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Motivation

Why machine learning matrix models?

• String theorist?
• Non-perturbative string physics
• Black hole microstates and dynamics
• Holography

• Machine learning theorist?
• Representability theorems of neural networks
• Arena for ML physics architectures
• Clear numerical advantage

• IfQ?
• Tests of QI understandings
• Complexity of holographic states
• ...
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Basic Example

• What is matrix model?

H = tr(P2 + X2 + g2X4)

Here X and P are N-by-N hermitian matrices with commutator
[Pij, Xkl] = δilδjk.

• Where is the emergent geometry?

Z =
∫

dX e− tr(X2+X4) =
∫

dxi∆(xi)e−∑(x2
i +x4

i )

=
∫

dxie
−∑(x2

i +x4
i )+∑i 6=j log |xi−xj|

The Jacobian ∆(xi) = ∏i<j(xi − xj)
2. Large N is a large number

of eigenvalue “particles” with repulsive interaction in an external
potential.
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Background

• N D-particles in AdS4

• One dimensionless parameter ν proportional to fluxes supporting
AdS4

Ftijk ∼ Ωϵijk, ν ∼ Ωls
g1/3

s
∼ 1

g1/3
s

ls
lAdS

• Gravitational backreaction becomes important when

N
ν3 ≳ 1

• Small ν: gravitational collapse; Large ν: fuzzy sphere
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Mini-BMN Hamiltonian

HB = tr
(

1
2

ΠiΠi − 1
4
[Xi, Xj][Xi, Xj] +

1
2

ν2XiXi + iνϵijkXiXjXk
)

HF = tr
(

λ†σk[Xk, λ] +
3
2

νλ†λ

)
− 3

2
ν(N2 − 1)

The Hamiltonian H = HB + HF describes a quantum mechanical
system of i = 1, 2, 3 bosonic and α = 1, 2 fermionic N-by-N traceless
hermitian matrices.


xi

1 yi
12 . . . yi

1N
yi∗

12 xi
2 . . . yi

2N
...

...
. . .

...
yi∗

1N yi∗
2N . . . xi

N


x1

x2

xN

[Xi, Xj]2 ∼ (xi
a − xi

b)
2|yj

ab|
2
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Emergent Fuzzy Sphere in Mini-BMN

The bosonic potential can be conveniently written as

V(X) =
1
4

tr
[(

νϵijkXk + i[Xi, Xj]
)2

]
and is minimized by

[Xi, Xj] = iνϵijkXk .

So classically, three bosonic matrices satisfy the so(3) algebra:

Xi = νJi,

where Ji are representations of the algebra [Ji, Jj] = iϵijkJk of dim N.
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Emergent Fuzzy Sphere in Mini-BMN

The emergence of the so(3) algebra motivates a correspondence
between matrices and fields on a sphere:


xi

1 yi
12 . . . yi

1N
yi∗

12 xi
2 . . . yi

2N
...

...
. . .

...
yi∗

1N yi∗
2N . . . xi

N



Matrix Fields

M f (θ, ϕ)

αM1 + βM2 αf1(θ, ϕ) + βf2(θ, ϕ)

M1M2 f1 ⋆ f2 = f1(θ, ϕ)f2(θ, ϕ) + . . .

[Xi, M] Lif (θ, ϕ)

1
N tr M†

1M2
1

4π

∫
dΩ f ∗1 (θ, ϕ)f2(θ, ϕ)

I, Xi, . . . 1, xi, . . .

Example
R2 = (xi)2 = 1

4π

∫
dΩ xi∗xi = 1

N tr(Xi)†Xi = 1
4 ν2(N2 − 1)
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Noncommutative Gauge Theory on the Fuzzy Sphere

Now consider quantum fluctuations around the classical solution:

Xi = νJi +

√
4π

Nν
Ai,

the bosonic potential can be rewritten as

V(X) =
1
4

tr
[(

νϵijkXk + i[Xi, Xj]
)2

]
=

4πν

4N
tr
(

Fij
)2

,

where

Fij = i
(
[Ji, Aj]− [Jj, Ai]

)
+ ϵijkAk + i

√
4π

Nν3 [A
i, Aj].

Correspondingly,

f ij = i
(

Liaj − Ljai
)
+ ϵijkak + i

√
4π

Nν3 [a
i, aj]⋆,

HB = ν
∫

dΩ
(

1
2
(πi)2 +

1
4
(f ij)2

)
.

Solvable if Nν3 → ∞!
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Recap

• Supersymmetric matrix quantum mechanics of 3 bosonic and 2
fermionic SU(N) matrices, with one (dimensionless) mass
deformation parameter ν.

• In the limit Nν3 → ∞, a fuzzy sphere with a noncommutative
U(1) gauge theory emerges, and the theory is solvable in this
limit.

• The emergent gauge field is the fluctuation around the classical
solution Xi = νJi, under the matrix-field correspondence
M ↔ f (θ, ϕ).
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Solvable Case One: ν = ∞, R = 0

As N|ν|3 → ∞, the theory is solvable with

• Radius of the emergent sphere r0 ∼ 1
2 N|ν|

• Ground state energy E ∼ 2
3 N3|ν|

• First-order phase transition at ν ≈ 3 (one-loop)

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

10



Solvable Case One: ν = ∞, R = 0

As N|ν|3 → ∞, the theory is solvable with

• Radius of the emergent sphere r0 ∼ 1
2 N|ν|

• Ground state energy E ∼ 2
3 N3|ν|

• First-order phase transition at ν ≈ 3 (one-loop)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2 4 6 8 10
0

10

20

30

40

○

○

○

10



Solvable Case One: ν = ∞, R = 0

As N|ν|3 → ∞, the theory is solvable with

• Radius of the emergent sphere r0 ∼ 1
2 N|ν|

• Ground state energy E ∼ 2
3 N3|ν|

• First-order phase transition at ν ≈ 3 (one-loop)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2 4 6 8 10
0

10

20

30

40

○

○

○

10



Solvable Case One: ν = ∞, R = 0

As N|ν|3 → ∞, the theory is solvable with

• Radius of the emergent sphere r0 ∼ 1
2 N|ν|

• Ground state energy E ∼ 2
3 N3|ν|

• First-order phase transition at ν ≈ 3 (one-loop)

0.96 0.97 0.98 0.99 1.00 1.01
0

20

40

60

80

100

120

10



Solvable Case Two: ν = ∞, R = N2 − N

As N|ν|3 → ∞, the theory is solvable with

• Radius of the emergent sphere r0 ∼ 1
2 N|ν|

• Ground state energy E/N2 → 0

• No first-order phase transitions to one-loop
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Solvable Case Three: N = 2

For two-by-two matrices, the mini-BMN was solved in different
sectors in arXiv:1701.07511.
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Exploration near ν = 0

• Small ν (gravitational) regime is more quantum and difficult

• Complexity of the network is necessary to get better results
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Variational Monte Carlo

1
|ψ〉

2
〈ψ|H|ψ〉

3
∇〈ψ|H|ψ〉

4

1. Parametrize the variational wavefunction ψθ(X) by parameters θ

2. Estimate the expectation value of energy by Monte Carlo samples

3. Evaluate the gradient of the energy with respect to θ

4. Apply the gradient to the parameters via gradient descent

θ → θ − α∇θ〈ψθ |H|ψθ〉

14



Monte Carlo Estimate of Energy

1
|ψ〉

2
〈ψ|H|ψ〉

3
∇〈ψ|H|ψ〉

4

• Bosonic potential:

〈ψ|V(X)|ψ〉 =
∫

dX |ψ(X)|2V(X) = EX∼|ψ|2 [V(X)]

• Kinetic terms:

〈ψ| tr Π2|ψ〉 = ∑
ij

∫
dX

∣∣∣∣∣ ∂ψ

∂Xij

∣∣∣∣∣
2

= ∑
ij

∫
dX |ψ(X)|2

∣∣∣∣∣∂ ln ψ

∂Xij

∣∣∣∣∣
2

= EX∼|ψ|2

∑
ij

∣∣∣∣∣∂ ln ψ

∂Xij

∣∣∣∣∣
2

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Reinforcement Gradient of Energy

1
|ψ〉

2
〈ψ|H|ψ〉

3
∇〈ψ|H|ψ〉

4

Objective: minimize Eθ = 〈ψθ |H|ψθ〉 = EX∼|ψθ |2 [ϵθ(X)].

Gradient:

∇θEθ = EX∼|ψθ |2 [∇θϵθ(X)] + EX∼|ψθ |2 [2ϵθ(X)∇θ ln |ψθ(X)|]

To make it work without having to normalize the wavefunction, the
second term is also

EX∼|ψθ |2 [2(ϵθ(X)− Eθ)∇θ ln(Zθ |ψθ(X)|)]

for any function Zθ of θ, as E[(ϵ − E)∇Z] = E[ϵ − E]∇Z = 0.
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Recap

For any (not necessarily normalized) wavefunction ψθ(X),

Eθ = EX∼|ψθ |2 [ϵθ(X)]

∇θEθ = EX∼|ψθ |2 [∇θϵθ(X)] + EX∼|ψθ |2 [2(ϵθ(X)− Eθ)∇θ ln |ψθ(X)|]

• We need samples of the wavefunction to evaluate

EX∼|ψθ |2 [F(X)] =
1
K

K

∑
i=1

F(Xi).

• We need the explicit functional form of |ψθ(X)| to efficiently
evaluate the gradient.

• Efficient sampling and evaluating |ψθ(X)|2 ⇒ Generative Flows

17
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Building Blocks: Fully-Connected Neural Networks

The neural network defines a function F : x 7→ y mapping an input
vector x to an output vector y via a sequence of affine and nonlinear
transformations:

F = Am
θ ◦ tanh ◦Am−1

θ ◦ tanh ◦ · · · ◦ tanh ◦A1
θ .

Here A1
θ(x) = M1

θx + b1
θ is an affine transformation. The hyperbolic

tangent nonlinearity then acts elementwise on A1
θ(x).

1

1Figure from neuralnetworksanddeeplearning.com
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Generative Flow One: Normalizing Flows

Normalizing flows give an efficient way of parametrizing complicated
probability distributions (|ψθ(X)|2 in our case). For any reversible
transformation F and y = F(x):

py(y0) = px(x0)|det DF|−1
x0

,

where x0 = F−1(y0).

In practice, F can be parametrized by neural networks composed of
reversible affine and nonlinear transformations.

exp x1 y12 y13 y14

0 exp x2 y23 y24

0 0 exp x3 y34

0 0 0 exp x4


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Generative Flow One: Normalizing Flows

From arXiv: 1505.05770:
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Generative Flow Two: Masked Autoregressive Flows

A more clever way of parametrizing a reversible transformation is to
choose an ordering of the coordinates

x1 ∼ p1(x; θ0)

x2 ∼ p2(x; θ1(x1))

...

xi ∼ pi(x; θi−1(x1, . . . , xi−1))

The joint probability distribution of xi is a product of individual ones

p(x1, x2, . . .) = p1(x1; θ0)p2(x2; θ1(x1)) . . .

And θi can be parametrized by fully-connected neural networks
without reversibility requirements.
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Generative Flow Two: Masked Autoregressive Flows

To generate an image pixel-by-pixel:
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Wavefunction Ansatz: Gauge Invariance

1
|ψ〉

2
〈ψ|H|ψ〉

3
∇〈ψ|H|ψ〉

4

(Think the wavefunction as functions from bosonic matrices to
fermion states.) The SU(N) gauge invariance of the wavefunction
requires that

ψ(UXU−1) = Uψ(X)U−1.

One way to impose this is to fix a gauge X = UX̃U−1 where X̃ is the
gauge representative for X, and define

ψ(X) = Uψ̃(X̃)U−1,

where ψ̃ is a function of gauge representatives only.
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Wavefunction Ansatz: Bosons

Objective: Sample X ∼ |ψ(X)|2 and evaluate |ψ(X)|2 for any X.

Given: Generative flow pθ(X), a probability distribution parametrized
by θ, capable of evaluating pθ(X) for any X and sample X ∼ pθ(X).

Solution:

1. Sample gauge representatives X̃ ∼ pθ(X̃)

2. Sample a random gauge group element g ∈ SU(N)

3. Output samples X = gX̃, then X follows the probability
distribution |ψ(X)|2 ≡ pθ(X̃)/∆(X̃)

Comments: ∆(X̃) is the size of the gauge orbit of X̃. The functional
form of ∆(X̃) must be known.
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Wavefunction Ansatz: Fermions

• With fermions, ψ̃(X̃) = |ψ̃(X̃)||M(X̃)〉, where

|M(X)〉 ≡
D

∑
r=1

R

∏
a=1

( 2

∑
α=1

N2−1

∑
A=1

Mra
Aα(X)λα†

A

)
|0〉,

λα
A are matrices of fermions and |0〉 is the state with zero

fermions.

• The fermionic part of the wavefunction is given by a complex
tensor function Mra

Aα(X), parametrized by a fully-connected
neural network as well.

• Pros: easy to compute energy — no sign problems;
Cons: not very efficient.
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Recap

Generative Flow

X̃ ∼ Δ( X̃ ) |ψ ( X̃ ) |2

Random Group Action

X ∼ |ψ (X ) |2
Sampling Evaluation

X = gX̃

Generative Flow

Gauge Fixing

g X̃

|ψ ( X̃ ) |

Dense
|M( X̃ )⟩

Group Action

|M(X )⟩ |ψ (X ) |

In this work |ψ(X)|2 is represented by a normalizing flow (NF) or
masked autoregressive flow (MAF), and the fermion wavefunction is a
superposition of free fermion states.
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Entanglement of Free Fields with j ≤ jmax

Find Pjmax
A in the space of fields with j ≤ jmax as the projector that

minimizes the distance ‖Pjmax
A − PA‖.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

At large jmax the curve approaches the boundary law 0.03 × 2π sin θA,
shown as a dashed line.
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Entanglement on the Mini-BMN Fuzzy Sphere

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Solid curves are for ν = ∞ and dots are from numerics for ν = 10.
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Conclusion

• We demonstrate that it is possible to discover low-energy
wavefunctions of matrix quantum mechanics with a deep
learning approach.

• The variational ground state is quantitatively accurate in the
solvable fuzzy sphere phase, from both observable and
entanglement metrics.

• For the more interesting limit with emergent gravity, more
physical insights / more efficient architectures are required.

• We also propose a way of evaluating entanglement on
noncommutative geometries, which reveals an area-law
entanglement on the emergent fuzzy sphere.

• Please check out our paper for more references.
Thank you!
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