
Anomaly and Superconnection
菅野颯人

基礎物理学研究所

(素粒子論)

Based on arXiv:2106.01591 [hep-th]
(杉本茂樹氏(基研)との共同研究)

セミナー@大阪大学 2021. 6. 15.



Introduction (5) Fujikawa method (5) Superconnection (3) Application (10) String theory (4)

What is “anomaly”? (1)

Introduction (1/5)

Anomaly (Quantum Anomaly)

An classical action have some symmetries, but sometimes 
these symmetries disappear in quantum theory.

e.g.) 𝜋0 → 2𝛾

• In massless QCD, there is a chiral symmetry 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

.

𝑁𝑓: # of flavors

• If there is NO anomaly, 𝜋0 never decay.

• However, 𝜋0 decay into 2𝛾, because of an anomaly!

𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

⊃ 𝑈 1 𝐴 has an anomaly.
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What is “anomaly”? (2)

e.g.) Gauge anomaly
• Let us consider a action include fermions and 𝐺

gauge fields.
• The theory has a gauged symmetry 𝐺, so that the 

action is invariant under 𝐺 gauge transformation.

• For example, consider 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

symmetry as 𝐺.

Introduction (2/5)

𝐺 = 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅
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What is “anomaly”? (2)

e.g.) Gauge anomaly
• Let us consider a action include fermions and 𝐺

gauge fields.
• The theory has a gauged symmetry 𝐺, so that the 

action is invariant under 𝐺 gauge transformation.

• For example, consider 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

symmetry as 𝐺.

• The action is invariant under the 𝐺 gauge 
transformation.

Introduction (2/5)

𝐺 = 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

𝑆 → 𝑆′ = S (𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

)
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What is “anomaly”? (2)

e.g.) Gauge anomaly
• Let us consider a action include fermions and 𝐺

gauge fields.
• The theory has a gauged symmetry 𝐺, so that the 

action is invariant under 𝐺 gauge transformation.

• For example, consider 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

symmetry as 𝐺.

• The action is invariant under the 𝐺 gauge 
transformation.

• How about the partition function 𝑍?
• If the gauge sym. does not have any anomaly, 𝑍

is also invariant. (e.g. Standard model)
• If the gauge sym. has some anomalies, 𝑍 is not 

invariant!
→This theory cannot be gauged!

Introduction (2/5)

𝐺 = 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

𝑆 → 𝑆′ = S (𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

)

𝑍 → 𝑍′ (𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

)
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• If the gauge sym. has some anomalies, 𝑍 is not 

invariant!
→This theory cannot be gauged!

Introduction (2/5)

𝐺 = 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

𝑆 → 𝑆′ = S (𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

)

𝑍 → 𝑍′ (𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

)

= 𝑍
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Theories what we want to think (1)

Introduction (3/5)

Let us consider 4dim action contains fermions.

• This action is massless, so it has a chiral symmetry 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

.

• There also be a 𝑈 1 𝐴 anomaly.

• Add mass term
• Mass term breaks the chiral symmetry.

• Let the mass depend on the spacetime.
• This mass is almost same as the Higgs field.

• How change the symmetry and the anomaly?
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The spacetime dependent mass

Introduction (4/5)

𝑥: the fifth 
direction

What is “the spacetime dependent mass”?
• e.g.) Domain wall fermions

• One way to realize chiral fermions on the lattice.
• Consider 5dim spacetime, and realize 4dim 

fermions on 𝑚 𝑥 = 0 subspace.

• Chiral anomalies on Higgs fields
• If Higgs fields change as bifundamental under the 
𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral symmetry, the action is 

invariant for the symmetry.
• It is known that chiral anomalies are not changed 

by adding Higgs fields.
• See Fujikawa-san’s text book.
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Theories what we want to think (2)

Introduction (5/5)

How about the spacetime dependent mass?
• The chiral anomaly is changed by the mass!!

• Deference between Higgs and mass
• Higgs field : bounded

• Spacetime dependent mass : unbounded

• If the mass diverge at some points, it contribute to 
the anomaly.
• This contribution might be unknown.

• We can find the anomaly in any dimension.

• The anomaly can be written by “superconnection.”
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Plan

1. Introduction (5)
• What is anomaly?

• Theories what we want to think

2. Fujikawa method (5)
• How to calculate the anomaly

• Calculation for massive case

3. Superconnection (3)
• Definition of superconnection

• Application for the anomaly

4. Application (10)
• Kink

• Vortex

• With boundary

• APS index theorem

5. String theory (4)
• Relation to string theory

• Tachyon condensation

(6. Detail of the derivation (7+1) )

7. Conclusion
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How to calculate anomalies

Fujikawa method

• There are some ways to calculate 
anomalies.

• Today, we focus on Fujikawa method.
• Consider path integral for fermions.

• Anomaly = Jacobian comes from path 
integral measure

• We calculate log 𝒥 for anomalies in 
the last part of this talk.

• We focus on 4dim case at first.

[’79 Fujikawa]

anomaly

e.g.) 𝑈 1 𝑉

transformation

Fujikawa method (1/5)
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Chiral symmetry

Anomalous symmetries we 
calculate
• 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral symmetry

• For even dimension

• Because chirality operators exist 
only even dimensions.

• Fermions couple to 𝑈 𝑁𝑓 𝐿
background gauge field 𝐴𝜇𝐿 and 
𝑈 𝑁𝑓 𝑅

background gauge field 𝐴𝜇𝑅.

• 𝑈(𝑁𝑓) flavor symmetry
• For odd dimension

• No perturbative anomaly as usual.

• With 𝑈(𝑁𝑓) background gauge field.

• We focus on 𝑼(𝟏) parts of these sym.
• We calculate mixed anomaly 

between 𝑈 1 𝑉 and 𝑆𝑈 𝑁𝑓 𝐿
× 𝑆𝑈 𝑁𝑓 𝑅

×

𝑈 1 𝐴 for even dim, 𝑈(1) and 𝑆𝑈(𝑁𝑓)
for odd dim.

• Not 𝑈 1 𝐴 part, even for even dim.

For even dimension

For odd dimension

Fujikawa method (2/5)
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The anomalies for massless cases

We focus on 4dim case.
• Mass less case

• With 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

chiral sym.

• 𝑈 1 𝑉 anomaly is written by the 
field strength.

• With a Higgs field
• With 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
chiral sym.

• The 𝑈 1 𝑉 anomaly is same for 
massless case.

• How about the massive case?

Fujikawa method (3/5)
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For massive case

Let us consider spacetime dependent mass!
• The action for general even dim has 𝑈 𝑁𝑓 𝐿

× 𝑈 𝑁𝑓 𝑅
symmetry.

• For odd dim case, there is only 𝑈(𝑁𝑓) sym, we put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†.

• We take 𝑚(𝑥) divergent.
• 𝐼 is some directions 𝑚(𝑥) change the values.

• We calculated 𝑈 1 𝑉 anomaly for this action by Fujikawa method.
• It is easy to get the anomaly for any dimension.

• It is also easy to get the anomaly for 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

, not only for 𝑈 1 𝑉.

Fujikawa method (4/5)
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The anomaly for massive case

The 𝑈 1 𝑉 anomaly is,

• This result seems very complicated...

• Can we write it more simple way?

Λ is UV cut-off 
comes from 
heat kernel 

regularization.

Fujikawa method (5/5)
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3. Superconnection

Superconnection (3)
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Superconnection (1)

• We define the superconnections for even and odd dimensions.

• This is made by Quillen, who is a mathematician, in 1985.

Even dimension
• Superconnection

• Field strength

[’85 Quillen]

𝐴𝑅 : 𝑈 𝑁𝑓 𝑅
gauge field (1-form)

𝐴𝐿 : 𝑈 𝑁𝑓 𝐿
gauge field (1-form)

𝑇 : 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

bifundamental scalar field (0-form)

• Supertrace

Superconnection (1/3)
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Superconnection (2)

Odd dimension
• Superconnection

• Field strength

• Supertrace

We apply superconnection to write the anomaly.

[’85 Quillen]

𝐴 : 𝑈(𝑁𝑓) gauge field (1-form)

𝑇 : 𝑈(𝑁𝑓) adjoint scalar field (0-form)

Superconnection (2/3)
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Rewrite the anomaly

• We can rewrite the 𝑈 1 𝑉 anomaly by superconnection.

• For odd dimension case, put 𝐴𝜇 = 𝐴𝜇
𝑅 = 𝐴𝜇

𝐿 and 𝑚 = 𝑚†. Then, we get 𝑈(1)
anomaly.
• In odd dimension, the definition of Str is little different from even dim case.

• It is easy to check this for 4dim massless case.

Superconnection (3/3)
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4. Application

Application (10)
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How can we apply the anomaly?

Mass means a wall for some cases!
• If a fermion is massive enough, it does not have any propagating mode.

• If the mass depends on spacetime, fermions are massless in some regions, but 
they can be massive in the others.

• That means fermions localize in some areas!

→We can make fermions localize by the mass!

• We can make some systems to decide mass configurations.
• Kink, vortex and general codimension case

• With boundary

• We also discuss about some index theorems.
• APS index theorem

• (Callias type index theorem)

Application (1/10)
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Kink (1)

Mass kink for our set up
• For example, let’s consider 5dim case.

• In this set up, “kink” means this mass configuration.

• This “mass” diverges at 𝑦 → ±∞.

• 5dim fermions with 𝑈(𝑁𝑓) sym, and the mass depends on only 𝑦 direction.

• The 𝑈(1) anomaly is,

• Recall 4dim 𝑈 1 𝑉 anomaly, Corresponds to the sign of 𝑢 .

Application (2/10)
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Kink (2)

What is the meaning of the anomaly?
• 4dim Weyl fermions are localizing at 𝑦 = 0.

• When 𝑢 > 0 corresponds to chirality + (right-
handed) fermion, and 𝑢 < 0 corresponds to 
chirality – (left-handed) fermion.

Domain wall fermion
• This Weyl fermions correspond to domain wall 

fermions.
• But the regularization is different, so that I don’t 

know the correspondence in detail.

Application (3/10)
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Vortex

Next, we check codim-2 case.
• Vortex is 2dim topological object.

• Let us consider 2𝑟 + 2 dim.
• 𝑚(𝑧) depends on 2 directions, and it is complex valued “mass”.

• This mass diverges at 𝑧 → ∞.

• For simplicity, we put 𝐴𝐿 = 𝐴𝑅 in 2𝑟 + 2dim.

• The 𝑈 1 𝑉 anomaly is,

• This is 2𝑟dim 𝑈(1) anomaly with 𝑈 𝑁𝑓 𝑅
gauge field.

• If you want to get chirality – (left-handed) result, use 𝑚 ҧ𝑧 = 𝑢 ҧ𝑧, instead.

Application (4/10)
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General defects

We can apply this formula to general codimension cases.
• When we think 𝑑 dim system with 𝑛 dim topological defects, we get 𝑑 − 𝑛

dim 𝑈(1) anomalies.
• If 𝑑 − 𝑛 is odd, we get nothing because odd dim mass less fermions are 

anomaly-free.

• The mass configurations for general codimension is,

• This results correspond to “tachyon condensation” in string theory.
• We will discuss it in the next section.

Application (5/10)
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With boundary (1)

Next, we will make boundary.
• Fermions are massive = boundary

Odd dimension
• We realize localized fermions at [0,𝐿].

• The bulk is anomaly-free.

• The anomaly is,

Application (6/10)
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With boundary (2)

Even dimension

• The anomaly is,

• 𝜔 is Chern-Simons form.

• Anomaly from bulk + CS

Application (7/10)
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Index theorem (1)

• We will discuss index theorems 
for the massive Dirac operator 𝒟.

Chern character
• Before discuss about index theorems, we define Chern character for ℱ.

• The Chern character for massive case is,

Application (8/10)
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Index theorem (2)

• We can write the 𝑈(1) anomaly by the Chern character.

• The index for the massive Dirac operator is,

• If 𝑚 𝑥 = 0, this index becomes Atiyah-Singer(AS) index.

• Let us consider 2𝑟 dimensional system with boundary.
• The index will be Atiyah-Patodi-Singer(APS) index.

• Let’s check the index!

Application (9/10)
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Index theorem (3)

APS index theorem
• The index is,

• This is the APS index theorem for the massless Dirac operators.

• To apply this form, we get well-known relation between eta invariant and 
Chern-Simons form.

(mod ℤ)

Application (10/10)
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5. String theory

String theory (4)
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String theory

Let us see the relation between the anomaly and string theory.
• Type IIA or IIB string theory

• 10dim theory

• In string theory, we can think 𝐷𝑝-branes.
• 𝑝 + 1 dim subspace in 10dim.

• Open strings have their ends on D-branes.

• Excitation modes of these open strings → Fields on D-branes

• Open strings on D-branes → QFT in 𝑝 + 1 dim

• In some cases, the excitation modes of the strings have tachyon modes.
• Lowest excitation modes are 𝑚2 < 0. (Tachyon)

• Non-BPS states have tachyons.

• This tachyonic modes are unstable. → Tachyon condensation

String theory (1/4)
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Tachyon condensation (1)

• Tachyonic modes are unstable, so the tachyons have non-zero VEV.
• Non-trivial configuration of tachyon is also realizable.

e.g.) 𝐷-brane and anti 𝐷-brane (ഥ𝐷-brane) system
• Non-BPS state

• Tachyonic modes appear in 𝐷 − ഥ𝐷 string.
• The tachyon potential is known.

• If tachyon configuration is trivial, the 𝐷-branes disappear.

String theory (2/4)
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Tachyon condensation (2)

Kink on tachyon in 𝐷𝑝 − ഥ𝐷𝑝 system

• Tachyonic kinks for this system is, 

• We get 𝐷𝑝−𝑛-branes from this tachyon.

• If 𝐷𝑝−𝑛-branes are non-BPS, tachyons still exist on the 𝐷-branes.

• In this case, tachyon condensation occur again.

𝑈 𝑁 × 𝑈(𝑁)
symmetry

𝑈 𝑁 symmetry

String theory (3/4)
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Relation between the anomaly and string

• This tachyon configuration is same for the mass defect in section 4!

• The anomalies can be understood from string theory.
• Fermions are found where 𝐷-branes intersect.

• This is similar to flavor symmetry on holographic QCD model. 

(Sakai-Sugimoto model)

fermion

𝑈 𝑁 × 𝑈(𝑁)
symmetry

𝑈 𝑁 symmetry

String theory (4/4)
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6. Detail of the derivation
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The detail of the calculation (1/7)

Dirac operators
• First, let us check 4dim case.

• The action is,

• For QCD case, Dirac operator                 is Hermitian.

• This Dirac operator 𝒟 is not Hermitian.
• Even for massless case, Dirac operator 

is not Hermitian.

• We need to take good regularization.

• Here, we choose “covariant 
regularization.”

• We follow Fujikawa-san’s textbook.
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The detail of the calculation (2/7)

Covariant regularization
• Eigen values of 𝒟 are not real.

• We use eigen values of 𝒟†𝒟 and 𝒟𝒟†, instead.
• 𝒟†𝒟 and 𝒟𝒟† are Hermitian, so their eigenvalues can be real.

• 𝜆𝑛
2 are eigenvalues of 𝒟†𝒟 and 𝒟𝒟†.

• We take 𝜆𝑛 to be real.

(𝜆𝑛 are not eigenvalues of 𝒟 or 𝒟†.)

• 𝜙𝑛 and 𝜑𝑛 are not independent.
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The detail of the calculation (3/7)

Fujikawa method

• Expand 𝜓 and ത𝜓 by the eigenfunctions.

• Rewrite the action and path integral measures.

• If 𝒟 is Hermitian, we can write the path int. measure as
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The detail of the calculation (4/7)

Fujikawa method
• Calculate the Jacobian.
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The detail of the calculation (5/7)

Fujikawa method
• Calculate the Jacobian.
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The detail of the calculation (6/7)
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The detail of the calculation (7/7)

For general even dimensions,

• This result seems very complicated...

• Can we write it more simple way?

Λ is UV cut-off 
comes from 
heat kernel 

regularization.
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The detail of the calculation (8/7)

How about other regularizations?

• The overall factor e− 𝑚† 𝑚 is not polynomial.
• We cannot do 1/Λ expansion for this factor.

• It comes from the shape of the regulator??
• I don’t know how to use Pauli-Villars regularization for this system.

• Regulators : 
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Conclusion

• We discussed about perturbative anomaly with spacetime dependent mass.

• 𝑈 𝑁𝑓 𝐿
× 𝑈 𝑁𝑓 𝑅

chiral symmetry for even dimension

• 𝑈(𝑁𝑓) flavor symmetry for odd dimension

• We focused on 𝑈(1) anomalies for these systems.

• The anomaly can be written by superconnection.
• This formula comes from string theory, in particular tachyon condensation.

• There are some applications.
• Kink, vortex, ...

• With boundary

• Index theorem
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Back up



Introduction (5) Fujikawa method (5) Superconnection (3) Application (10) String theory (4)

Covariant anomaly and consistent anomaly

Covariant anomaly
• We derived covariant anomalies.

• Because we use covariant regularization.

• This anomaly is not written as the phase of partition functions.

• This anomaly is gauge covariant.

Consistent anomaly
• We did not derive this anomaly, but if you use other regularizations, e.g. PV 

regularization, you may get consistent anomaly.

• This anomaly can be written as the phase of partition functions.

• This anomaly satisfies Wess-Zumino consistency condition.

𝑍 → 𝑍′
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Bardeen-Zumino polynomial

We can interpret covariant and consistent anomalies.
• Anomalies have ambiguities.

• In many cases, you can add local terms for the action. The anomalies have 
ambiguities for gauge transformation of the local counter terms.

• Covariant and consistent anomalies are same up to the ambiguity.

• We can rewrite cov/con anomaly into con/cov anomaly.
• For this purpose, we use Bardeen-Zumino polynomial.

• For detail, see “Anomalies in QFT”, Bertlmann.


