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- Clear numerical advantage
- Q7
- Tests of QI understandings
- Complexity of holographic states
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- What is matrix model?
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Here X and P are N-by-N hermitian matrices with commutator
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Basic Example

- What is matrix model?

H = tr(P* + X? + ¢°X*)

Here X and P are N-by-N hermitian matrices with commutator
[Pij, Xua] = Sudjk.

+ Where is the emergent geometry?

£= /dXeitr(XuXﬂ = /dxiA(xi)e* T +f)
= / dxe™ ZT )+ K log [xi—xj]
The Jacobian A(x;) = ITij(xi — xj)2~ Large N is a large number

of eigenvalue “particles” with repulsive interaction in an external

potential.



- N D-particles in AdSy



Background

- N D-particles in AdSy

+ One dimensionless parameter v proportional to fluxes supporting

AdSy
Ql; 1 I
Fti'k ~ Qe"k vV~ ~
j ijks 1/3 1/3
g g laas
+ Gravitational backreaction becomes important when
Ny
v3 ™

- Small v: gravitational collapse; Large v: fuzzy sphere



Mini-BMN Hamiltonian
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1. PSP N
Hp =tr (zrml — ;X XX, X + EvleXl - ivel/leX]Xk>

Hr = tr ()ﬁak (XK, A] + 2m*)\) = %U(Nz —-1)

The Hamiltonian H = Hp + Hf describes a quantum mechanical
system of i = 1,2,3 bosonic and & = 1,2 fermionic N-by-N traceless
hermitian matrices.
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Emergent Fuzzy Sphere in Mini-BMN

The bosonic potential can be conveniently written as
1 ek i i)\ 2
V(X) = i (vel] X —|—1[X,X]])

and is minimized by
(X, XI] = ivelkxk,



Emergent Fuzzy Sphere in Mini-BMN

The bosonic potential can be conveniently written as
1 ek i i)\ 2
V(X) = i (vel] X —|—1[X,X]])

and is minimized by
(X, XI] = ivelkxk,
So classically, three bosonic matrices satisfy the so(3) algebra:

X =,

where J' are representations of the algebra [J', /] = ie/*JK of dim N.



Emergent Fuzzy Sphere in Mini-BMN

The emergence of the s0(3) algebra motivates a correspondence
between matrices and fields on a sphere:

Matrix Fields
M £(6,9)
T aMy + pM, af1(0,¢) + Bf2(0,¢)
G e s enee
XM L (6,9)
UMMy | g [AQf(0,0)1(6,¢)
ILX,... 1,x,...

Example
R? = (x)2 = L [dQx™*x = (X)X = h2(N?-1)



Noncommutative Gauge Theory on the Fuzzy Sphere

Now consider quantum fluctuations around the classical solution:

X — yJt ZZ AL
V' + 4/ Nv
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Fi =i ([]Z,Af] - []/,Al]) + ek Ak + z,/N—;[AZ,AJ].



Noncommutative Gauge Theory on the Fuzzy Sphere

Now consider quantum fluctuations around the classical solution:

X — yJt ZZ AL
V' +4/ Nv

the bosonic potential can be rewritten as
1 i . .\ 2 47ty N\ 2
_ = ik sk iy _ Y 1])
V(X) i {(ve X +1[X,X]) } N T (P ,
where
i (17 AJl [T Al ik Ak | i Aj
F z([],A] [],A])—l—e A iy S (AL A
Correspondingly,
i i 2 4 7 Y, S
fl=i (L’a] = L]al) + lkgk 4 W[ul,a/]*,
' T 2 1o
HB:v/dQ SR+ 2 (F)2).

Solvable if Nv3 — oo!



+ Supersymmetric matrix quantum mechanics of 3 bosonic and 2
fermionic SU(N) matrices, with one (dimensionless) mass
deformation parameter v.

- In the limit Nv® — oo, a fuzzy sphere with a noncommutative
U(1) gauge theory emerges, and the theory is solvable in this
limit.

+ The emergent gauge field is the fluctuation around the classical
solution X! = vJ', under the matrix-field correspondence

M+ f(6,¢).



Solvable Case One: v =00, R=10

As N|v|> — oo, the theory is solvable with

- Radius of the emergent sphere ry ~ %N [v|
+ Ground state energy E ~ 3N3|v|

- First-order phase transition at v &~ 3 (one-loop)

L(r)/N°
|
o
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As N|v|> — oo, the theory is solvable with

- Radius of the emergent sphere ry ~ %N v
- Ground state energy E ~ %NB’M
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As N|v|? — oo, the theory is solvable with

- Radius of the emergent sphere ry ~ %N v
+ Ground state energy E ~ 3N3|v|

- First-order phase transition at v ~ 3 (one-loop)
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Solvable Case Two: v =00, R=N%2—N

As N|v|> — oo, the theory is solvable with

- Radius of the emergent sphere ry ~ %N [v|
- Ground state energy E/N? — 0

+ No first-order phase transitions to one-loop

R=N?>-N

e N =2NF(1,1)
N =4,NF(1,1)
N = 6,NF(1,1)

o N =2,MAF(1,1)

N =4, MAF(1,1)

N =6, MAF(1, 1)

1



Solvable Case Two: v =00, R=N%2—N
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e Three: N =2

For two-by-two matrices, the mini-BMN was solved in different
sectors in arXiv:1701.07511.
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e Three: N =2

For two-by-two matrices, the mini-BMN was solved in different
sectors in arXiv:1701.07511.
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Exploration near v =0

- Small v (gravitational) regime is more quantum and difficult

- Complexity of the network is necessary to get better results

N=2 R=2

0.1 ]
A — MAF(1,4),

0.0k ‘ ‘ ‘ Y
0.0 0.5 L0 L5 20 — MAF(2,4)s

v



tion near v = 0

- Small v (gravitational) regime is more quantum and difficult

- Complexity of the network is necessary to get better results
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1. Parametrize the variational wavefunction ¢g(X) by parameters 6

2. Estimate the expectation value of energy by Monte Carlo samples
3. Evaluate the gradient of the energy with respect to 6
4. Apply the gradient to the parameters via gradient descent

0 — 0 — aVo(yg|H|pg)

14



Monte Carlo Estimate of Energy

9 /‘ (wlHIp) [\wuﬂw
1 2 3

~

- Bosonic potential:

WIVEOlE) = [ aXIpORV(X) = ExjypV(X)]



Monte Carlo Estimate of Energy

- Bosonic potential:

WIVEOI9) = [ dX 9 PVX) = ExjyaV(X)]
- Kinetic terms:

(] e T2[p) Z/dX aln‘/’

Z/Xmz,b )2

alntp

3X;;




Reinforcement Gradient of Energy

ﬂ (lHly) /\wwmw

\mmNEay

Objective: minimize Eg = (g |H|pp) = Ex_|y,2[€0(X)].
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Reinforcement Gradient of Energy

ﬂ () /\wwmw
1 2 3

~

Objective: minimize Eg = (g |H|pp) = Ex_|y,2[€0(X)].
Gradient:

VQEG = ]EX~\¢9|2[v9€9<X)] + ]EX <[ e |2 72@;( X’)V(; In ‘L/'(;(‘X) H

16



Reinforcement Gradient of Energy

9 ﬂ (wlHIp) /\wwmm
1 2 3

~

Objective: minimize Eg = (¢g|H|pp) = Ex_|y,2[€0(X)].
Gradient:
VoEo = Exjy,2[Voeo(X)] + Ex.y,2[260(X) Vo In [ (X)]]
To minimize variance, the second term can be rewritten as
Exjyp2[2(€0(X) — Eg) Vg In[¢hg(X)]]
because E2VyIn|y|] = V, [ dX|y|? = 0.
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Reinforcement Gradient of Energy

ﬂ () /\wwmw
1 2 3

~

Objective: minimize Eg = (g |H|pp) = Ex_|y,2[€0(X)].
Gradient:
VoEo = Ex.|y,2[Voeo(X)] + Ex..|y,2[260(X) Vo In [1hg(X)|]

To make it work without having to normalize the wavefunction, the

second term is also

Ex|yy2[2(€0(X) — Eg) Vo In(Zs[p(X)])]
for any function Zg of 0, as E[(e — E)VZ] = E[e — E]VZ = 0.

16



For any (not necessarily normalized) wavefunction ¢y (X),
Eg = Ex.|y,p€0(X)]

VoEg = Ex_ |y, [Voeo(X)] + Ex. |y, 2[2(e9(X) — Eo) Vo In [1po(X) ]



For any (not necessarily normalized) wavefunction ¢y (X),
Eg = Ex |y, 2[ea(X)]

VoEg = Ex._ 1,12 [Veeo(X)] + Ex._y,2[2(€0(X) — Eg) Vo In [ (X) ]

+ We need samples of the wavefunction to evaluate

1K
Ex |y [F(X)] = £ L F(X0).



For any (not necessarily normalized) wavefunction ¢y (X),
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1 K

FOO) = 3

Ex P2

- We need the explicit functional form of |(g(X)| to efficiently
evaluate the gradient.



For any (not necessarily normalized) wavefunction ¢y (X),
Eg = Ex.|y,p€0(X)]

VoEg = Ex_ |y, [Voeo(X)] + Ex. |y, 2[2(e9(X) — Eo) Vo In [1po(X) ]

+ We need samples of the wavefunction to evaluate
1 K

FOO) = 3

Ex P2

- We need the explicit functional form of |(g(X)| to efficiently
evaluate the gradient.
- Efficient sampling and evaluating |(g(X)|?> = Cenerative Flows



Building Blocks: Fully-Connected Neural Net

The neural network defines a function F : x — y mapping an input
vector x to an output vector y via a sequence of affine and nonlinear

transformations:
F= A} otanhoAg’_l otanho--- otanhoAé.

Here A}(x) = Mjx + b} is an affine transformation. The hyperbolic
tangent nonlinearity then acts elementwise on Aé (x).

hidden layer 1 hidden layer 2 hidden layer 3
input layer

1Figure from neuralnetworksanddeeplearning.com



Generative Flow One: Normalizing Flows

Normalizing flows give an efficient way of parametrizing complicated
probability distributions (|g(X)|? in our case). For any reversible
transformation F and y = F(x):

Py(y0) = px(x0)| det DF| .},

where xog = F~1(yo).

19
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Generative Flow One: Normalizing Flows

Normalizing flows give an efficient way of parametrizing complicated
probability distributions (|g(X)|? in our case). For any reversible
transformation F and y = F(x):

Py(y0) = px(x0)| det DF| .},

where xog = F~1(yo).

In practice, F can be parametrized by neural networks composed of
reversible affine and nonlinear transformations.

exp x1 Y12 Y13 Y14
0 expxy Y3 Yo4
0 0 expxs  Ys4

0 0 0 exp X4

19



renerative Flow One: Normalizing Flows

From arXiv: 1505.05770:

Unit Gaussian

Uniform

20



e Flows

A more clever way of parametrizing a reversible transformation is to

choose an ordering of the coordinates
x1 ~ p1(x; 6o)

x ~ pa(x;61(x1))

x; ~ pi(%0;1(x1, - ., xi-1))

21



Generative Flow Two: Masked Autoregress

A more clever way of parametrizing a reversible transformation is to

choose an ordering of the coordinates

x1 ~ p1(x;00)

x ~ pa(x;61(x1))

x; ~ pi(%0;1(x1, - ., xi-1))

The joint probability distribution of x; is a product of individual ones

p(x1,x2,...) = p1(x1;00)p2(x2;61(x1)) . ..

21



Generative Flow Two: Masked Autoregress

A more clever way of parametrizing a reversible transformation is to

choose an ordering of the coordinates

x1 ~ p1(x;00)

x ~ pa(x;61(x1))

x; ~ pi(%;0i-1(x1, .., Xi-1))
The joint probability distribution of x; is a product of individual ones
p(x1,x2,...) = p1(x1;00)p2(x2;01(x1)) . ...

And 0; can be parametrized by fully-connected neural networks
without reversibility requirements.

21



Generative Flow Two: Masked Autoregressive Flows

To generate an image pixel-by-pixel:

22



Wavefunction Ansatz: Gauge Invariance

9 ﬂ (wlHlp) [\wwﬂm
1 2 3

~

(Think the wavefunction as functions from bosonic matrices to
fermion states.) The SU(N) gauge invariance of the wavefunction

requires that

puxu—t) = up(x)u-t.

One way to impose this is to fix a gauge X = UXU ! where X is the
gauge representative for X, and define

P(X) = Uup(X)ut,

where lﬁ is a function of gauge representatives only.

23



Wavefunction Ansatz: Bosons

Objective: Sample X ~ |(X)|? and evaluate |¢(X)|? for any X.

Given: Generative flow pg(X), a probability distribution parametrized
by 0, capable of evaluating pg(X) for any X and sample X ~ py(X).

24
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Wavefunction Ans

Objective: Sample X ~ |(X)|? and evaluate |¢(X)|? for any X.

Given: Generative flow pg(X), a probability distribution parametrized
by 0, capable of evaluating pg(X) for any X and sample X ~ py(X).

Solution:
1. Sample gauge representatives X ~ pg(X)

2. Sample a random gauge group element ¢ € SU(N)

3. Output samples X = gf(., then X follows the probability
distribution |(X)|? = pe(X)/A(X)

Comments: A(X) is the size of the gauge orbit of X. The functional
form of A(X) must be known.

24



Wavefunction Ans Fermions

- With fermions, $(X) = |¢(X)[|M(X)), where

M(x) zin(z T ML (010,

A% are matrices of fermions and |0) is the state with zero
fermions.

25



Wavefunction Ansatz: Fermions

- With fermions, $(X) = |¢(X)[|M(X)), where

2 N?2-1

D R
M) =Y TI( L X ME@)AL)0),

r=1la=1 a=1 A=1
A% are matrices of fermions and |0) is the state with zero
fermions.

+ The fermionic part of the wavefunction is given by a complex
tensor function MY (X), parametrized by a fully-connected

neural network as well.
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Wavefunction Ansatz: Fermions

- With fermions, $(X) = |¢(X)[|M(X)), where

M0y = L TT( L Z x)A4t) (o),

% are matrices of fermions and |0) is the state with zero
fermions.

+ The fermionic part of the wavefunction is given by a complex
tensor function MY (X), parametrized by a fully-connected

neural network as well.

- Pros: easy to compute energy — no sign problems;
Cons: not very efficient.

25



Recap

Sampling Evaluation

X~ lyX)? | M(X))

p Action Group Action

X ~ A WO
Generative Flow

lw(X)|

|M(X))

Generative Flow

In this work |((X)|? is represented by a normalizing flow (NF) or
masked autoregressive flow (MAF), and the fermion wavefunction is a
superposition of free fermion states.

26



Find P{%“ax in the space of fields with j < jmax as the projector that

minimizes the distance ||P]1'f1nax — Pyl

0.15

] — =6
£ 010 Yo
> .
§ Jmax = 8
R 0.05 — Jmax = 10
- jmax =12

At large jmax the curve approaches the boundary law 0.03 x 27rsinf4,
shown as a dashed line.

27



— N=4
N =

Sy(pa)

— N=8

Solid curves are for v = oo and dots are from numerics for v = 10

28



Conclusion

+ We demonstrate that it is possible to discover low-energy
wavefunctions of matrix quantum mechanics with a deep
learning approach.

- The variational ground state is quantitatively accurate in the
solvable fuzzy sphere phase, from both observable and

entanglement metrics.

+ For the more interesting limit with emergent gravity, more

physical insights / more efficient architectures are required.

- We also propose a way of evaluating entanglement on
noncommutative geometries, which reveals an area-law

entanglement on the emergent fuzzy sphere.

- Please check out our paper for more references.
Thank you!
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