim k^2$ single photon $\langle [Q_e(M_{xz}), Q_e(M_{yz})] \rangle \sim \int dz \partial_z \pi \text{ Type-B}$

cf. Sogabe Yamamoto ('19)

Yamamoto ('15)

Generalization to non-relativistic systems Y. Hidaka, Y. Hirono, R. Yokokura 2007.15901

Assumptions:

No translational symmetry breaking Maurer-Cartan form

Method:

Write down possible terms Counting degrees of freedom using the equations of motion

Existence of low-energy effective theory describe by

For 0-form symmetry breaking $G \rightarrow H$

- "Gauge symmetry ": $\pi(P) \rightarrow \pi(P) + 2\pi$
- Maurer-Cartan 1 form : $j = \xi^{\dagger} d\xi$
- Effective Lagrangian $\mathscr{L} = \operatorname{tr} \Omega \wedge j + \operatorname{tr} F^2 j \wedge \star j + \cdots$

DOF: $\xi(P) = e^{i\pi(P)} \in G/H$

p form symmetry

DOF: W(M) = e $M: p_A$ dimension

- Gauge symmetry : $a_A \rightarrow A$ Maurer-Cartan (p_A $e^{i \int_X f_i} = W(N)$
 - **Effective Lagrangian** $\mathscr{L} = \frac{1}{2} f_A \wedge a_B \Omega^A$

$$e^{i\int_{M} a_{A}} \in G/H$$

onal submanifold, $a_{A}: p_{A}$ form
 $a_{A} + d\lambda^{(p_{A}-1)}$
 $a_{A} + 1)$ form f_{A}
 $W')^{\dagger}W(M) \quad \partial X = \bar{M}' \cup M$

$$\frac{F_{AB}^2}{2} f_A \wedge \star f_B + \cdots$$

Ex:U(1) gauge theory ($\Omega = 0$)

- f: E, B six components
- Maxwell equations : df = 0 $d \star f = 0$
 - **Two constraint :** $\nabla \cdot B = 0$ $\nabla \cdot E = 0$
 - $6 2 = 4 \Rightarrow 2 \mod 8$
- In general D = (d + 1) dimension, p form: $f: {}_{D}C_{p+1}$ components
- **Constraint:** $D-2C_{p+1}$, $D-2C_{p-1}$
- **# of modes:** $\mathcal{N}_{D,p} = \frac{1}{2} ({}_{D}C_{p+1} {}_{D-2}C_{p+1} {}_{D-2}C_{p-1}) = {}_{D-2}C_{p}$

Degree of freedom changes due to $\Omega \neq 0$

- determined by $\Omega_{AR} \propto \langle [iQ_A, Q_B] \rangle = M_{AR}$.
 - # of NG modes change

Similar to 0-form symmetry, the first-order derivative is

For a non relativistic system **Relation between broken symmetry and # of NG modes** for 0-form symmetries

Generalization to higher form symmetries Hidaka, Hirono, Yokokura ('20)

$$N_{\rm NG} = \sum_{A} d^{-1} C_{p}$$

Watanabe, Murayama ('12), YH ('12)

 $N_{\rm NG} = N_{\rm BS} - \frac{1}{2} \operatorname{rank} \left\langle [iQ_a, Q_b] \right\rangle$

```
p_A - \frac{1}{2} \operatorname{rank} \left\langle [iQ_a, Q_b] \right\rangle
```


Classification of phases of matter

If the symmetry is different, the phase is different

 Coulomb phase of QED (vacuum) $U(1)_{F}^{[1]} \times U(1)_{M}^{[1]}$ symmetry

Super conductor

 $\mathbb{Z}_{2}^{[1]} \times \mathbb{Z}_{2}^{[2]}$ symmetry

fractional quantum Hall system $\mathbb{Z}_{q}^{[1]}$ symmetry

QCD phase diagram

Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001

The high-density phase is not well understood.

What we know? For 3-flavor QCD : $G = SU(3)_L \times SU(3)_R \times U(1)_B$ High density: Color flavor locking phase (CFL phase)

Low density: Superfluid phase of nuclear matter

Hadronic superfluid phase di-baryons condense

Symmetry breaking pattern $SU(3)_{L} \times SU(3)_{R} \times U(1)_{R} \rightarrow SU(3)_{V}$

$\Delta = \langle \Lambda \Lambda \rangle \neq 0 \quad \Lambda \sim u ds$

Chiral symmetry breaking Symmetry breaking pattern of global symmetry $SU(3)_L \times SU(3)_R \times U(1)_R \rightarrow SU(3)_V$

CFL phase quark pair μ_q

 $(\Phi_L)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_L)^b_i (Cq_L)^c_k \rangle \quad (\Phi_R)^i_a = \epsilon^{ijk} \epsilon_{abc} \langle (q_R)^b_i (Cq_R)^c_k \rangle$ $\Phi := \Phi_L = -\Phi_R = \begin{pmatrix} \Delta_{\text{CFL}} & 0 & 0 \\ 0 & \Delta_{\text{CFL}} & 0 \\ 0 & 0 & \Delta_{\text{CFI}} \end{pmatrix}$

What characterizes the CFL phase?

Fradkin-Shenker theorem: Confined and Higgs phases are the same phase

Hadron phase

quark-hadron continuity (hypothesis)

Schafer and Wilczek, PRL 82, 3956(1999) Hatsuda, Tachibana, Yamamoto, Baym, PRL 97 122001 (2006)

U(1) vortex

Non-abelian vortex

Balachandran, Digal, Matsuura, PRD73, 074009 (2006)

$$\Phi := \Delta_{\text{CFL}} \begin{pmatrix} e^{i\theta} f(r) & 0 & 0\\ 0 & g(r) & 0\\ 0 & 0 & g(r) \end{pmatrix} = A_i = -\frac{\epsilon_{ij} x^j}{g_s^2 r^2} (1 - h(r)) \text{diag} \left(-\frac{\epsilon_{ij} x^j}{g_s^2 r^2} (1 - h(r)) \text{diag} \left($$

Topological excitations

cf. Eto, Hirono, Nitta & Yasui, PTEP 2014, 012D01 (2014)

order parameter space $G/H \simeq \frac{SU(3) \times U(1)_B}{\mathbb{Z}_3} \simeq U(3)$

 $\Phi := \Delta_{\text{CFL}} \begin{pmatrix} e^{i\theta} f(r) & 0 & 0 \\ 0 & e^{i\theta} f(r) & 0 \\ 0 & 0 & e^{i\theta} f(r) \end{pmatrix}$

 $= \Delta_{\text{CFL}} e^{i\frac{\theta}{3}} \begin{pmatrix} e^{i\frac{2\theta}{3}}f(r) & 0 & 0 \\ 0 & e^{-i\frac{\theta}{3}}g(r) & 0 \\ 0 & 0 & e^{-i\frac{\theta}{3}}g(r) \end{pmatrix}$ $e^{-l\frac{3}{3}}g(r)$ $\frac{2}{3}, \frac{1}{3}, \frac{1}{3}$

Hirono, Tanizaki, Phys. Rev. Lett. 122, 212001 (2019) cf. Cherman, Sen, Yaffe, Phys. Rev. D 100, 034015 (2019)

5'

um scenario: Chatterjee, Nitta, Yasui ('19) Cherman, Jacobson, Sen, Yaffe, Phys. Rev. D 102, 105021 (2020)

cf. Hiono-Tanizaki: unbroken \mathbb{Z}_3 -2 form symmetry ⇒ not a topological ordered phase

CFL = emergence of \mathbb{Z}_3 -2 symmetry

Alford, Mallavarapu, Vachaspati, Windisch, PRC 93, 045801 (2016)

n the hadronic phase transition

2 flavor QCD Hadronic phase :³ P_2 superfluid Dense phase:siglet (ud) + ${}^{3}P_{2}$ (dd) diquark condensate Fujimoto, Fukushima, Weise Phys. Rev. D 101 (2020) 094009

As a vortices "Alice string"

Fujimoto, Nitta, Phys. Rev.D 103 (2021), 114003; 054002; 2103.15185

If no this symmetry in the hadronic phase \Rightarrow phase transition

 $G_{\text{OCD}} \supset SU(3)_C \times U(1)_B \xrightarrow{\langle dd \rangle} SO(3) \rtimes (\mathbb{Z}_6)_{C+B} \xrightarrow{\langle ud \rangle} (\mathbb{Z}_3)_{C+B}$ or $SO(2)_C \times (\mathbb{Z}_6)_{C+R}$

\Rightarrow Emergent 2-form \mathbb{Z}_3 or \mathbb{Z}_6 symmetry?

or non-invertible symmetry?

Summary Symmetry: Topological object labeled with something.

As useful as ordinary symmetry

In particular, useful for classification of gauge theory