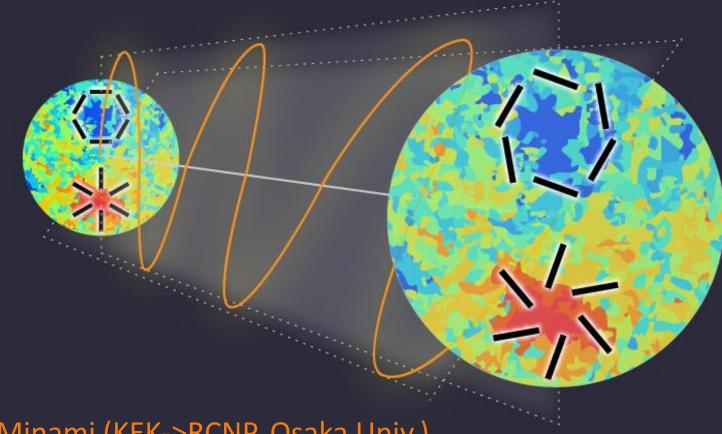
A new measurement of the cosmic birefringence



Yuto Minami (KEK->RCNP, Osaka Univ.)

PHYSICAL REVIEW LETTERS

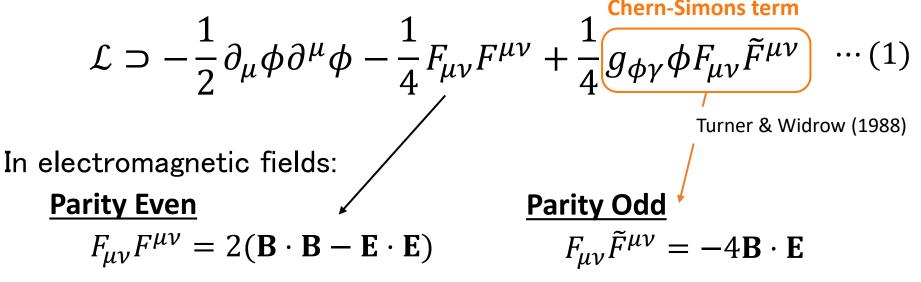


2021/10/26

Cosmic Birefringence

The Universe filled with a "birefringent material"

➢ If the Universe is filled with a pseudo-scalar field, \$\phi\$,(e.g., an axion field) coupled to the electromagnetic tensor via a Chern-Simons coupling: $\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$



*The axion field, ϕ , is a "pseudo scalar", which is parity odd; thus, the last term in Eq (1) is parity even as a whole.

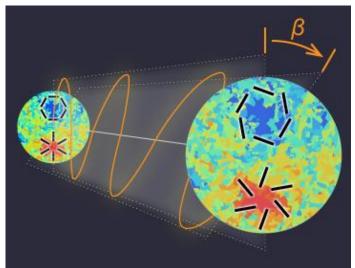
Cosmic Birefringence

The Universe filled with a "birefringent material"

➢ If the Universe is filled with a pseudo-scalar field, \$\phi\$,(e.g., an axion field) coupled to the electromagnetic tensor via a Chern-Simons coupling: $\widetilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \cdots (1)$$

$$\beta = \frac{g_{\phi\gamma}}{2} \int_{emission}^{observer} dt \,\dot{\phi}$$
$$= \frac{g_{\phi\gamma}}{2} (\phi_{observer} - \phi_{emission})$$
...(2)

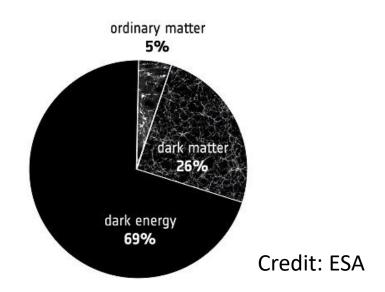


Turner & Widrow (1988)

Difference of the field values rotates the linear polarization!

Motivation

- The Universe's energy budget is dominated by two dark components:
 - Dark Energy
 - Dark Matter



We know that the weak interaction violates parity (Lee & Yang 1956; Wu et al. 1957)

Why should the laws of physics governing the Universe conserve parity?

Test with cosmic microwave background (CMB)

Origin of the CMB

Past

Present 280.000 year Hot plasma state Travel of CMB photons 100,000 vears 380 thousands years

Big Bang?

Recombination

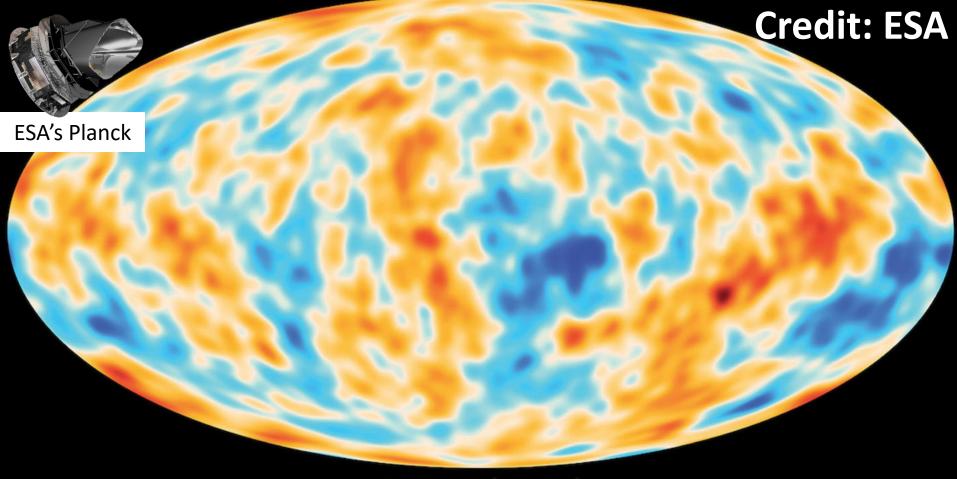
Credit: Roen Kelly, Discovermagazine

Travel of CMB photons

- Before the recombination : photons cannot travel long distance because of hot plasma
- After the recombination : photons travel the Universe after the last scattering by electrons

Osaka Univ.

Searching for cosmic birefringence with the CMB



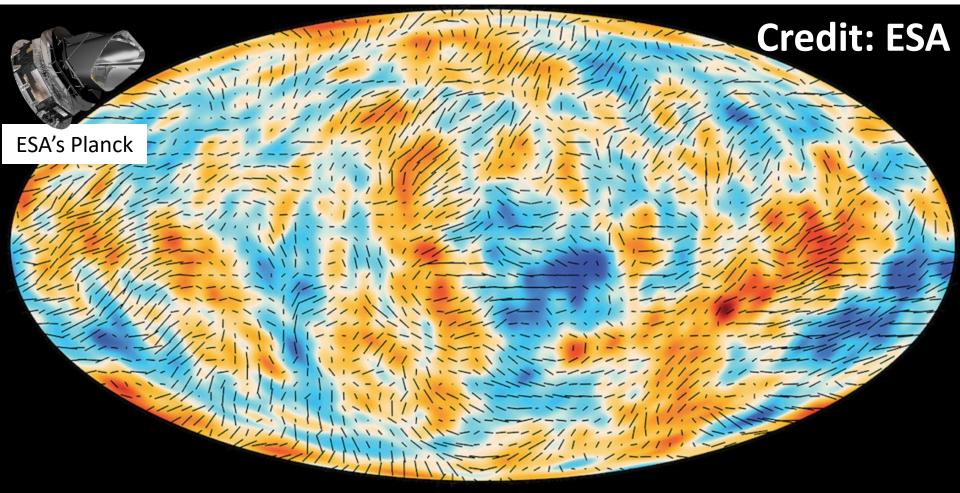
Temperature (smoothed)

Emitted 13.8 billion years ago at the last scattering surface (LSS)

2021/10/26

Osaka Univ.

Temperature anisotropy + polarisaion



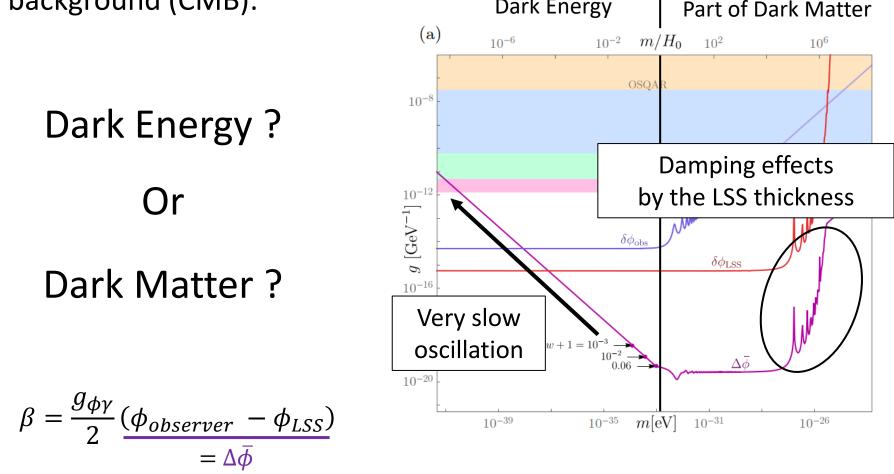
Temperature (smoothed) + Polarisation

We know the initial $\beta = 0$

In the case of axion like particles (ALPs)

Fujita, Minami, Murai, & Nakatsuka (2020)

Which is possible when we search with cosmic microwave background (CMB): Dark Energy | Part of D

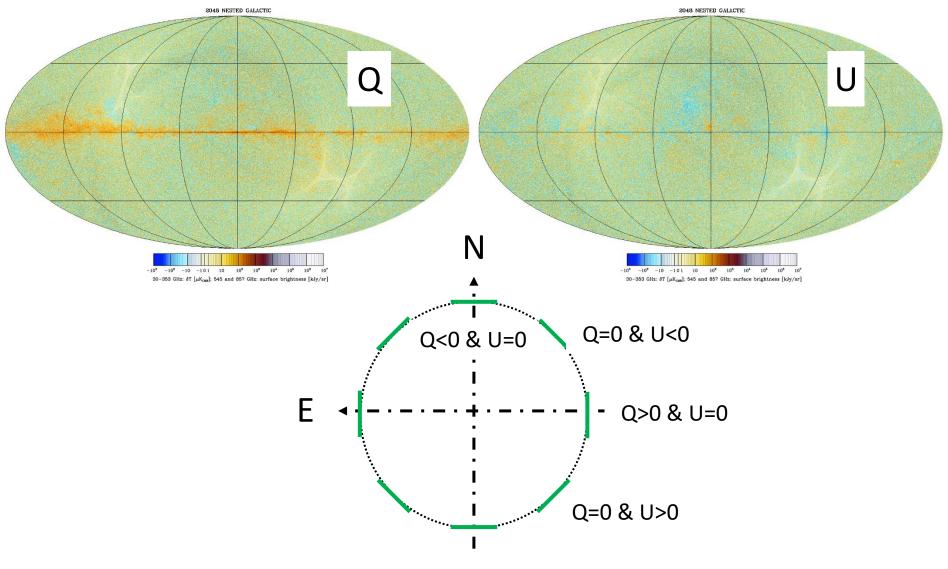


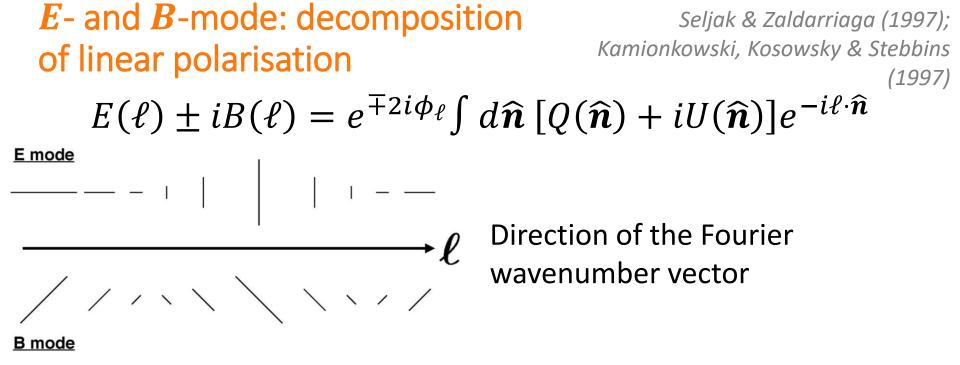
See Marsh (2016) and Ferreira (2020) for reviews of ALPs

Measurement of the polarisation

Credit: ESA

We measure linear polarisation with two orthogonal parameters

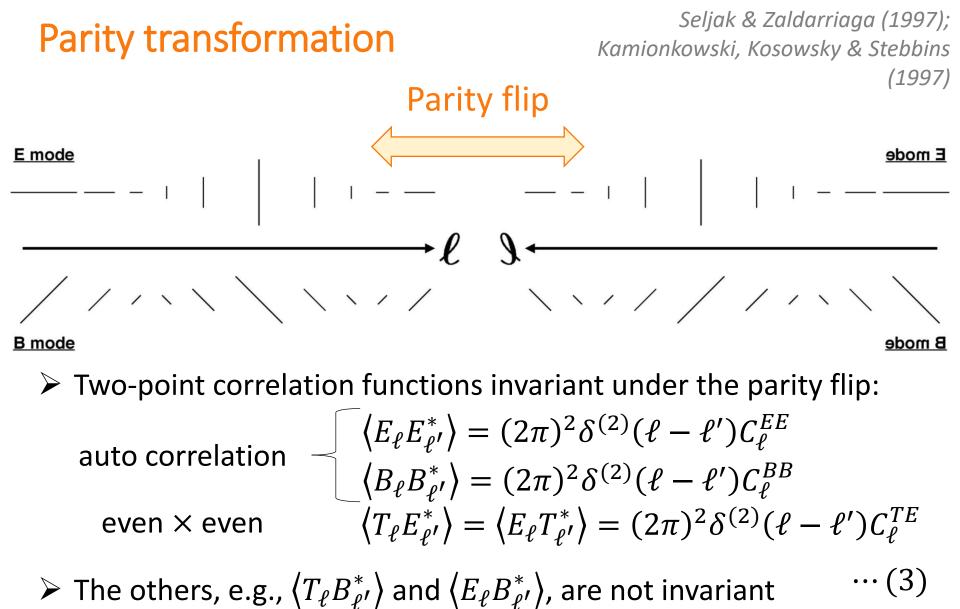




E-mode: Polarisation directions are parallel or perpendicular to the wavenumber direction

B-mode: Polarisation directions are 45 degrees tilted w.r.t the wavenumber direction

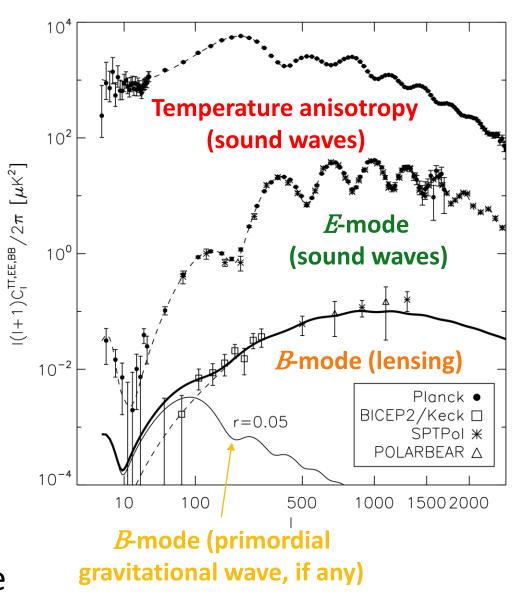
IMPORTANT": These "*E* - and *B*-modes" are jargons in the CMB community, and completely unrelated to the electric and magnetic fields of the electromagnetism!!



> We can use these to probe parity-violating physics!

Power spectra

- This is the typical figure that you find in many talks on the CMB
- The temperature anisotropy and *E*- and *B*-mode polarisation power spectra have been measured well
- Focus is the *EB* cross spectrum, which is not shown here



2021/10/26

EB correlation from the cosmic birefringence

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)

 \succ Cosmic birefringence convert E < -> B as

$$\left\langle C_{\ell}^{EB,obs} \right\rangle = \frac{1}{2} \left(\left\langle C_{\ell}^{EE} \right\rangle - \left\langle C_{\ell}^{BB} \right\rangle \right) \sin(4\beta) + \left\langle C_{\ell}^{EB} \right\rangle \cos(4\beta)$$

Need to assume a model!
Need to assume a model!
Vanish at the LSS (5)

➤ Traditionally, one would find β by fitting C_ℓ^{EE,CMB} - C_ℓ^{BB,CMB} to the observed C_ℓ^{EB,obs} using the best-fitting CMB model
 ➤ Assuming the intrinsic (C_ℓ^{EB}) = 0, at the last scattering surface (LSS) (justified in the standard cosmology)

Only with observed data

Zhao et al. 2015; Minami et al. 2019

 \succ Cosmic birefringence convert E < -> B as

$$\begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix}^{obs} = \begin{pmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix} \dots (4)$$

$$\succ \text{ We find additional relations}$$

$$\langle C_{\ell}^{EB,obs} \rangle = \frac{1}{2} (\langle C_{\ell}^{EE} \rangle - \langle C_{\ell}^{BB} \rangle) \sin(4\beta) + \langle C_{\ell}^{EB} \rangle \cos(4\beta)$$

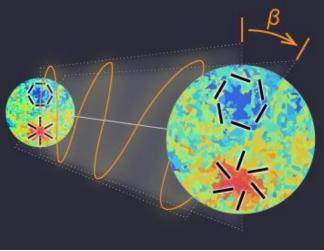
$$\langle C_{\ell}^{EE,obs} \rangle - \langle C_{\ell}^{BB,obs} \rangle = (\langle C_{\ell}^{EE} \rangle - \langle C_{\ell}^{BB} \rangle) \cos(4\beta) - 2 \langle C_{\ell}^{EB} \rangle \sin(4\beta)$$

$$\cdot \langle C_{\ell}^{EE,obs} \rangle = \langle C_{\ell}^{EE} \rangle \cos^{2}(2\beta) + \langle C_{\ell}^{BB} \rangle \sin^{2}(2\beta) - \langle C_{\ell}^{EB} \rangle \sin(4\beta)$$

$$\cdot \langle C_{\ell}^{BB,obs} \rangle = \langle C_{\ell}^{EE} \rangle \sin^{2}(2\beta) + \langle C_{\ell}^{BB} \rangle \cos^{2}(2\beta) + \langle C_{\ell}^{EB} \rangle \sin(4\beta)$$

$$\cdot \langle C_{\ell}^{BB,obs} \rangle = \frac{1}{2} \left[\langle (C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle) \right] \tan(4\beta) + \frac{\langle C_{\ell}^{EB} \rangle}{\cos(4\beta)} \dots (6)$$

No need to assume a model Vanish at the LSS



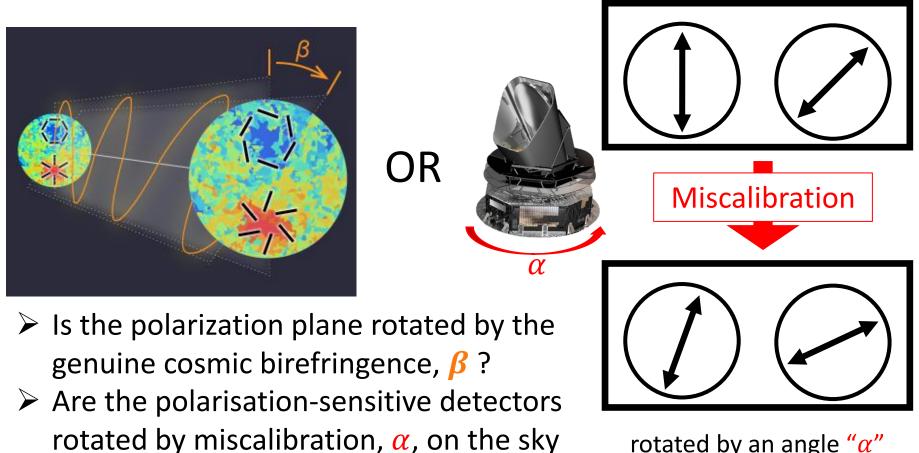
The Biggest Problem: Miscalibration of detectors

Miscalibration of detectors

Cosmic or Instrumental?

Wu et al. (2009); Komatsu et al. (2011); Keating, Shimon & Yadav (2012)

Polarisation-sensitive detectors on the focal plane



coordinate (and we did not know)?

rotated by an angle " α " (but we do not know it)

We can only measure the sum, $\alpha + \beta$

The past measurements

The quoted uncertainties are all statistical only (68% C.L.)

Measurement	$lpha+oldsymbol{eta}$ +stats. (deg.)	
Feng et al. 2006	-6.0 ± 4.0	First measurement
WMAP Collaboration, Komatsu et al. 2009; 2011	-1.1 ± 1.4	
QUaD Collaboration, Wu et al. 2009	-0.55 ± 0.82	
Planck Collaboration 2016	0.31 ± 0.05	
POLARBEAR Collaboration 2020	-0.61 ± 0.22	
SPT Collaboration, Bianchini et al. 2020	0.63 ± 0.04	Why not yet
ACT Collaboration, Namikawa et al. 2020	0.12 ± 0.06	discovered?
ACT Collaboration, Choi et al. 2020	0.09 ± 0.09	

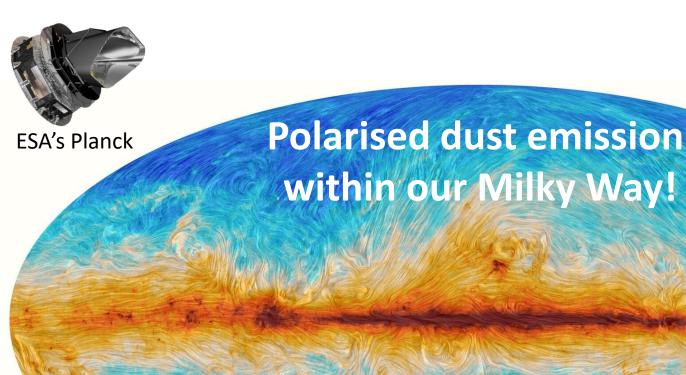
The past measurements

Now including the estimated systematic errors on α

Measurement	$oldsymbol{eta}$ + stat. + sys. (deg.)			
Feng et al. 2006	$-6.0 \pm 4.0 \pm$??	First measurement		
WMAP Collaboration, Komatsu et al. 2009; 2011	$-1.1 \pm 1.4 \pm 1.5$			
QUaD Collaboration, Wu et al. 2009	$-0.55 \pm 0.82 \pm 0.5$			
Planck Collaboration 2016	$0.31 \pm 0.05 \pm 0.28$	Uncertainty in		
POLARBEAR Collaboration 2020	$-0.61 \pm 0.22 +??$	the calibration		
SPT Collaboration, Bianchini et al. 2020	0.63 ± 0.04 + ??	of α has been		
ACT Collaboration, Namikawa et al. 2020	0.12 ± 0.06 + ??	the major		
ACT Collaboration, Choi et al. 2020*	0.09 ± 0.09 + ??	limitation		
*used optical model , "as-designed" angles				

Other way to calibrate?	Crab nebula, Tau A (Celestial source)	0.27 deg. (Aumont et al.(2018))	
	(Celestial source)		
2021/10/26	Wire grid	1.00 deg. ? (Planck pre launch)	22

The Key Idea: The polarized Galactic foreground emission as a calibrator



Credit: ESA

Emitted "right there" - it would not be affected by the cosmic birefringence.

Directions of the magnetic field inferred from polarisation of the thermal dust emission in the Milky Way

Osaka Univ.

Searching for birefringence

Idea: Miscalibration of the polarization angle α rotates both the FG and CMB, but β affects only the CMB $E_{\ell,m}^{o} = E_{\ell,m}^{fg} \cos(2\alpha) - B_{\ell,m}^{fg} \sin(2\alpha) + E_{\ell,m}^{CMB} \cos(2\alpha + 2\beta) - B_{\ell,m}^{CMB} \sin(2\alpha + 2\beta) + E_{\ell,m}^{N}$ $B_{\ell,m}^{o} = E_{\ell,m}^{fg} \sin(2\alpha) + B_{\ell,m}^{fg} \cos(2\alpha) + E_{\ell,m}^{CMB} \sin(2\alpha + 2\beta) + B_{\ell,m}^{CMB} \cos(2\alpha + 2\beta) + B_{\ell,m}^{N}$

From them, we derived

$$\langle C_{\ell}^{EB,o} \rangle = \frac{\tan(4\alpha)}{2} \left(\langle C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\frac{\langle C_{\ell}^{EE,CMB} \rangle - \langle C_{\ell}^{BB,CMB} \rangle}{\text{Known accurately}} \right) \quad \cdots \text{(8)}$$

$$+ \frac{1}{\cos(4\alpha)} \left(\langle C_{\ell}^{EB,fg} \rangle \right) + \frac{\cos(4\beta)}{\cos(4\alpha)} \left(\langle C_{\ell}^{EB,CMB} \rangle \right).$$

- For the baseline result, we ignore the intrinsic EB correlations of the FG and the CMB
 - > The latter is justified but the former is not
 - We will revisit this important issue at the end

Likelihood for determination of α and β

Minami et al. (2019)

Single frequency case, full sky data

$$-2\ln\mathcal{L} = \sum_{\ell=2}^{\ell_{\max}} \frac{\left[C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right) - \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB}\right)\right]^{2}}{\operatorname{Var}\left(C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right)\right) \cdots (9)$$

> We determine α and β simultaneously using this likelihood

Estimate Variance (Information for experts)

With full-sky power spectra (not cut-sky pseudo power spectra), we can calculate variance exactly as

$$\begin{aligned}
\operatorname{Var}\left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o})\tan(4\alpha)/2\right] \\
&= \left\langle \left[C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o})\tan(4\alpha)/2\right]^{2} \right\rangle - \left\langle C_{\ell}^{EB,o} - (C_{\ell}^{EE,o} - C_{\ell}^{BB,o})\tan(4\alpha)/2 \right\rangle^{2} \\
&= \frac{1}{2\ell+1} \left\langle C_{\ell}^{EE} \right\rangle \left\langle C_{\ell}^{BB} \right\rangle + \frac{\tan^{2}(4\alpha)}{4} \frac{2}{2\ell+1} \left(\left\langle C_{\ell}^{EE} \right\rangle^{2} + \left\langle C_{\ell}^{BB} \right\rangle^{2} \right) \\
&- \tan(4\alpha) \frac{2}{2\ell+1} \left\langle C_{\ell}^{EB} \right\rangle \left(\left\langle C_{\ell}^{EE} \right\rangle - \left\langle C_{\ell}^{BB} \right\rangle \right) + \frac{1}{2\ell+1} \left(1 - \tan^{2}(4\alpha) \right) \left\langle C_{\ell}^{EB} \right\rangle^{2}. \\
&= 0
\end{aligned}$$

We approximate \$\langle C_{\ell}^{XY} \rangle \approx C_{\ell}^{XY,o}\$
 We ignore \$\langle C_{\ell}^{EB} \rangle^2\$ term because it's small and yields bias
 Even if \$\langle C_{\ell}^{EB} \rangle \approx 0, C_{\ell}^{EB,o}\$ has a small non-zero value with fluctuation, and \$C_{\ell}^{EB,o}^2\$ yields bias

Likelihood for determination of α and β

Minami et al. (2019)

Single frequency case, full sky data

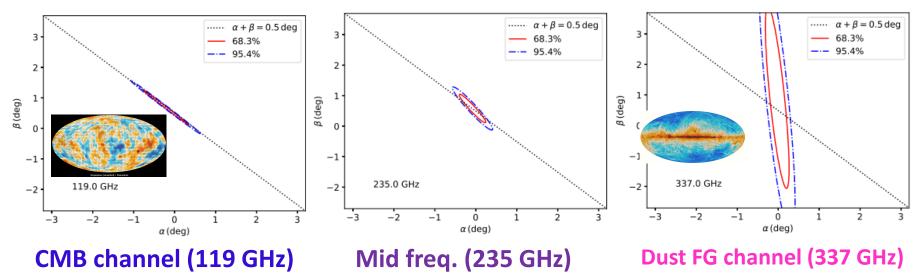
$$-2\ln\mathcal{L} = \sum_{\ell=2}^{\ell_{\max}} \frac{\left[C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right) - \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB}\right)\right]^{2}}{\operatorname{Var}\left(C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right)\right) \cdots (9)$$

- \succ We determine α and β simultaneously using this likelihood
- For analysing the Planck data, we use the multifrequency likelihood developed in Minami and Komatsu (2020a)
- > First, validate the algorithm using simulated data

How does it work?

How does it work?

Simulation with future CMB data (LiteBIRD)



- The CMB signal determines the sum of two angles, α + β
 Diagonal line
- \succ The FG determines only α
- Mid freq. : breaking the degeneracy with FG signal! $\sigma(\beta) \sim \sigma(\alpha)$, since $\sigma(\alpha + \beta) \ll \sigma(\alpha)$

Application to the Planck Data (PR3, released in 2018)

Application to the Planck Data (PR3, released in 2018)

 $\ell_{min} = 51$, $\ell_{max} = 1500$ (the same values used by Planck team)

- We used Planck High Frequency Instrument (HFI) data
 - ➤ 4 channels: 100, 143, 217, and 353 GHz

Information for experts

- Power spectra calculated from "Half Missions" (HM1 and HM2 maps)
- Mask (using NaMaster [Alonso et al.]), apodization by "Smooth" with 0.5 deg
 - > Bright CO regions. Bright point sources. Bad pixels.
- - It does not change the result even if we ignore this correction: good news!

Validation with FFP10

FFP10 = Planck team's "Full Focal Plane Simulation"

- \succ There are 4 α_{ν} 's and one β
- 10 simulations, without foreground samples because no beam systematics is applied to them
 - → We can check only $\beta(\alpha_{\nu} = 0)$ and only $\alpha_{\nu}(\beta = 0)$

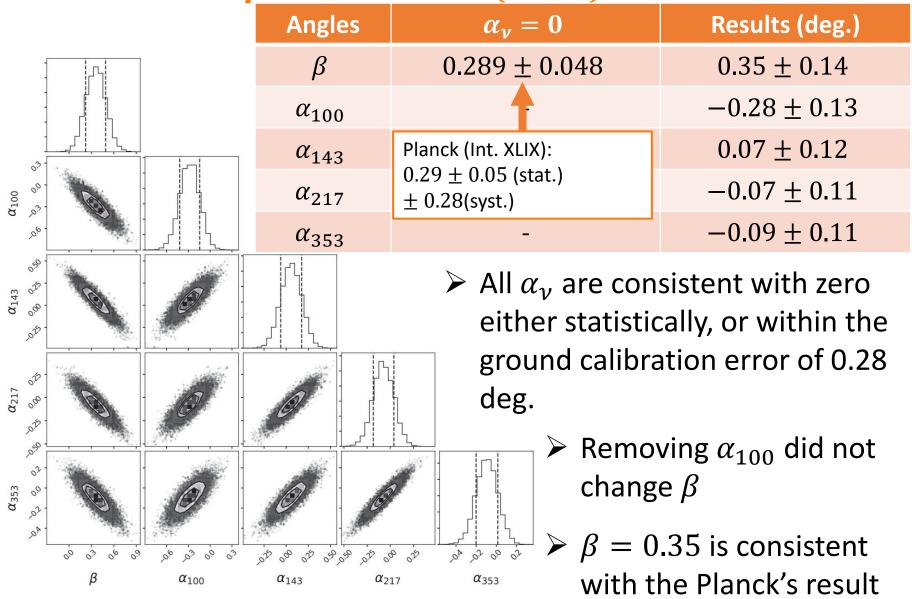
Angles	$lpha_ u=0$ (deg.)	$oldsymbol{eta}=0$ (deg.)
β	0.010 ± 0.030	-
α_{100}	-	-0.008 ± 0.047
α_{143}	-	0.013 ± 0.033
α_{217}	-	0.017 ± 0.065
α_{353}	-	0.14 ± 0.41

> No bias found. The test passed.

Main Results

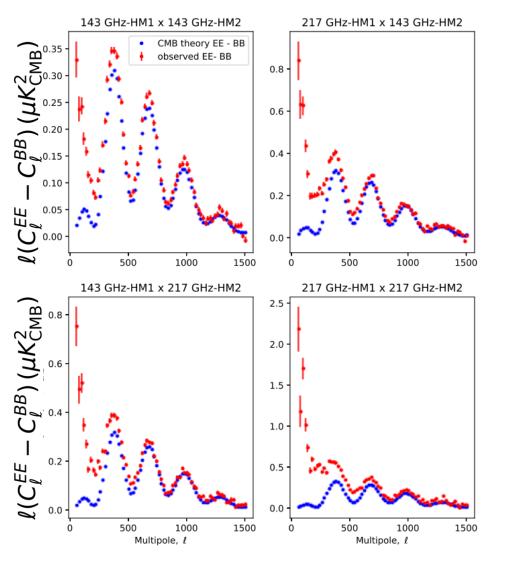
Main results: $\beta > 0$ at 99.2% (2.4 σ)

Minami & Komatsu (2020b)



EE – BB power spectra

Minami & Komatsu (2020b)

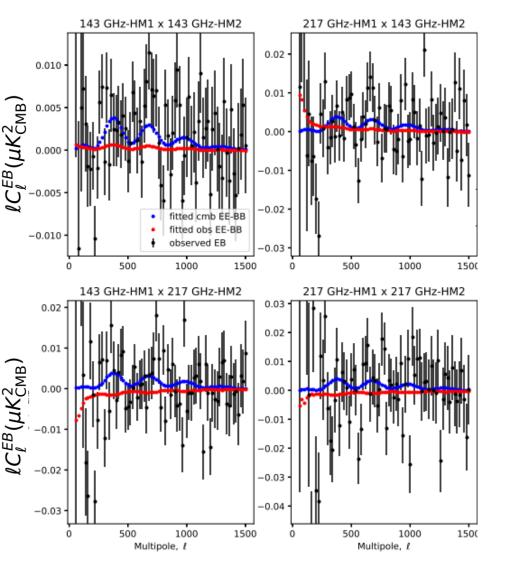


- > Can we see $\beta = 0.35 \pm 0.14^{\circ}$ by eyes?
- First, take a look at the observed *EE BB* spectra
- Red: Observed total
- Blue: The best-fitting CMB model

*The difference is due to the FG (and potentially systematics)

Minami & Komatsu (2020b)

EB power spectra (Black dots)



- > Can we see $\beta = 0.35 \pm 0.14^{\circ}$ by eyes?
- Red: The observed signal attributed to the miscalibration angle, α_ν
- Blue: The CMB signal attributed to the cosmic birefringence, β
- Red + Blue is the best-fitting model for explaining the data points (black dots)

How about the foreground *EB*?

If the intrinsic foreground (FG) *EB* exists, our method interprets it as a miscalibration angle α

- Thus, α → α + γ, where γ is the parameter of the intrinsic EB
 The sign of γ is the same as the sign of the foreground EB
- > We thus can determine:

FG:
$$\alpha + \gamma$$

CMB: $\alpha + \beta$ $\beta - \gamma = 0.35 \pm 0.14$ deg.

- > There is evidence for the dust-induced $TE_{dust} > 0 \& TB_{dust} > 0$; then, we'd expect $EB_{dust} > 0$ [Huffenberger et al.], i.e., $\gamma > 0$. If so, β increased further...
 - \succ We can give a lower bound on β

Implications

What does it mean for your models of dark matter and energy?

When a Lagrangian density includes a Chern-Simons coupling between a pseudo-scalar field and the electromagnetics tensor as:

$$\mathcal{L} \supset \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \cdots (10)$$

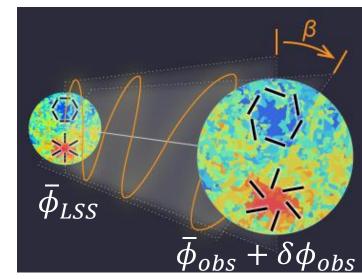
The birefringence angle is

$$\beta = \frac{g_{\phi\gamma}}{2} \left(\bar{\phi}_{obs} - \bar{\phi}_{LSS} + \delta \phi_{obs} \right) \dots (11)$$

Carroll, Field & Jackiw (1990); Harari & Sikivie (1992); Carroll (1998); Fujita, Minami, et al. (2020)

This measurement yields

$$g_{\phi\gamma}(\bar{\phi}_{obs} - \bar{\phi}_{LSS} + \delta\phi_{obs}) = (1.2 \pm 0.5) \times 10^{-2} \text{ rad.} \quad \cdots (12)$$



Implications (examples)

Models with ALPs

- Explanation of β and H_0 tension simultaneously (Fujita, Murai, Nakatsuka, & Tsujikawa 2020)
- "Kilobyte Cosmic Birefringence from ALP Domain Walls" (Takahashi & Yin 2020)
- Hidden-monopole-DM gives ALP mass to oscillate during matter dominant era (Nakagawa, Takahashi, & Yamada 2021)
- Make VEV of the Higgs vacuum lighter to explain ⁷Li puzzle (Fung et al. 2021)

➢ etc...

Non-zero foreground EB

Magnetically misaligned filamentary dust structures introduce nonzero EB (Clark, Kim, Hill, & Hensley 2021)

And in future

With the same method

- > Analysis of new Planck data release (2020):
 - Public release 4 (PR4), so called "NPIPE": reprocess of the Planck data
 - Because noise level is reduced, we might have higher sensitivity
- > Application to future satellite mission LiteBIRD (around 2030):
 - Smaller noise level
 - \succ can push this over 4σ

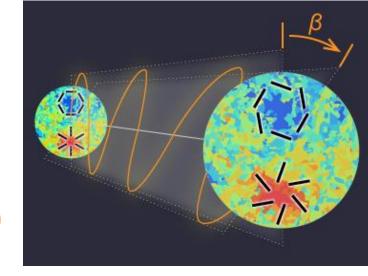
With other calibrators

- > Improvement of a calibrator on the ground
- Improvement of the Tau A (Crab Nebula) measurement
 - > polarized celestial source which Planck also observed

Conclusion

We find a hint of the parity violatingphysics in the CMB polarization:

$\beta = 0.35 \pm 0.14 \text{ deg.}$ (68% C.L.)



*Higher statistical significance is needed to confirm this signal

- > New method finally makes impossible to possible:
 - > Use foreground signal to calibrate detector rotations
 - Our method can be applied to any of the existing and future CMB experiments
- We should be possible to test the signal is true or only a coincidence immediately
 - If confirmed, it would have important implications for the dark matter/energy.