Deep Quantum Geometry of Matrices Phys. Rev. X 10, 011069

Xizhi Han and Sean A. Hartnoll Jan 2021

Stanford University

- 1. Motivation
- 2. Matrix model background
- 3. Numerical results
- 4. Variational Monte Carlo and machine learning background
- 5. Wavefunction ansatz
- 6. Entanglement on the emergent geometry

Motivation

Why machine learning matrix models?

- String theorist?
 - $\cdot\,$ Non-perturbative string physics
 - $\cdot\,$ Black hole microstates and dynamics
 - \cdot Holography

Motivation

Why machine learning matrix models?

- String theorist?
 - $\cdot\,$ Non-perturbative string physics
 - $\cdot\,$ Black hole microstates and dynamics
 - \cdot Holography
- Machine learning theorist?
 - $\cdot\,$ Representability theorems of neural networks
 - $\cdot\,$ Arena for ML physics architectures
 - $\cdot\,$ Clear numerical advantage

Motivation

Why machine learning matrix models?

- String theorist?
 - $\cdot\,$ Non-perturbative string physics
 - $\cdot\,$ Black hole microstates and dynamics
 - \cdot Holography
- Machine learning theorist?
 - $\cdot\,$ Representability theorems of neural networks
 - $\cdot\,$ Arena for ML physics architectures
 - $\cdot\,$ Clear numerical advantage
- · IfQ?
 - $\cdot\,$ Tests of QI understandings
 - $\cdot\,$ Complexity of holographic states
 - ...

• What is matrix model?

$$H = \operatorname{tr}(P^2 + X^2 + g^2 X^4)$$

Here X and P are N-by-N hermitian matrices with commutator $[P_{ij}, X_{kl}] = \delta_{il}\delta_{jk}.$

• What is matrix model?

$$H = \operatorname{tr}(P^2 + X^2 + g^2 X^4)$$

Here X and P are N-by-N hermitian matrices with commutator $[P_{ij}, X_{kl}] = \delta_{il}\delta_{jk}$.

• Where is the emergent geometry?

$$Z = \int dX e^{-\operatorname{tr}(X^2 + X^4)} = \int dx_i \Delta(x_i) e^{-\sum (x_i^2 + x_i^4)}$$

= $\int dx_i e^{-\sum (x_i^2 + x_i^4) + \sum_{i \neq j} \log |x_i - x_j|}$

The Jacobian $\Delta(x_i) = \prod_{i < j} (x_i - x_j)^2$. Large N is a large number of eigenvalue "particles" with repulsive interaction in an external potential.

 \cdot N D-particles in AdS_4

- + N D-particles in AdS_4
- One dimensionless parameter ν proportional to fluxes supporting ${\rm AdS}_4$

$$F_{tijk} \sim \Omega \epsilon_{ijk}, \quad \nu \sim rac{\Omega l_s}{g_s^{1/3}} \sim rac{1}{g_s^{1/3}} rac{l_s}{l_{
m AdS}}$$

 $\cdot\,$ Gravitational back reaction becomes important when

$$\frac{N}{\nu^3} \gtrsim 1$$

· Small $\nu:$ gravitational collapse; Large
 $\nu:$ fuzzy sphere

Mini-BMN Hamiltonian

$$H_B = \operatorname{tr}\left(\frac{1}{2}\Pi^i\Pi^i - \frac{1}{4}[X^i, X^j][X^i, X^j] + \frac{1}{2}\nu^2 X^i X^i + i\nu\epsilon^{ijk} X^i X^j X^k\right)$$
$$H_F = \operatorname{tr}\left(\lambda^{\dagger}\sigma^k[X^k, \lambda] + \frac{3}{2}\nu\lambda^{\dagger}\lambda\right) - \frac{3}{2}\nu(N^2 - 1)$$

The Hamiltonian $H = H_B + H_F$ describes a quantum mechanical system of i = 1, 2, 3 bosonic and $\alpha = 1, 2$ fermionic N-by-N traceless hermitian matrices.

Mini-BMN Hamiltonian

$$H_B = \operatorname{tr}\left(\frac{1}{2}\Pi^i\Pi^i - \frac{1}{4}[X^i, X^j][X^i, X^j] + \frac{1}{2}\nu^2 X^i X^i + i\nu\epsilon^{ijk} X^i X^j X^k\right)$$
$$H_F = \operatorname{tr}\left(\lambda^{\dagger}\sigma^k[X^k, \lambda] + \frac{3}{2}\nu\lambda^{\dagger}\lambda\right) - \frac{3}{2}\nu(N^2 - 1)$$

The Hamiltonian $H = H_B + H_F$ describes a quantum mechanical system of i = 1, 2, 3 bosonic and $\alpha = 1, 2$ fermionic N-by-N traceless hermitian matrices.

$$\begin{pmatrix} x_1^i & y_{12}^i & \dots & y_{1N}^i \\ y_{12}^{i_2} & x_2^i & \dots & y_{2N}^i \\ \vdots & \vdots & \ddots & \vdots \\ y_{1N}^{i_*} & y_{2N}^{i_*} & \dots & x_N^i \end{pmatrix}$$

The bosonic potential can be conveniently written as

$$V(X) = \frac{1}{4} \operatorname{tr} \left[\left(\nu \epsilon^{ijk} X^k + i[X^i, X^j] \right)^2 \right]$$

and is minimized by

$$[X^i, X^j] = i\nu\epsilon^{ijk}X^k.$$

The bosonic potential can be conveniently written as

$$V(X) = \frac{1}{4} \operatorname{tr} \left[\left(\nu \epsilon^{ijk} X^k + i[X^i, X^j] \right)^2 \right]$$

and is minimized by

$$[X^i, X^j] = i\nu\epsilon^{ijk}X^k.$$

So classically, three bosonic matrices satisfy the $\mathfrak{so}(3)$ algebra:

$$X^i = \nu J^i,$$

where J^i are representations of the algebra $[J^i, J^j] = i\epsilon^{ijk}J^k$ of dim N.

Emergent Fuzzy Sphere in Mini-BMN

The emergence of the $\mathfrak{so}(3)$ algebra motivates a correspondence between matrices and fields on a sphere:

$ \begin{pmatrix} x_{1}^{i} & y_{12}^{i} & \dots & y_{1N}^{i} \\ y_{12}^{i} & x_{2}^{i} & \dots & y_{2N}^{i} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1N}^{i} & y_{2N}^{i} & \dots & x_{N}^{i} \end{pmatrix} $	Matrix	Fields	
	М	$f(heta, \phi)$	
	$\alpha M_1 + \beta M_2$	$lpha f_1(heta,\phi) + eta f_2(heta,\phi)$	
	M_1M_2	$f_1 \star f_2 = f_1(\theta, \phi) f_2(\theta, \phi) + \dots$	
	$[X^i, M]$	$L^{i}f(heta, \phi)$	
	$\frac{1}{N}\operatorname{tr} M_1^{\dagger}M_2$	$\frac{1}{4\pi}\int d\Omega f_1^*(\theta,\phi)f_2(\theta,\phi)$	
	I, X^i, \ldots	$1, x^{i},$	

Example $R^2 = (x^i)^2 = \frac{1}{4\pi} \int d\Omega \, x^{i*} x^i = \frac{1}{N} \operatorname{tr}(X^i)^{\dagger} X^i = \frac{1}{4} \nu^2 (N^2 - 1)$

Noncommutative Gauge Theory on the Fuzzy Sphere

Now consider quantum fluctuations around the classical solution:

$$X^{i} = \nu J^{i} + \sqrt{\frac{4\pi}{N\nu}} A^{i},$$

Noncommutative Gauge Theory on the Fuzzy Sphere

Now consider quantum fluctuations around the classical solution:

$$X^{i} = \nu J^{i} + \sqrt{\frac{4\pi}{N\nu}} A^{i},$$

the bosonic potential can be rewritten as

$$V(X) = \frac{1}{4} \operatorname{tr} \left[\left(\nu \epsilon^{ijk} X^k + i [X^i, X^j] \right)^2 \right] = \frac{4\pi \nu}{4N} \operatorname{tr} \left(F^{ij} \right)^2,$$

where

$$F^{ij} = i\left([J^i, A^j] - [J^j, A^i]\right) + \epsilon^{ijk}A^k + i\sqrt{\frac{4\pi}{N\nu^3}}[A^i, A^j].$$

Noncommutative Gauge Theory on the Fuzzy Sphere

Now consider quantum fluctuations around the classical solution:

$$X^{i} = \nu J^{i} + \sqrt{\frac{4\pi}{N\nu}} A^{i},$$

the bosonic potential can be rewritten as

$$V(X) = \frac{1}{4} \operatorname{tr} \left[\left(\nu \epsilon^{ijk} X^k + i[X^i, X^j] \right)^2 \right] = \frac{4\pi\nu}{4N} \operatorname{tr} \left(F^{ij} \right)^2,$$

where

$$F^{ij} = i\left([J^i, A^j] - [J^j, A^i]
ight) + \epsilon^{ijk}A^k + i\sqrt{rac{4\pi}{N
u^3}}[A^i, A^j].$$

Correspondingly,

$$\begin{split} f^{ij} &= i \left(L^i a^j - L^j a^i \right) + \epsilon^{ijk} a^k + i \sqrt{\frac{4\pi}{N\nu^3}} [a^i, a^j]_\star, \\ H_B &= \nu \int d\Omega \, \left(\frac{1}{2} (\pi^i)^2 + \frac{1}{4} (f^{ij})^2 \right). \end{split}$$

Solvable if $N\nu^3 \to \infty!$

- Supersymmetric matrix quantum mechanics of 3 bosonic and 2 fermionic SU(N) matrices, with one (dimensionless) mass deformation parameter ν .
- In the limit $N\nu^3 \rightarrow \infty$, a fuzzy sphere with a noncommutative U(1) gauge theory emerges, and the theory is solvable in this limit.
- The emergent gauge field is the fluctuation around the classical solution $X^i = \nu J^i$, under the matrix-field correspondence $M \leftrightarrow f(\theta, \phi)$.

- Radius of the emergent sphere $r_0 \sim \frac{1}{2}N|\nu|$
- Ground state energy $E \sim \frac{2}{3}N^3|\nu|$
- First-order phase transition at $\nu \approx 3$ (one-loop)

- Radius of the emergent sphere $r_0 \sim \frac{1}{2}N|\nu|$
- Ground state energy $E \sim \frac{2}{3}N^3|\nu|$
- First-order phase transition at $\nu \approx 3$ (one-loop)

- Radius of the emergent sphere $r_0 \sim \frac{1}{2}N|\nu|$
- · Ground state energy $E\sim \frac{2}{3}N^3|\nu|$
- First-order phase transition at $\nu \approx 3$ (one-loop)

- Radius of the emergent sphere $r_0 \sim \frac{1}{2}N|\nu|$
- Ground state energy $E\sim \frac{2}{3}N^3|\nu|$
- First-order phase transition at $\nu \approx 3$ (one-loop)

Solvable Case Two: $\nu = \infty, R = N^2 - N$

- Radius of the emergent sphere $r_0 \sim \frac{1}{2}N|\nu|$
- Ground state energy $E/N^2 \rightarrow 0$
- $\cdot\,$ No first-order phase transitions to one-loop

Solvable Case Two: $\nu = \infty, R = N^2 - N$

- Radius of the emergent sphere $r_0 \sim \frac{1}{2}N|\nu|$
- + Ground state energy $E/N^2 \rightarrow 0$
- $\cdot\,$ No first-order phase transitions to one-loop

For two-by-two matrices, the mini-BMN was solved in different sectors in arXiv:1701.07511.

For two-by-two matrices, the mini-BMN was solved in different sectors in arXiv:1701.07511.

Exploration near $\nu = 0$

- Small ν (gravitational) regime is more quantum and difficult
- · Complexity of the network is necessary to get better results

Exploration near $\nu = 0$

- \cdot Small ν (gravitational) regime is more quantum and difficult
- · Complexity of the network is necessary to get better results

Variational Monte Carlo

- 1. Parametrize the variational wavefunction $\psi_{\theta}(X)$ by parameters θ
- 2. Estimate the expectation value of energy by Monte Carlo samples
- 3. Evaluate the gradient of the energy with respect to θ
- 4. Apply the gradient to the parameters via gradient descent

$$\theta o heta - \alpha
abla_{ heta} \langle \psi_{ heta} | H | \psi_{ heta}
angle$$

Monte Carlo Estimate of Energy

 \cdot Bosonic potential:

$$\langle \psi | V(X) | \psi \rangle = \int dX \, |\psi(X)|^2 V(X) = \mathbb{E}_{X \sim |\psi|^2} [V(X)]$$

Monte Carlo Estimate of Energy

 \cdot Bosonic potential:

$$\langle \psi | V(X) | \psi \rangle = \int dX | \psi(X) |^2 V(X) = \mathbb{E}_{X \sim |\psi|^2} [V(X)]$$

 \cdot Kinetic terms:

$$\begin{aligned} \langle \psi | \operatorname{tr} \Pi^{2} | \psi \rangle &= \sum_{ij} \int dX \left| \frac{\partial \psi}{\partial X_{ij}} \right|^{2} = \sum_{ij} \int dX |\psi(X)|^{2} \left| \frac{\partial \ln \psi}{\partial X_{ij}} \right|^{2} \\ &= \mathbb{E}_{X \sim |\psi|^{2}} \left[\sum_{ij} \left| \frac{\partial \ln \psi}{\partial X_{ij}} \right|^{2} \right] \end{aligned}$$

Objective: minimize $E_{\theta} = \langle \psi_{\theta} | H | \psi_{\theta} \rangle = \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\epsilon_{\theta}(X)].$

Objective: minimize $E_{\theta} = \langle \psi_{\theta} | H | \psi_{\theta} \rangle = \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\epsilon_{\theta}(X)].$

Gradient:

 $\nabla_{\theta} E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\nabla_{\theta} \epsilon_{\theta}(X)] + \mathbb{E}_{X \sim |\psi_{\theta}|^2} [2\epsilon_{\theta}(X) \nabla_{\theta} \ln |\psi_{\theta}(X)|]$

Objective: minimize $E_{\theta} = \langle \psi_{\theta} | H | \psi_{\theta} \rangle = \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\epsilon_{\theta}(X)].$ Gradient:

$$\begin{split} \nabla_{\theta} E_{\theta} &= \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\nabla_{\theta} \epsilon_{\theta}(X)] + \mathbb{E}_{X \sim |\psi_{\theta}|^2} [2 \epsilon_{\theta}(X) \nabla_{\theta} \ln |\psi_{\theta}(X)|] \end{split}$$
To minimize variance, the second term can be rewritten as $\mathbb{E}_{X \sim |\psi_{\theta}|^2} [2 (\epsilon_{\theta}(X) - \underline{E}_{\theta}) \nabla_{\theta} \ln |\psi_{\theta}(X)|] \end{split}$

because $\mathbb{E}[2\nabla_{\theta} \ln |\psi|] = \nabla_{\theta} \int dX |\psi|^2 = 0.$

Objective: minimize $E_{\theta} = \langle \psi_{\theta} | H | \psi_{\theta} \rangle = \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\epsilon_{\theta}(X)].$ Gradient:

$$\nabla_{\theta} E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\nabla_{\theta} \epsilon_{\theta}(X)] + \mathbb{E}_{X \sim |\psi_{\theta}|^2} [2\epsilon_{\theta}(X) \nabla_{\theta} \ln |\psi_{\theta}(X)|]$$

To make it work without having to normalize the wavefunction, the second term is also

$$\mathbb{E}_{X \sim |\psi_{\theta}|^{2}} [2(\epsilon_{\theta}(X) - E_{\theta}) \nabla_{\theta} \ln(\mathbb{Z}_{\theta} |\psi_{\theta}(X)|)]$$

for any function Z_{θ} of θ , as $\mathbb{E}[(\epsilon - E)\nabla Z] = \mathbb{E}[\epsilon - E]\nabla Z = 0.$

For any (not necessarily normalized) wavefunction $\psi_{\theta}(X)$,

 $E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^2}[\epsilon_{\theta}(X)]$

 $\nabla_{\theta} E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^2} [\nabla_{\theta} \epsilon_{\theta}(X)] + \mathbb{E}_{X \sim |\psi_{\theta}|^2} [2(\epsilon_{\theta}(X) - E_{\theta}) \nabla_{\theta} \ln |\psi_{\theta}(X)|]$

For any (not necessarily normalized) wavefunction $\psi_{\theta}(X)$,

 $E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^2}[\epsilon_{\theta}(X)]$

 $\nabla_{\theta} E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^{2}} [\nabla_{\theta} \epsilon_{\theta}(X)] + \mathbb{E}_{X \sim |\psi_{\theta}|^{2}} [2(\epsilon_{\theta}(X) - E_{\theta}) \nabla_{\theta} \ln |\psi_{\theta}(X)|]$

 $\cdot\,$ We need samples of the wavefunction to evaluate

$$\mathbb{E}_{X \sim |\psi_{\theta}|^2}[F(X)] = \frac{1}{K} \sum_{i=1}^{K} F(X_i).$$

For any (not necessarily normalized) wavefunction $\psi_{\theta}(X)$,

$$E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^2}[\epsilon_{\theta}(X)]$$

 $\nabla_{\theta} E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^{2}} [\nabla_{\theta} \epsilon_{\theta}(X)] + \mathbb{E}_{X \sim |\psi_{\theta}|^{2}} [2(\epsilon_{\theta}(X) - E_{\theta}) \nabla_{\theta} \ln |\psi_{\theta}(X)|]$

 $\cdot\,$ We need samples of the wavefunction to evaluate

$$\mathbb{E}_{X \sim |\psi_{\theta}|^2}[F(X)] = \frac{1}{K} \sum_{i=1}^{K} F(X_i).$$

• We need the explicit functional form of $|\psi_{\theta}(X)|$ to efficiently evaluate the gradient.

For any (not necessarily normalized) wavefunction $\psi_{\theta}(X)$,

 $E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^2}[\epsilon_{\theta}(X)]$

 $\nabla_{\theta} E_{\theta} = \mathbb{E}_{X \sim |\psi_{\theta}|^{2}} [\nabla_{\theta} \epsilon_{\theta}(X)] + \mathbb{E}_{X \sim |\psi_{\theta}|^{2}} [2(\epsilon_{\theta}(X) - E_{\theta}) \nabla_{\theta} \ln |\psi_{\theta}(X)|]$

 $\cdot\,$ We need samples of the wavefunction to evaluate

$$\mathbb{E}_{X \sim |\psi_{\theta}|^2}[F(X)] = \frac{1}{K} \sum_{i=1}^{K} F(X_i).$$

- We need the explicit functional form of $|\psi_{\theta}(X)|$ to efficiently evaluate the gradient.
- Efficient sampling and evaluating $|\psi_{\theta}(X)|^2 \Rightarrow$ Generative Flows

Building Blocks: Fully-Connected Neural Networks

The neural network defines a function $F : x \mapsto y$ mapping an input vector x to an output vector y via a sequence of affine and nonlinear transformations:

$$F = A_{\theta}^{m} \circ \tanh \circ A_{\theta}^{m-1} \circ \tanh \circ \cdots \circ \tanh \circ A_{\theta}^{1}.$$

Here $A^1_{\theta}(x) = M^1_{\theta}x + b^1_{\theta}$ is an affine transformation. The hyperbolic tangent nonlinearity then acts elementwise on $A^1_{\theta}(x)$.

¹Figure from neuralnetworksanddeeplearning.com

Normalizing flows give an efficient way of parametrizing complicated probability distributions $(|\psi_{\theta}(X)|^2$ in our case). For any reversible transformation F and y = F(x):

$$p_{y}(y_{0}) = p_{x}(x_{0}) |\det DF|_{x_{0}}^{-1},$$

where $x_0 = F^{-1}(y_0)$.

Normalizing flows give an efficient way of parametrizing complicated probability distributions $(|\psi_{\theta}(X)|^2$ in our case). For any reversible transformation F and y = F(x):

$$p_y(y_0) = p_x(x_0) |\det DF|_{x_0}^{-1},$$

where $x_0 = F^{-1}(y_0)$.

In practice, F can be parametrized by neural networks composed of reversible affine and nonlinear transformations. Normalizing flows give an efficient way of parametrizing complicated probability distributions $(|\psi_{\theta}(X)|^2$ in our case). For any reversible transformation F and y = F(x):

$$p_y(y_0) = p_x(x_0) |\det DF|_{x_0}^{-1},$$

where $x_0 = F^{-1}(y_0)$.

In practice, F can be parametrized by neural networks composed of reversible affine and nonlinear transformations.

$$\left(\begin{array}{cccccccccc}
\exp x_1 & y_{12} & y_{13} & y_{14} \\
0 & \exp x_2 & y_{23} & y_{24} \\
0 & 0 & \exp x_3 & y_{34} \\
0 & 0 & 0 & \exp x_4
\end{array}\right)$$

From arXiv: 1505.05770:

A more clever way of parametrizing a reversible transformation is to choose an ordering of the coordinates

$$\begin{aligned} x_1 &\sim p_1(x; \theta_0) \\ x_2 &\sim p_2(x; \theta_1(x_1)) \\ &\vdots \\ x_i &\sim p_i(x; \theta_{i-1}(x_1, \dots, x_{i-1})) \end{aligned}$$

A more clever way of parametrizing a reversible transformation is to choose an ordering of the coordinates

$$\begin{aligned} x_1 &\sim p_1(x; \theta_0) \\ x_2 &\sim p_2(x; \theta_1(x_1)) \\ \vdots \\ x_i &\sim p_i(x; \theta_{i-1}(x_1, \dots, x_{i-1})) \end{aligned}$$

The joint probability distribution of x_i is a product of individual ones

$$p(x_1, x_2, \ldots) = p_1(x_1; \theta_0) p_2(x_2; \theta_1(x_1)) \ldots$$

A more clever way of parametrizing a reversible transformation is to choose an ordering of the coordinates

$$\begin{aligned} x_1 &\sim p_1(x; \theta_0) \\ x_2 &\sim p_2(x; \theta_1(x_1)) \\ \vdots \\ x_i &\sim p_i(x; \theta_{i-1}(x_1, \dots, x_{i-1})) \end{aligned}$$

The joint probability distribution of x_i is a product of individual ones

$$p(x_1, x_2, \ldots) = p_1(x_1; \theta_0) p_2(x_2; \theta_1(x_1)) \ldots$$

And θ_i can be parametrized by fully-connected neural networks without reversibility requirements.

Generative Flow Two: Masked Autoregressive Flows

To generate an image pixel-by-pixel:

Wavefunction Ansatz: Gauge Invariance

(Think the wavefunction as functions from bosonic matrices to fermion states.) The $\mathrm{SU}(N)$ gauge invariance of the wavefunction requires that

$$\psi(UXU^{-1}) = U\psi(X)U^{-1}.$$

One way to impose this is to fix a gauge $X = U\widetilde{X}U^{-1}$ where \widetilde{X} is the gauge representative for X, and define

$$\psi(X) = U\widetilde{\psi}(\widetilde{X})U^{-1},$$

where $\tilde{\psi}$ is a function of gauge representatives only.

Objective: Sample $X \sim |\psi(X)|^2$ and evaluate $|\psi(X)|^2$ for any X. Given: Generative flow $p_{\theta}(X)$, a probability distribution parametrized by θ , capable of evaluating $p_{\theta}(X)$ for any X and sample $X \sim p_{\theta}(X)$. Objective: Sample $X \sim |\psi(X)|^2$ and evaluate $|\psi(X)|^2$ for any X. Given: Generative flow $p_{\theta}(X)$, a probability distribution parametrized by θ , capable of evaluating $p_{\theta}(X)$ for any X and sample $X \sim p_{\theta}(X)$. Solution:

1. Sample gauge representatives $\widetilde{X} \sim p_{\theta}(\widetilde{X})$

Objective: Sample $X \sim |\psi(X)|^2$ and evaluate $|\psi(X)|^2$ for any X. Given: Generative flow $p_{\theta}(X)$, a probability distribution parametrized by θ , capable of evaluating $p_{\theta}(X)$ for any X and sample $X \sim p_{\theta}(X)$. Solution:

- 1. Sample gauge representatives $\widetilde{X} \sim p_{\theta}(\widetilde{X})$
- 2. Sample a random gauge group element $g \in SU(N)$

Objective: Sample $X \sim |\psi(X)|^2$ and evaluate $|\psi(X)|^2$ for any X. Given: Generative flow $p_{\theta}(X)$, a probability distribution parametrized by θ , capable of evaluating $p_{\theta}(X)$ for any X and sample $X \sim p_{\theta}(X)$. Solution:

- 1. Sample gauge representatives $\widetilde{X} \sim p_{\theta}(\widetilde{X})$
- 2. Sample a random gauge group element $g \in SU(N)$
- 3. Output samples $X = g\widetilde{X}$, then X follows the probability distribution $|\psi(X)|^2 \equiv p_{\theta}(\widetilde{X}) / \Delta(\widetilde{X})$

Comments: $\Delta(\widetilde{X})$ is the size of the gauge orbit of \widetilde{X} . The functional form of $\Delta(\widetilde{X})$ must be known.

Wavefunction Ansatz: Fermions

· With fermions, $\widetilde{\psi}(\widetilde{X}) = |\widetilde{\psi}(\widetilde{X})| |M(\widetilde{X})\rangle$, where

$$|M(X)\rangle \equiv \sum_{r=1}^{D} \prod_{a=1}^{R} \left(\sum_{\alpha=1}^{2} \sum_{A=1}^{N^{2}-1} M_{A\alpha}^{ra}(X) \lambda_{A}^{\alpha\dagger} \right) |0\rangle,$$

 λ^{α}_{A} are matrices of fermions and $\left|0\right\rangle$ is the state with zero fermions.

Wavefunction Ansatz: Fermions

• With fermions, $\widetilde{\psi}(\widetilde{X}) = |\widetilde{\psi}(\widetilde{X})| |M(\widetilde{X})\rangle$, where

$$|M(X)\rangle \equiv \sum_{r=1}^{D} \prod_{a=1}^{R} \left(\sum_{\alpha=1}^{2} \sum_{A=1}^{N^{2}-1} M_{A\alpha}^{ra}(X) \lambda_{A}^{\alpha\dagger}\right) |0\rangle,$$

 λ^{α}_{A} are matrices of fermions and $\left|0\right\rangle$ is the state with zero fermions.

• The fermionic part of the wavefunction is given by a complex tensor function $M_{A\alpha}^{ra}(X)$, parametrized by a fully-connected neural network as well.

· With fermions, $\widetilde{\psi}(\widetilde{X}) = |\widetilde{\psi}(\widetilde{X})| |M(\widetilde{X})\rangle$, where

$$|M(X)\rangle \equiv \sum_{r=1}^{D} \prod_{a=1}^{R} \Big(\sum_{\alpha=1}^{2} \sum_{A=1}^{N^{2}-1} M_{A\alpha}^{ra}(X) \lambda_{A}^{\alpha\dagger} \Big) |0\rangle,$$

 λ^{α}_{A} are matrices of fermions and $\left|0\right\rangle$ is the state with zero fermions.

- The fermionic part of the wavefunction is given by a complex tensor function $M_{A\alpha}^{ra}(X)$, parametrized by a fully-connected neural network as well.
- Pros: easy to compute energy no sign problems; Cons: not very efficient.

In this work $|\psi(X)|^2$ is represented by a normalizing flow (NF) or masked autoregressive flow (MAF), and the fermion wavefunction is a superposition of free fermion states.

Entanglement of Free Fields with $j \leq j_{\text{max}}$

Find $P_A^{j_{\max}}$ in the space of fields with $j \leq j_{\max}$ as the projector that minimizes the distance $\|P_A^{j_{\max}} - P_A\|$.

At large j_{max} the curve approaches the boundary law $0.03 \times 2\pi \sin \theta_A$, shown as a dashed line.

Entanglement on the Mini-BMN Fuzzy Sphere

Solid curves are for $\nu = \infty$ and dots are from numerics for $\nu = 10$.

Conclusion

- We demonstrate that it is possible to discover low-energy wavefunctions of matrix quantum mechanics with a deep learning approach.
- The variational ground state is quantitatively accurate in the solvable fuzzy sphere phase, from both observable and entanglement metrics.
- For the more interesting limit with emergent gravity, more physical insights / more efficient architectures are required.
- We also propose a way of evaluating entanglement on noncommutative geometries, which reveals an area-law entanglement on the emergent fuzzy sphere.
- Please check out our paper for more references. Thank you!