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1.  Review on Naive & Wilson fermions



Wilson fermion : species-splitting mass fermion

◆ 1/a additive mass renormalization  → Fine-tune

◆ 15 species are decoupled → doubler-less

◆ Domain-wall & Overlap fermions   → costs

Physical (0,0,0,0) :
Doubler(π/a,0,0,0) :

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

January 9, 2012

1 Introduction

DW (p) =
1
a

∑

µ

[iγµ sin apµ + (1 − cos apµ)] (1)

εx = (−1)x1+x2+x3+x4 (2)

mqa ≡ |M̂ − M̂c| (3)

m2
πa2 =

8
3
mqa + O(a2) (4)

M̂2
c = 4 (5)

m2
π = 0 (6)

Sgw =
∑

x,y

ψ̄x[γµDµ + r(1 + Mf ) + m]xyψy (7)

Ψ̄(1 ⊗ X)Ψ (8)

f = P, T, A, V (9)

H2 = D†D + m2 ≥ 0 (10)

Hgw = γ5(Dnf − MP ) (11)

Hsw = ε(Dst − M (A)
f ) = Γ55(Dst − M (A)

f ) (12)
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Intro Construction Index Overlap Improvements Concl.

Construction

• Idea # 2: use as kernel in overlap Dov = 1+ DAdams√
D†
AdamsDAdams

ie. unitary projection (polar decomp.): no more additive mass renorm.
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Only one flavor is massless, 
while others have O(1/a) mass. 

Lattice fermion action with species-splitting term
X

n,µ

a5

2
 ̄n(2 n �  n+µ �  n�µ)

6

FIG. 1. Free Dirac spectrum of Wilson fermion (r = 1) with m = 0 on a 204 lattice. The degenerate

spectrum of 16 species for naive fermions are split into five branches with 1, 4, 6, 4 and 1 species.

transformations,

 n ! exp
h
i
X

X

⇣
✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
 n ,

 n !  n exp
h
i
X

X

⇣
�✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
, (2)

where �(+)

X and �(�)

X are site-dependent 4⇥ 4 matrices,

�(+)

X 2

⇢
14 , (�1)n1+...+n4�5 , (�1)ňµ�µ , (�1)nµi�µ�5 , (�1)nµ,⌫

i [�µ , �⌫ ]

2

�
, (3)

�(�)

X 2

⇢
(�1)n1+...+n414 , �5 , (�1)nµ�µ , (�1)ňµi�µ�5 , (�1)ňµ,⌫

i [�µ , �⌫ ]

2

�
, (4)

with ňµ =
P

⇢ 6=µ n⇢, nµ,⌫ = nµ + n⌫ and ňµ,⌫ =
P

⇢ 6=µ,⌫ n⇢. It is notable that the onsite fermion

mass term  ̄n n breaks this U(4)⇥U(4) to the U(4) subgroup �(+)

X . In the presence of the Wilson

term the U(4)⇥ U(4) invariance is broken to the U(1) invariance under 14 in Eq. (3).

In Refs. [24, 61], it was shown that the Wilson fermion with the “central-branch" condition,

MW ⌘ m+ 4r = 0, (5)

has an extra U(1) symmetry, denoted as U(1)V . It becomes clear if one is reminded that the onsite

term (⇠  ̄n n) breaks all the invariance under the transformation �(�)

X in Eq.(4). Thus, dropping

onsite terms can restore some invariance under the group, and the action comes to have larger

symmetry.

The free Wilson fermion with this condition (5) gives six-flavor massless fermions in the con-

tinuum, which correspond to the central branch of the Wilson Dirac spectrum as shown in Fig. 2.

They are excitations around the Dirac zeros at p = (⇡,⇡, 0, 0), (⇡, 0,⇡, 0), (⇡, 0, 0,⇡), (0,⇡,⇡, 0),

1 4 46 1

m=0
m=2/a m=4/a m=6/a

m=8/a



Wilson fermion as U(1) SPT phases

New fermion discretizations Tatsuhiro Misumi
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   index of modes with negative mass 

m > 0 

ν = 0    (trivial SPT)

These indices reflect topology of Berry connection for free fermion,
while gauge field topology plays the same role in gauged theory.
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   index of modes with negative mass 

-2/a < m < 0 

ν = 1    

Domain-wall fermion : gapless mode emerging at boundary 
between ν=0 and ν=1 SPTs, where ’t Hooft anomaly cancels.

Wilson fermion as U(1) SPT phases
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   index of modes with negative mass 

ν = -3    

-4/a < m < -2/a 

Wilson fermion as U(1) SPT phases
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

Topological # of SPT    ~   index of modes with negative mass 

ν = 3    

-6/a < m < -4/a 

Wilson fermion as U(1) SPT phases
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),
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sym.
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.
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[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
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Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),
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・G-Symmetry Protected Topological phase (SPT)

1. Unique ground state with trivial gap as long as G is unbroken
2. Gap should be closed when moving to another SPT
3. Massless modes at boundary btwn two different SPTs
4. ’t Hooft anomaly cancelled btwn bulk & boundary with gauged G

All ’t Hooft anomalies are (expected to be) classified by SPTs.

Kapustin (14), Witten (15), Yonekura (16), Yonekura, Witten (19) 

Wen, et.al., (13)

Symmetry-protected 
topological phase



Symmetry-protected 
topological phase

ex.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

m < 0 m > 0

Z = 1Z = e�2⇡i⌘

= e
i

4⇡

R
AdA

Zbndry

(η: APS η-invariant                 )⌘
X

i

sgn[�i]

2-dim chiral fermions



Symmetry-protected 
topological phase

ex.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

m < 0 m > 0

Z = 1

2-dim chiral fermions

Z = e�2⇡i⌘

= e
i

4⇡

R
AdA

Zbulke
i

4⇡

R
F · Zbndrye

� i
4⇡

R
F = ZtotalZtotal = Zbulk · Zbndry

Zbndry

’t Hooft anomaly is cancelled between bulk and boundary

APS index theorem 
cf.)Fukaya, Onogi,  
  Yamaguchi,et.al.(17-19)



2.  Lattice fermions as spectral graphs



Lattice fermion as spectral graph
Yumoto, TM (21)
cf.) Ohta, Sakai (20)
Ohta, Matsuura (21)

Definition 1.  A graph G is a pair G = (V, E). V is a set of vertices and E is a set of edges. 

Definition 2.  A directed graph is a pair (V, E) of sets of vertices and edges together with 
two maps init : E → V and ter : E → V. The two maps are assigned to every edge eij with an 
initial vertex init(eij) = vi ∈ V and a terminal vertex ter(eij) = vj ∈ V.  If init(eij) = ter(eij), the 
edge eij is called a loop. 

Definition 3.  A weighted graph has a value (weight) for each edge in a graph. 

Definition 4.  A adjacency matrix A of a graph is the |V| × |V| matrix given by 

where wij is the weight of an edge from i to j. 

6

edge can not be commutated {i, j} != {j, i}.

FIG. 3. A digraph with two loops.

Definition. 3 (weighted graph). The weighted graph has a value (the weight) for each edge in a

graph or a digraph.

As an example, we show a digraph in Fig. 4. It is a weighted graph, each of whose edge has a

weight.

FIG. 4. This digraph is a weighted graph. Blue edges in the graph are those with positive weights, while

red edges are those with negative weights.

Definition. 4 (adjacency matrix). The adjacency matrix A of a graph is the |V |× |V | matrix given

by

Aij =











wij if there is a edge from i to j

0 otherwise
, (1)

where wij is the weight of an edge from i to j.
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where wij is the weight of an edge from i to j.
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As an example we exhibit an adjacency matrix A of a graph in Fig. 4

A =

















0 1 0 −1

−4 0 2 0

0 0 0 0

3 0 −2 0

















. (2)

This matrix is asymmetric. In general, the adjacency matrix of a directed graph is asymmetric

since the existence of an edge from i to j does not necessarily imply that there is also an edge from

j to i.

The lattice fermion has common properties with the spectral graph we have introduced here. In

the next sections, we will show that the lattice fermion can be identified as the spectral graph.

III. NAIVE FERMION

In this section we discuss the Dirac operator matrix of Naive fermion in terms of SGT. Through

this example, we will find a Dirac operator of lattice fermions is identified as a matrix of the spectral

graph corresponding to the lattice fermion. We also show how to find the number of zero modes

(the number of fermion species) by use of discrete Fourier transformation (DFT). This technique

can be applied to any kind of matrices arising from the non-regular lattices. By use of DFT, we

will correctly derive the sixteen fermion species in the naive fermion.

A. Dirac matrix of naive fermion

The lattice naive fermion action in four dimensions is

S =
∑

n

4
∑

µ=1

ψ̄nγµDµψn , (3)

where Dµ ≡ (T+µ − T−µ)/2 with T±µψn = Un,±µ̂ψn±µ̂ and µ̂ is a unit vector. In a free theory,

we just set Un,±µ̂ = 1. The sum
∑

n is the summation over lattice site n = (n1, n2, n3, n4) and

those intervals are 1 ≤ nµ ≤ N . Note that the spacetime where the fermion is defined is a four-

dimensional torus because we usually impose periodic boundary conditions in each direction. To

derive the corresponding matrix of the lattice Dirac operator in a free theory, we introduce a vector

of fermion fields. Namely, a vector ψ is defined ψ =
∑

n ψnen where en are standard basis which



Lattice fermion as spectral graph Yumoto, TM (21)

◆ Naive fermion
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FIG. 5. This graph corresponds to the Dirac matrix of one dimensional naive fermion with periodic boundary

condition. This graph schematically shows a circle S1.

FIG. 6. This graph corresponds to the Dirac matrix of two-dimensional naive fermion with periodic

boundary condition. This graph schematically represents the two-dimensional torus T 2. The weight for

each edge from n to n+ µ̂ is +γµ/2 and the one for each edge from n to n− µ̂ is −γµ/2.

C. Diagonalization of Dirac matrix D

In this subsection, we discuss how to diagonalize Dirac matrix D and find the number of zero

eigenvalues for a free four-dimensional naive fermion. Firstly, we will diagonalize E in order to

diagonalize the whole Dirac matrix. We introduce the discrete Fourier transform (DFT) matrix X,

which is consisted of Xjk ≡ ξ(k−1)(j−1)/
√
N with ξ = e−

2πi
N for j, k = 1, 2, · · · , N . It is clear that

DFT matrix is unitary. Then, E and E† satisfy EX = XΛ and E†X = Λ†X, where Λ is a diagonal

matrix as Λ = Diag
[

1, ξ, ξ2, · · · , ξN−1
]

. Since PN = E − E†, the diagonalized PN is given as

PNX = iDiag

[

0, sin
2π

N
, sin

4π

N
, · · · , sin

2(N − 1)π

N

]

X ≡ ΛPN
X. (10)
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and E and E† are similarly represented as

E =





































0 1 0 0 0 0

0 0 1 · · · 0 0 0

0 0 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · 0 0 1

1 0 0 0 0 0





































, E† =





































0 0 0 0 0 1

1 0 0 · · · 0 0 0

0 1 0 0 0 0
...

. . .
...

0 0 0 0 0 0

0 0 0 · · · 1 0 0

0 0 0 0 1 0





































. (7)

Note that the matrix PN is the matrix representing the periodic boundary condition of one direction.

This matrix is the circulant matrix.

B. Graphs corresponding to naive fermion

In this subsection, based on the matrix representations we have obtained in the previous sub-

section, we see how the spectral graphs correspond to the naive lattice fermions on low- and high-

dimensional lattices. Although in the cases of non-torus lattice fermions we obtain the Dirac matrix

from the spectral graph, we now derive “the graph from the matrix" conversely.

Firstly, we consider the one dimensional lattice. In this case, the Dirac matrix of the free naive

fermion is

D1d = PN ⊗ γ1. (8)

Now, the graph corresponding to this Dirac matrix is depicted in Fig. 5. This graph schematically

represents a circle S1, where we impose a periodic boundary condition. This is called a circulant

graph in graph theory.

In the case of two-dimensional naive fermion, the Dirac matrix is

D2d = 1N ⊗ PN ⊗ γ1 + PN ⊗ 1N ⊗ γ2 , (9)

and the graph, who schematically represents two-dimensional torus T 2, is expressed as Fig. 6, where

each direction is independent, leading to S1 × S1 ∼ T 2. There are both an edge with the positive

weight and an edge with the negative weight between each vertex. It is notable that the weight for

edges from n to n+ µ̂ is +γµ and the one for edges from n to n− µ̂ is −γµ.

In three and four dimensions, the procedures are parallel. The corresponding graphs schemat-

ically represent S1 × S1 × S1 ∼ T 3 and S1 × S1 × S1 × S1 ∼ T 4, respecctively. For the cases of

non-torus lattice fermions, we conversely obtain the Dirac matrix from the spectral graph.
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and the graph, who schematically represents two-dimensional torus T 2, is expressed as Fig. 6, where

each direction is independent, leading to S1 × S1 ∼ T 2. There are both an edge with the positive

weight and an edge with the negative weight between each vertex. It is notable that the weight for

edges from n to n+ µ̂ is +γµ and the one for edges from n to n− µ̂ is −γµ.

In three and four dimensions, the procedures are parallel. The corresponding graphs schemat-

ically represent S1 × S1 × S1 ∼ T 3 and S1 × S1 × S1 × S1 ∼ T 4, respecctively. For the cases of
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FIG. 5. This graph corresponds to the Dirac matrix of one dimensional naive fermion with periodic boundary

condition. This graph schematically shows a circle S1.

FIG. 6. This graph corresponds to the Dirac matrix of two-dimensional naive fermion with periodic

boundary condition. This graph schematically represents the two-dimensional torus T 2. The weight for

each edge from n to n+ µ̂ is +γµ/2 and the one for each edge from n to n− µ̂ is −γµ/2.

C. Diagonalization of Dirac matrix D

In this subsection, we discuss how to diagonalize Dirac matrix D and find the number of zero

eigenvalues for a free four-dimensional naive fermion. Firstly, we will diagonalize E in order to

diagonalize the whole Dirac matrix. We introduce the discrete Fourier transform (DFT) matrix X,

which is consisted of Xjk ≡ ξ(k−1)(j−1)/
√
N with ξ = e−

2πi
N for j, k = 1, 2, · · · , N . It is clear that

DFT matrix is unitary. Then, E and E† satisfy EX = XΛ and E†X = Λ†X, where Λ is a diagonal

matrix as Λ = Diag
[

1, ξ, ξ2, · · · , ξN−1
]

. Since PN = E − E†, the diagonalized PN is given as

PNX = iDiag

[

0, sin
2π

N
, sin

4π

N
, · · · , sin

2(N − 1)π

N

]

X ≡ ΛPN
X. (10)

1D

2D
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satisfy orthonormal en′en = δn′n ≡
∏4

i=1 δn′
ini

. δkl is the Kronecker delta. Here we specify that

the order of components ψn in the vector is (1, 1, 1, 1) → · · · → (N, 1, 1, 1) → (1, 2, 1, 1) → · · · →

(N,N, 1, 1) → (1, 1, 2, 1) → · · · → (N,N,N,N) in descending order. Namely,

ψ =

















































ψ(1,1,1,1)

...

ψ(N,1,1,1)

ψ(1,2,1,1,1)

...

ψ(N,N,1,1)

ψ(1,1,2,1)

...

ψ(N,N,N,N)

















































(4)

in term of the vector. Thus, the action of naive fermion can be rewritten as S = ψ̄Dψ =
∑

m

∑

n ψ̄mDmnψn where D is Dirac matrix having Dmn as (m,n) component. For later use, we

now introduce the tensor-product representation: By the tensor product (or Kronecker product),

this matrix can be represented as

D = 1N ⊗ 1N ⊗ 1N ⊗ PN ⊗ γ1

+ 1N ⊗ 1N ⊗ PN ⊗ 1N ⊗ γ2

+ 1N ⊗ PN ⊗ 1N ⊗ 1N ⊗ γ3

+ PN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(5)

where 1N is an identity matrix of order N and PN is a square matrix of order N [72–74]. The

components of the matrix PN is defined as (PN )ab ≡ (Eab −E−1
ab )/2 where Eab ≡

∑N−1
i=1 δaiδi+1 b +

δaNδ1b and E−1
ab ≡ δa1δNb +

∑N
i=2 δaiδi−1 b for a, b = 1, 2, · · · , N . PN is explicitly written as

PN =
1

2





































0 1 0 0 0 −1

−1 0 1 · · · 0 0 0

0 −1 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · −1 0 1

1 0 0 0 −1 0





































(6)
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FIG. 5. This graph corresponds to the Dirac matrix of one dimensional naive fermion with periodic boundary

condition. This graph schematically shows a circle S1.

FIG. 6. This graph corresponds to the Dirac matrix of two-dimensional naive fermion with periodic

boundary condition. This graph schematically represents the two-dimensional torus T 2. The weight for

each edge from n to n+ µ̂ is +γµ/2 and the one for each edge from n to n− µ̂ is −γµ/2.

C. Diagonalization of Dirac matrix D

In this subsection, we discuss how to diagonalize Dirac matrix D and find the number of zero

eigenvalues for a free four-dimensional naive fermion. Firstly, we will diagonalize E in order to

diagonalize the whole Dirac matrix. We introduce the discrete Fourier transform (DFT) matrix X,

which is consisted of Xjk ≡ ξ(k−1)(j−1)/
√
N with ξ = e−

2πi
N for j, k = 1, 2, · · · , N . It is clear that

DFT matrix is unitary. Then, E and E† satisfy EX = XΛ and E†X = Λ†X, where Λ is a diagonal

matrix as Λ = Diag
[

1, ξ, ξ2, · · · , ξN−1
]

. Since PN = E − E†, the diagonalized PN is given as

PNX = iDiag

[

0, sin
2π

N
, sin

4π

N
, · · · , sin

2(N − 1)π

N

]

X ≡ ΛPN
X. (10)

× 4
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FIG. 5. This graph corresponds to the Dirac matrix of one dimensional naive fermion with periodic boundary

condition. This graph schematically shows a circle S1.

FIG. 6. This graph corresponds to the Dirac matrix of two-dimensional naive fermion with periodic

boundary condition. This graph schematically represents the two-dimensional torus T 2. The weight for

each edge from n to n+ µ̂ is +γµ/2 and the one for each edge from n to n− µ̂ is −γµ/2.
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diagonalize the whole Dirac matrix. We introduce the discrete Fourier transform (DFT) matrix X,

which is consisted of Xjk ≡ ξ(k−1)(j−1)/
√
N with ξ = e−

2πi
N for j, k = 1, 2, · · · , N . It is clear that

DFT matrix is unitary. Then, E and E† satisfy EX = XΛ and E†X = Λ†X, where Λ is a diagonal

matrix as Λ = Diag
[

1, ξ, ξ2, · · · , ξN−1
]

. Since PN = E − E†, the diagonalized PN is given as

PNX = iDiag

[

0, sin
2π

N
, sin

4π

N
, · · · , sin

2(N − 1)π

N

]

X ≡ ΛPN
X. (10)
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There exist two zero eigenvalues in ΛPN
at most when N is an even number. Now, the Dirac matrix

D can be diagonalized as

U†DU = 1N ⊗ 1N ⊗ 1N ⊗ ΛPN
⊗ γ1

+ 1N ⊗ 1N ⊗ ΛPN
⊗ 1N ⊗ γ2

+ 1N ⊗ ΛPN
⊗ 1N ⊗ 1N ⊗ γ3

+ ΛPN
⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(11)

where U is a unitary matrix defined as U =
⊗4

µ=1 X ⊗ 14. It is easy to see the number zero

eigenvalues of the Dirac matrix by introducing eigenvectors of E. We denote eigenvectors of E as

|k〉 for k = 1, 2, · · · , N . They satisfy E |k〉 = ξk−1 |k〉 and 〈k′|k〉 = δk′k. Then, the unitary matrix

U is written as U =
∑

k4,k3,k2,k1
|k4, k3, k2, k1〉 〈k4, k3, k2, k1|⊗ 14, where eigenvectors |k4, k3, k2, k1〉

mean |k4〉 ⊗ |k3〉 ⊗ |k2〉 ⊗ |k1〉. Thus the diagonalization of the Dirac matrix is expressed as

U†DU =
∑

k4,k3,k2,k1



i
4

∑

µ=1

sin

(

2π(kµ − 1)

N

)

γµ



 |k4, k3, k2, k1〉 〈k4, k3, k2, k1| . (12)

If U†DU has zero eigenvalues, Eq. (12) must satisfy an equation below

4
∑

µ=1

sin

(

2π(kµ − 1)

N

)

γµ = 0. (13)

However, since γ matrices are linearly independent, the coefficient of each γ matrices must be zero.

Finally, the conditions for the diagonalized Dirac matrix to have zero eigenvalues are

sin

(

2π(kµ − 1)

N

)

= 0. (14)

The solutions of Eq. (14) are kµ = 1, N2 + 1. In this case, we do not need to take a continuum and

a thermodynamic limit as long as we take an even number as N . Therefore, the number of zero

eigenvalues are 24 since the number of zero eigenvalues is equal to the number of combination of

the solutions in four dimensions. This result is consistent with the well-known number of doublers
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16 zero modes
=
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◆ Wilson fermion 13

FIG. 7. This digraph corresponds to the Dirac matrix of one-dimensional Wilson fermion. The weight of

the loop is M = m+ r. The weight ± for each edge stand for ±(γ1 ∓ r14)/2.

FIG. 8. This digraph corresponds to the Dirac matrix in two-dimensional Wilson fermion. The shape of

this graph is topologically equivalent to two-dimensional torus T 2. The weight for each edge from n to n+ µ̂

is +(γµ − r14)/2 and the one for each edge from n to n− µ̂ is −(γµ + r14)/2. The weight for each loop is

M = m+
∑

µ r.

Furthermore, the weight for each edge from n to n+ 1̂ is +(γ1 − r14)/2 and the one for each edge

from n to n− 1̂ is −(γ1 + r14)/2. In other direction µ = 2, we just replace γ1 by γ2.

The shape of the graph corresponding to Wilson fermion in four dimensions is again topologically

a four-dimensional torus T 4. Furthermore, there is a loop for each vertex, which has the weight

M = m +
∑

µ r. The weight for each edge from n to n + µ̂ is +(γµ − r14)/2 while the wight for

each edge from n to n− µ̂ is −(γµ + r14)/2.

C. Diagonalization of Dirac matrix DW

Firstly, we will diagonalize the mass matrix MW so as to diagonalize the whole Dirac matrix

DW . As with the discussion of naive fermion, we use the DFT matrix X. By using the matrix X
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IV. WILSON FERMION

A. Dirac matrix of Wilson fermion

In this section we discuss the Dirac operator matrix of Wilson fermion in terms of SGT. The

lattice Wilson fermion action in four dimensions is expressed as

SW =
∑

n

∑

µ

ψ̄nγµDµψn +m
∑

n

ψ̄nψn + r
∑

n

∑

µ

ψ̄n (1− Cµ)ψn , (15)

with Cµ ≡ (T+µ+T−µ)/2. m is a mass parameter and r is a Wilson-fermion parameter. The periodic

boundary condition is imposed on each direction and those intervals are given as 1 ≤ nµ ≤ N .

By investigating the action in a manner similar to Sec. III, it is written as SW = ψ̄DWψ ≡

ψ̄ (D +MW )ψ, where DW is the Dirac matrix of Wilson fermion and MW is mass matrix consisting

of the Wilson term. The mass matrix MW is represented by use of tensor products as

MW = m · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

+ r ·
{

1N ⊗ 1N ⊗ 1N ⊗MW ⊗ 14 + 1N ⊗ 1N ⊗MW ⊗ 1N ⊗ 14

+ 1N ⊗MW ⊗ 1N ⊗ 1N ⊗ 14 +MW ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14
}

(16)

where MW = 1N − (E + E†)/2 and the product · stands for scalar product.

B. Graphs corresponding to Wilson fermion

As with the case in Sec. III B, we begin with the one-dimensional lattice. For one-dimensional

Wilson fermion, the Dirac matrix is given by

D1d
W = PN ⊗ γ1 +m1N ⊗ 14 + rMW ⊗ 14, (17)

and the graph corresponding to this matrix is depicted in Fig. 7. This graph again represents the

circle S1. However, the difference from the case of naive fermions in Fig. 6 is that Fig. 7 has a loop

with the weight M = m+ r for each vertex.

In two dimensions, the Dirac matrix is

D2d
W = 1N ⊗ PN ⊗ γ1 + PN ⊗ 1N ⊗ γ2

+m (1N ⊗ 1N ⊗ 14) + r (1N ⊗MW +MW ⊗ 1N )⊗ 14

(18)

and the graph corresponding to this matrix is given by Fig. 8. The shape of the graph is topologically

a two-dimensional torus T 2 however there is a loop with the weight M = m+
∑

µ r for each vertex.
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we can diagonalize MW as

MWX = Diag

[

0, 1− cos
2π

N
, 1− cos

4π

N
, · · · , 1− cos

2(N − 1)π

N

]

X ≡ ΛMW
X. (19)

There is only a single zero eigenvalue in ΛMW
at most if N is even number. As a result the

diagonalization is expressed as

U†MW U = m · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

+ r ·
{

1N ⊗ 1N ⊗ 1N ⊗ ΛMW
⊗ 14 + 1N ⊗ 1N ⊗ ΛMW

⊗ 1N ⊗ 14

+ 1N ⊗ ΛMW
⊗ 1N ⊗ 1N ⊗ 14 + ΛMW

⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14
}

(20)

where U =
⊗4

µ=1 X ⊗ 14. Since the Dirac matrix of naive fermion D can be diagonalized with

the unitary matrix U , the Dirac matrix of Wilson fermion can be diagonalized as U†DW U =

U†DU + U†MW U . We introduce the eigenvectors |k〉 of E to see the number of zero eigenvalues

in the diagonalized Dirac matrix U†DW U . The diagonalized mass matrix U†MW U is written as

U†MW U =
∑

k4,k3,k2,k1



m14 + r
4

∑

µ=1

{

1− cos

(

2π(kµ − 1)

N

)}

14





× |k4, k3, k2, k1〉 〈k4, k3, k2, k1| .

(21)

Thus the diagonalized Dirac matrix U†DW U is

U†DW U =
∑

k4,k3,k2,k1

[

i
∑

µ

sin

(

2π(kµ − 1)

N

)

γµ + r
∑

µ

{

m

4r
+ 1− cos

(

2π(kµ − 1)

N

)}

14

]

× |k4, k3, k2, k1〉 〈k4, k3, k2, k1| .

(22)

If the diagonalized Dirac matrix U†DW U has zero eigenvalues, Eq. (22) must satisfy a equation

i
∑

µ

sin

(

2π(kµ − 1)

N

)

γµ + r
∑

µ

{

m

4r
+ 1− cos

(

2π(kµ − 1)

N

)}

14 = 0 (23)

Since γ matrices and 14 are linearly independent, the conditions for the diagonalized Dirac matrix

to have zero eigenvalues are given as

sin

(

2π(kµ − 1)

N

)

= 0 (24)

m+ 4r − r
∑

µ

cos

(

2π(kµ − 1)

N

)

= 0 . (25)

1D

single zero mode
=

one species
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FIG. 9. This digraph corresponds to the Dirac matrix and mass matrix in the two-dimensional domain-wall

fermion. The left graph is equivalent to one-dimensional Wilson fermion. On the other hand, the right

graph corresponds to the extra direction s. The weight +s means +(γ3−14)/2 and −s means −(γ3+14)/2.

! stands for the Cartesian product.

for kµ = 1, 2, · · · , N . As a result, the solutions of kµ for the Dirac matrix DDW to have zero

eigenvalues are given by kµ = 1, 1 +N/2.

Secondly, we will diagonalize the mass matrix MDW . The diagonalized mass matrix is

[

U†MDW U
]

st
= U†

(

M(L)
st ⊗ PL

)

U + U†
(

M(R)
st ⊗ PR

)

U

=
∑

k4,k3,k2,k1

[{

W (k)δst −
N−1
∑

i=1

δsiδi+1 t

}

PL +

{

W (k)δst −
N
∑

l=2

δslδl−1 t

}

PR

]

× |k4, k3, k2, k1〉 〈k4, k3, k2, k1|

(39)

where W (k) ≡ 1 − M0 +
∑

µ

{

1− cos
(

2π(kµ−1)
N

)}

. We now impose conditions, |W (k)| < 1and

Ns = ∞ so that mass matrix MDW has zero eigenvalues. We can determine the range of mass

parameter M0 from |W (k)| < 1.Using the solutions of kµ, W (k) can be classified as

W (k) =























































1−M0 any kµ = 1 in k.

3−M0 one kµ = 1 +N/2 otherwise kµ = 1 in k.

5−M0 two kµ = 1 +N/2 otherwise kµ = 1 in k.

7−M0 three kµ = 1 +N/2 otherwise kµ = 1 in k.

9−M0 any kµ = 1 +N/2 in k.

(40)

Therefore, the relation between the solutions of kµ, the range of mass parameter M0, and the

16

Based on a similar discussion in Sec. III, the action of a free domain-wall fermion can be rewritten

as SDW =
∑

s,t ψ̄s [DDW +MDW ]st ψt for s, t = 1, 2, · · · , Ns, where DDW is the Dirac matrix of

domain-wall fermion and MDW is a mass matrix of domain-wall fermion from four-dimensional

viewpoints. The Dirac matrix DDW is

[DDW ]st =δst ·
(

1N ⊗ 1N ⊗ 1N ⊗ PN ⊗ γ1 + 1N ⊗ 1N ⊗ PN ⊗ 1N ⊗ γ2

+ 1N ⊗ PN ⊗ 1N ⊗ 1N ⊗ γ3 + PN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4
)

(28)

and the mass matrix MDW is

[MDW ]st =
1

2
∆(−)

st · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ5

+ δst
(

−M0 · 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

+ 1N ⊗ 1N ⊗ 1N ⊗MW ⊗ 14 + 1N ⊗ 1N ⊗MW ⊗ 1N ⊗ 14

+ 1N ⊗MW ⊗ 1N ⊗ 1N ⊗ 14 +MW ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14
)

+
1

2

(

2δst −∆(+)
st

)

· 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

(29)

where ∆(±)
st =

∑N−1
i=1 δsiδi+1 t ±

∑N
l=2 δslδl−1 t. Note that we specify the order of components (ψn)s

in the vector ψs as (1, 1, 1, 1; s) → · · · → (N, 1, 1, 1; s) → (1, 2, 1, 1; s) → · · · → (N,N, 1, 1; s) →

(1, 1, 2, 1; s) → · · · → (N,N,N,N ; s) in a descending order. For simplicity, we introduce the chiral

projection PR and PL for the mass matrix MDW . The matrix MDW can then be rewritten as

[MDW ]st = M(L)
st ⊗ PL +M(R)

st ⊗ PR (30)

M(L)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N−1
∑

i=1

δsiδi+1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(31)

M(R)
st =δst

{

(1−M0) · 1N ⊗ 1N ⊗ 1N ⊗ 1N

+ 1N ⊗ 1N ⊗ 1N ⊗MW + 1N ⊗ 1N ⊗MW ⊗ 1N

+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N
∑

l=2

δslδl−1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(32)

where PR ≡ (14+γ5)/2 is a projection matrix into right-handed components and PL ≡ (14−γ5)/2

is into left-handed components.
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+
1

2

(

2δst −∆(+)
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)

· 1N ⊗ 1N ⊗ 1N ⊗ 1N ⊗ 14

(29)

where ∆(±)
st =

∑N−1
i=1 δsiδi+1 t ±
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l=2 δslδl−1 t. Note that we specify the order of components (ψn)s
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+ 1N ⊗MW ⊗ 1N ⊗ 1N +MW ⊗ 1N ⊗ 1N ⊗ 1N

}

−
N
∑

l=2

δslδl−1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N
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where PR ≡ (14+γ5)/2 is a projection matrix into right-handed components and PL ≡ (14−γ5)/2

is into left-handed components.
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FIG. 9. This digraph corresponds to the Dirac matrix and mass matrix in the two-dimensional domain-wall

fermion. The left graph is equivalent to one-dimensional Wilson fermion. On the other hand, the right

graph corresponds to the extra direction s. The weight +s means +(γ3−14)/2 and −s means −(γ3+14)/2.

! stands for the Cartesian product.

for kµ = 1, 2, · · · , N . As a result, the solutions of kµ for the Dirac matrix DDW to have zero

eigenvalues are given by kµ = 1, 1 +N/2.

Secondly, we will diagonalize the mass matrix MDW . The diagonalized mass matrix is

[

U†MDW U
]

st
= U†

(

M(L)
st ⊗ PL

)

U + U†
(

M(R)
st ⊗ PR

)

U

=
∑

k4,k3,k2,k1

[{

W (k)δst −
N−1
∑

i=1

δsiδi+1 t

}

PL +

{

W (k)δst −
N
∑

l=2

δslδl−1 t

}

PR

]

× |k4, k3, k2, k1〉 〈k4, k3, k2, k1|

(39)

where W (k) ≡ 1 − M0 +
∑

µ

{

1− cos
(

2π(kµ−1)
N

)}

. We now impose conditions, |W (k)| < 1and

Ns = ∞ so that mass matrix MDW has zero eigenvalues. We can determine the range of mass

parameter M0 from |W (k)| < 1.Using the solutions of kµ, W (k) can be classified as

W (k) =























































1−M0 any kµ = 1 in k.

3−M0 one kµ = 1 +N/2 otherwise kµ = 1 in k.

5−M0 two kµ = 1 +N/2 otherwise kµ = 1 in k.

7−M0 three kµ = 1 +N/2 otherwise kµ = 1 in k.

9−M0 any kµ = 1 +N/2 in k.

(40)

Therefore, the relation between the solutions of kµ, the range of mass parameter M0, and the
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st =δst

{
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−
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δsiδi+1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N
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M(R)
st =δst

{
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}

−
N
∑

l=2

δslδl−1 t · 1N ⊗ 1N ⊗ 1N ⊗ 1N

(32)

where PR ≡ (14+γ5)/2 is a projection matrix into right-handed components and PL ≡ (14−γ5)/2

is into left-handed components.
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number of zero eigenvalues are given in Table. I. The result is consistent with the known results of

the domain-wall fermion. It indicates that our method can be applied to the lattice fermion with

Dirichlet boundary conditions.

TABLE I. Classification of the number of zero eigenvalues in DW fermion

the solutions of kµ the range of M0 the number of zero eigenvalues

any kµ = 1 0 < M0 < 2 1

one kµ = 1 +N/2 otherwise kµ = 1 2 < M0 < 4 4

two kµ = 1 +N/2 otherwise kµ = 1 4 < M0 < 6 6

three kµ = 1 +N/2 otherwise kµ = 1 6 < M0 < 8 4

any kµ = 1 +N/2 8 < M0 < 10 1

VI. LATTICE FERMIONS ON FOUR DIMENSIONAL HYPERBALL

In Sec. III,IV,V, we show that there are the spectral digraphs corresponding to the Dirac

matrices of the naive fermion, Wilson fermion, and domain-wall fermion. Then, we find out the

number of fermion species based on the discrete Fourier transformation.

Our question is whether we can obtain the Dirac matrix when the spectral digraph corresponding

to a lattice fermion is given. In this section, we will construct the Dirac matrix from a digraph

corresponding to a certain lattice fermion and derive the number of fermion species by use of

DFT. Through this procedure, we can construct the Dirac matrix for a lattice fermion defined on

complicated lattices, where the momentum cannot be defined. Then, we can derive the number of

the species for fermions on such lattices.

From the next subsection we consider the discretized four-dimensional hyperball B4. This space

is obtaining by imposing the Dirichlet boundary condition on each direction of four dimensions.

A. Graphs corresponding to the Dirac matrix on hyperball

We discuss the graph corresponding to the fermion defined on the four-dimensional hyperball.

For simplicity, we first study a graph corresponding to lattice fermion on the discretized one-

dimensional ball B1 (or line segment). The digraph corresponding to the discretized B1 is given as

Fig. 10. Note that the hopping between two ends in position space is prohibited. The Dirac matrix

corresponding to this graph is given by

DB1 = QN ⊗ γ1 (41)

# of zero modes depends on
the range of mass parameter
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FIG. 10. This digraph corresponds to the lattice fermion on the discretized B1.

where (QN )ab ≡
(

∑N−1
i=1 δaiδi+1 b −

∑N
l=2 δalδl−1 b

)

/2. This matrix QN is written as

QN =
1

2





































0 1 0 0 0 0

−1 0 1 · · · 0 0 0

0 −1 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · −1 0 1

0 0 0 0 −1 0





































(42)

The prohibition of hopping in the two ends is represented by the two elements (1, N) and (N, 1)

which are zero in this case.

For the discretized two-dimensional ball B2 (or disk), the digraph is given as Fig. 11. The Dirac

matrix in two dimensions is given by

DB2 = 1N ⊗QN ⊗ γ1 +QN ⊗ 1N ⊗ γ2. (43)

As seen from Figs. 10 and 11, the translational symmetry is partially broken since there is a

boundary.

Through a parallel discussion, we find the shape of the digraph corresponding to fermions on

the discretized three dimensional ball B3 become a box, where the sites in this space is expressed

by (n1, n2, n3) whith 1 ≤ ni ≤ N . The Dirac matrix on the discretized B3 is given as

DB3 = 1N ⊗ 1N ⊗QN ⊗ γ1 + 1N ⊗QN ⊗ 1N ⊗ γ2 +QN ⊗ 1N ⊗ 1N ⊗ γ3. (44)
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FIG. 11. This digraph corresponds to fermions on the discretized B2. As with the one-dimensional case,

the weight of blue edge is +γµ/2 and the one of the red edge is −γµ/2.

In a similar manner we can construct the digraph and the corresponding Dirac matrix on the

discretized four dimensional hyperball B4. In the next subsection, we will investigate the lattice

action on the discretized B4.

B. Lattice action on four-dimensional hyperball

The free naive fermion action on four-dimensional discretized hyperball B4 is

SB4 =
∑

n

∑

µ

ψ̄nγµDµψn , (45)

where the lattice sites are n = (n1, n2, n3, n4) for 1 ≤ ni ≤ N and Dirichlet boundary conditions

are imposed on each direction. This action is also expressed as SB4 = ψ̄DB4ψ. The Dirac matrix

DB4 is

DB4 = 1N ⊗ 1N ⊗ 1N ⊗QN ⊗ γ1

+ 1N ⊗ 1N ⊗QN ⊗ 1N ⊗ γ2

+ 1N ⊗QN ⊗ 1N ⊗ 1N ⊗ γ3

+QN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4.

(46)

C. Number of species on four-dimensional hyperball

Firstly, we will discuss diagonalization of the matrix QN so as to derive the number of species on

B4. This matrix can be diagonalized by use of a unitary matrix Y defined as (Y )ab = αib sin
(

abπ
N+1

)

,
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C. Number of species on four-dimensional hyperball
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1D

2D
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where α is a normalization coefficient [75, 76]. By using the unitary matrix, the diagonalized matrix

is given as

QNY = iDiag

[

cos

(

π

N + 1

)

, cos

(

2π

N + 1

)

, · · · , cos
(

Nπ

N + 1

)]

≡ ΛQN
X . (47)

Note that there is a single zero eigenvalue in ΛQN
at most when the number of sites in each direction

N is odd number. The Dirac matrix DB4 is diagonalized as

V†DB4 V = 1N ⊗ 1N ⊗ 1N ⊗ ΛQN
⊗ γ1

+ 1N ⊗ 1N ⊗ ΛQN
⊗ 1N ⊗ γ2

+ 1N ⊗ ΛQN
⊗ 1N ⊗ 1N ⊗ γ3

+ ΛQN
⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(48)

where V is a unitary matrix defined as V ≡
⊗4

µ=1 Y ⊗14. To study eigenvalues in the Dirac matrix

DB4 , we introduce eigenvector |λ〉 satisfying QN |λ〉 = i cos
(

λπ
N+1

)

|λ〉 for λ = 1, 2, · · · , N . The

diagonalized Dirac matrix is then written

V†DB4 V =
∑

λ1,λ2,λ3,λ4



i
4

∑

µ=1

cos

(

λµπ

N + 1

)

γµ



 |λ1,λ2,λ3,λ4〉 〈λ1,λ2,λ3,λ4| (49)

where |λ1,λ2,λ3,λ4〉 = |λ1〉 ⊗ |λ2〉 ⊗ |λ3〉 ⊗ |λ4〉. For the diagonal matrix V†DB4 V to have zero

eigenvalues, the following equation must be satisfied,

∑

µ

cos

(

λµπ

N + 1

)

γµ = 0 . (50)

Furthermore, since γ matrices is linearly independent, this equation is rewritten as

cos

(

λµπ

N + 1

)

= 0. (51)

The solution of Eq. 51 is λµ = N+1
2 . If the number of sites in the each direction is even, there

is no zero eigenvalues in the Dirac matrix. As a result, there are no solutions λµ both satisfying

Eq. 51 and belonging to the set of integer, {1, 2, · · · , N}. On the other hand, when N is the odd

number, there is a single zero eigenvalue. Therefore, there is one physical pole on the bulk of four-

dimensional hyperball when the number of sites in each direction is the odd number. If we take a

thermodynamical limit for even N , one of the non-zero eigenvalue approaches to zero. This result

is true in any dimensional lattice since γ matrices in any dimension is linearly independent. Thus,

lattice fermions on the finite-volume lattice of d-dimensional hyperball Bd have one physical pole

on the bulk.

22

where α is a normalization coefficient [75, 76]. By using the unitary matrix, the diagonalized matrix

is given as

QNY = iDiag

[

cos

(

π

N + 1

)

, cos

(

2π

N + 1

)

, · · · , cos
(

Nπ

N + 1

)]

≡ ΛQN
X . (47)

Note that there is a single zero eigenvalue in ΛQN
at most when the number of sites in each direction

N is odd number. The Dirac matrix DB4 is diagonalized as

V†DB4 V = 1N ⊗ 1N ⊗ 1N ⊗ ΛQN
⊗ γ1

+ 1N ⊗ 1N ⊗ ΛQN
⊗ 1N ⊗ γ2

+ 1N ⊗ ΛQN
⊗ 1N ⊗ 1N ⊗ γ3

+ ΛQN
⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(48)

where V is a unitary matrix defined as V ≡
⊗4

µ=1 Y ⊗14. To study eigenvalues in the Dirac matrix

DB4 , we introduce eigenvector |λ〉 satisfying QN |λ〉 = i cos
(

λπ
N+1

)

|λ〉 for λ = 1, 2, · · · , N . The

diagonalized Dirac matrix is then written

V†DB4 V =
∑

λ1,λ2,λ3,λ4



i
4

∑

µ=1

cos

(

λµπ

N + 1

)

γµ



 |λ1,λ2,λ3,λ4〉 〈λ1,λ2,λ3,λ4| (49)

where |λ1,λ2,λ3,λ4〉 = |λ1〉 ⊗ |λ2〉 ⊗ |λ3〉 ⊗ |λ4〉. For the diagonal matrix V†DB4 V to have zero

eigenvalues, the following equation must be satisfied,

∑

µ

cos

(

λµπ

N + 1

)

γµ = 0 . (50)

Furthermore, since γ matrices is linearly independent, this equation is rewritten as

cos

(

λµπ

N + 1

)

= 0. (51)

The solution of Eq. 51 is λµ = N+1
2 . If the number of sites in the each direction is even, there

is no zero eigenvalues in the Dirac matrix. As a result, there are no solutions λµ both satisfying

Eq. 51 and belonging to the set of integer, {1, 2, · · · , N}. On the other hand, when N is the odd

number, there is a single zero eigenvalue. Therefore, there is one physical pole on the bulk of four-

dimensional hyperball when the number of sites in each direction is the odd number. If we take a

thermodynamical limit for even N , one of the non-zero eigenvalue approaches to zero. This result

is true in any dimensional lattice since γ matrices in any dimension is linearly independent. Thus,

lattice fermions on the finite-volume lattice of d-dimensional hyperball Bd have one physical pole

on the bulk.

22

where α is a normalization coefficient [75, 76]. By using the unitary matrix, the diagonalized matrix

is given as

QNY = iDiag

[

cos

(

π

N + 1

)

, cos

(

2π

N + 1

)

, · · · , cos
(

Nπ

N + 1

)]

≡ ΛQN
X . (47)

Note that there is a single zero eigenvalue in ΛQN
at most when the number of sites in each direction

N is odd number. The Dirac matrix DB4 is diagonalized as

V†DB4 V = 1N ⊗ 1N ⊗ 1N ⊗ ΛQN
⊗ γ1

+ 1N ⊗ 1N ⊗ ΛQN
⊗ 1N ⊗ γ2

+ 1N ⊗ ΛQN
⊗ 1N ⊗ 1N ⊗ γ3

+ ΛQN
⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(48)

where V is a unitary matrix defined as V ≡
⊗4

µ=1 Y ⊗14. To study eigenvalues in the Dirac matrix

DB4 , we introduce eigenvector |λ〉 satisfying QN |λ〉 = i cos
(

λπ
N+1

)

|λ〉 for λ = 1, 2, · · · , N . The

diagonalized Dirac matrix is then written

V†DB4 V =
∑

λ1,λ2,λ3,λ4



i
4

∑

µ=1

cos

(

λµπ

N + 1

)

γµ



 |λ1,λ2,λ3,λ4〉 〈λ1,λ2,λ3,λ4| (49)

where |λ1,λ2,λ3,λ4〉 = |λ1〉 ⊗ |λ2〉 ⊗ |λ3〉 ⊗ |λ4〉. For the diagonal matrix V†DB4 V to have zero

eigenvalues, the following equation must be satisfied,

∑

µ

cos

(

λµπ

N + 1

)

γµ = 0 . (50)

Furthermore, since γ matrices is linearly independent, this equation is rewritten as

cos

(

λµπ

N + 1

)

= 0. (51)

The solution of Eq. 51 is λµ = N+1
2 . If the number of sites in the each direction is even, there

is no zero eigenvalues in the Dirac matrix. As a result, there are no solutions λµ both satisfying

Eq. 51 and belonging to the set of integer, {1, 2, · · · , N}. On the other hand, when N is the odd

number, there is a single zero eigenvalue. Therefore, there is one physical pole on the bulk of four-

dimensional hyperball when the number of sites in each direction is the odd number. If we take a

thermodynamical limit for even N , one of the non-zero eigenvalue approaches to zero. This result

is true in any dimensional lattice since γ matrices in any dimension is linearly independent. Thus,

lattice fermions on the finite-volume lattice of d-dimensional hyperball Bd have one physical pole

on the bulk.

22

where α is a normalization coefficient [75, 76]. By using the unitary matrix, the diagonalized matrix

is given as

QNY = iDiag

[

cos

(

π

N + 1

)

, cos

(

2π

N + 1

)

, · · · , cos
(

Nπ

N + 1

)]

≡ ΛQN
X . (47)

Note that there is a single zero eigenvalue in ΛQN
at most when the number of sites in each direction

N is odd number. The Dirac matrix DB4 is diagonalized as

V†DB4 V = 1N ⊗ 1N ⊗ 1N ⊗ ΛQN
⊗ γ1

+ 1N ⊗ 1N ⊗ ΛQN
⊗ 1N ⊗ γ2

+ 1N ⊗ ΛQN
⊗ 1N ⊗ 1N ⊗ γ3

+ ΛQN
⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(48)

where V is a unitary matrix defined as V ≡
⊗4

µ=1 Y ⊗14. To study eigenvalues in the Dirac matrix

DB4 , we introduce eigenvector |λ〉 satisfying QN |λ〉 = i cos
(

λπ
N+1

)

|λ〉 for λ = 1, 2, · · · , N . The

diagonalized Dirac matrix is then written

V†DB4 V =
∑

λ1,λ2,λ3,λ4



i
4

∑

µ=1

cos

(

λµπ

N + 1

)

γµ



 |λ1,λ2,λ3,λ4〉 〈λ1,λ2,λ3,λ4| (49)

where |λ1,λ2,λ3,λ4〉 = |λ1〉 ⊗ |λ2〉 ⊗ |λ3〉 ⊗ |λ4〉. For the diagonal matrix V†DB4 V to have zero

eigenvalues, the following equation must be satisfied,

∑

µ

cos

(

λµπ

N + 1

)

γµ = 0 . (50)

Furthermore, since γ matrices is linearly independent, this equation is rewritten as

cos

(

λµπ

N + 1

)

= 0. (51)

The solution of Eq. 51 is λµ = N+1
2 . If the number of sites in the each direction is even, there

is no zero eigenvalues in the Dirac matrix. As a result, there are no solutions λµ both satisfying

Eq. 51 and belonging to the set of integer, {1, 2, · · · , N}. On the other hand, when N is the odd

number, there is a single zero eigenvalue. Therefore, there is one physical pole on the bulk of four-

dimensional hyperball when the number of sites in each direction is the odd number. If we take a

thermodynamical limit for even N , one of the non-zero eigenvalue approaches to zero. This result

is true in any dimensional lattice since γ matrices in any dimension is linearly independent. Thus,

lattice fermions on the finite-volume lattice of d-dimensional hyperball Bd have one physical pole

on the bulk.

1 zero mode in bulk
=

1 species in bulk
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◆ Naive fermion on sphere

している．ここでは非トーラス 格子である S2格子上においても，no-go定理が適用不可能であ
ることを 2つの構成方法から確認していく．
まず S2格子を構成するにあたり，構成方法について位相幾何学的手法から考察していく．構成

方法として 2つの方法が考えられる．

2つのD2によって構成される 2次元球面

まず一つ目の構成方法として，2つのD2格子の境界のみを同一視する方法を考える．これを格
子離散化した 9個の格子点を持つ格子は図 3.5である．この構成方法では北極と南極が顕に生じ
ていることがわかる．

1 2 3 2 1

4
5 6 5′

4

7 8 9 8 7

図 3.5: 2次元ディスクD2の境界を張り合わせて構成される S2格子．数字は各格子点の番地を表
し，5, 5′は S2上の北極と南極に対応している．

この格子から得られる格子フェルミオン作用は次の通りである．

SF = ψ̄1 {σ1ψ2 + σ2ψ4}+ ψ̄2 {σ1 (ψ3 − ψ1) + σ2 (ψ5 − ψ5′)}
+ ψ̄3 {−σ1ψ2 + σ2ψ6}+ ψ̄4 {σ1 (ψ5 − ψ5′) + σ2 (ψ7 − ψ1)}
+ ψ̄5 {σ1 (ψ6 − ψ4) + σ2 (ψ8 − σ2ψ2)}+ ψ̄5′ {σ1 (ψ4 − ψ6) + σ2 (ψ8 − ψ2)}
+ ψ̄6 {σ1 (ψ5′ − ψ5) + σ2 (ψ9 − ψ3)}+ ψ̄7 {σ1ψ8 − σ2ψ4}
+ ψ̄8 {σ1 (ψ9 − ψ7) + σ2 (ψ5′ − ψ5)}+ ψ̄9 {−σ1ψ8 − σ2ψ6}

(3.12)

この作用におけるDirac演算子は以下のようになる．

Dsphere1 =




Υ1 Υ2 0

ΥT
4 Υ3 Υ4

0 ΥT
2 Υ1



 (3.13)
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図 3.6: 2つのD2によって構成される S2上のDirac演算子の固有値分布図．このときゼロ固有値
は 2重に縮退してる．

このとき，Dirac演算子のゼロ固有値は 2つ出現し，これらの固有状態の chiralityは正と負が
対となっていた．この固有値の分布図は図 3.6となる．この結果から，D2格子と同様に S2格子
でも no-go定理と矛盾することがわかる．したがって S2格子上においても no-go定理は適用でき
ないことが示された．さらに注目すべき点としてゼロ固有値が 2重に縮退している点であり，こ
れは最小の doubler数（2個）であるminimal doublingとなっている．
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3次元に埋め込まれた 2次元球面

0 1 2

1

2

1
2

図 3.7: 26個の格子点を持つ 3次元に埋め込まれた S2格子．3方向の数字はそれぞれの次元の成
分を表す．

次の構成方法として，3次元ボックスの中身を抜いた 2次元球面を格子離散化した格子につい
て考える．具体的に 26個の格子点を持つ S2格子は図 3.7である．このときの格子フェルミオン
作用やDirac演算子の詳細は付録D.1に載せている．
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図 3.8: 3次元に埋め込まれた S2上の Dirac演算子の固有値分布図．このときゼロ固有値は 2重
に縮退している．

この格子上におけるDirac演算子のゼロ固有値は 2つ出現し，またその固有状態の chiralityは
正と負が対となっていた．この固有値の分布図は図 3.8となる．この結果は前述の 2つのD2格子
の境界のみを張り合わせた S2格子と同じ結果となった．このことから構成方法に依らず，S2格
子上においても no-go定理を適用することは不可能であるという結論が得られた．さらに異なる
2つの構成方法において，doublerの個数は 2個という結果から doublerの個数は Euler数とは別
のの topologyに依存しているという理解が得られた．

38

Empirically 
2 species !

2 zero modes

2 zero modes
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Lattice field theory Spectral graph theory

Lattice fermion Directed and Weighted 
spectral graph

# of Fermion species Nullity of 
spectral matrix

We can study lattice field theory in terms of SGT.



3.  New conjecture on fermion doubling



Nielsen-Ninomiya’s no-go theorem is just no-go theorem.

It never tells us how many fermion species emerge
given a lattice fermion formulation.

Is there a theorem which informs us of # of species?



Reconsider Naive and Wilson Yumoto, TM (22)

New fermion discretizations Tatsuhiro Misumi
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)
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What is the meaning of the numbers?

3D Wilson
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(π,0) (π,π)(0,0)
Figure 1. Schematic plot of distribution of the 2d free Wilson Dirac spectrum � with MW = m+2r = 0
in the complex plane. The central branch crosses the origin. The number in each branch stands for
numbers of species at the branch.

On each site, there is a two-component spinor, so D is regarded as the linear operator, D :

C2NxNy ! C2NxNy . We consider the eigenvalue problem,

D|R�i = �|R�i, (2.11)
hL�|D = �hL�|, (2.12)

where � 2 C is called the Dirac eigenvalue, and |R�i and hL�| are the corresponding right-
and left-eigenvectors, respectively. For the free theory, we can diagonalize D by Fourier trans-
formation, and we obtain that

�(px, py) = ±i
q
sin2 px + sin2 py � r(cos px + cos py), (2.13)

where (px, py) mod 2⇡ denotes the lattice momentum. Blue shaded region of Fig. 1 shows the
distribution of this �(px, py) in the complex plane. We note that �(px, py) = 0 only has the
two solutions,

(px, py) = (⇡, 0), (0,⇡), (2.14)

so there are two gappless fermions at the central branch.
Let us go back to the discussion for the Dirac operator with gauged link variables. As a

consequence of U †
n,µ = Un+µ̂,�µ, we obtain T †

µ = T�1
µ = T�µ. This ensures the �3-hermiticity

of the Wilson-Dirac operator,
�3D�3 = D†. (2.15)

Therefore, by taking the adjoint of the eigenvalue equations, we get

D�3|L�i = �⇤�3|L�i, (2.16)
hR�|�3D = �⇤hR�|�3, (2.17)

This shows that when � 2 C \ R is in the Dirac spectrum so is �⇤.

– 5 –
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Construction
• Idea # 1: Nf = 4 → 2
Include taste-dependent mass term: ±ρ for left-/right-handed tastes
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Then add mass (ie. shift spectrum) to make Nf = 2 massless flavors!
Drawback: additive mass renormalization, ie. fine-tuning for mq → 0
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Dst DAdams ≡ Dst+ρ(1⊗ γ5)

Then add mass (ie. shift spectrum) to make Nf = 2 massless flavors!
Drawback: additive mass renormalization, ie. fine-tuning for mq → 0
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Topological invariants Yumoto, TM (22)

・Topological invariant

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1

・4D torus

β0(M) = 1 β1(M) = 4 β2(M) = 6 β3(M) = 4 β4(M) = 1

Sum of Betti numbers is 16 → # of naive fermion species !



Yumoto, TM (22)

・Topological invariant

・3D torus

β0(M) = 1 β1(M) = 3 β2(M) = 3 β3(M) = 1

Sum of Betti numbers is 8 → # of naive fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1



Yumoto, TM (22)

・Topological invariant

・2D torus

β0(M) = 1 β1(M) = 2 β2(M) = 1

Sum of Betti numbers is 4 → # of naive fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1



Yumoto, TM (22)

・Topological invariant

・D-dim hyperball

β0(M) = 1 β1(M) = 0 β2(M) = 0  …..

Sum of Betti numbers is 1 → # of bulk fermion species !

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1



Yumoto, TM (22)

・Topological invariant

β0(M) = 1

Sum of Betti numbers is 1 → # of bulk fermion species !

Topological invariants 20

FIG. 10. This digraph corresponds to the lattice fermion on the discretized B1.

where (QN )ab ≡
(

∑N−1
i=1 δaiδi+1 b −

∑N
l=2 δalδl−1 b

)

/2. This matrix QN is written as

QN =
1

2





































0 1 0 0 0 0

−1 0 1 · · · 0 0 0

0 −1 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · −1 0 1

0 0 0 0 −1 0





































(42)

The prohibition of hopping in the two ends is represented by the two elements (1, N) and (N, 1)

which are zero in this case.

For the discretized two-dimensional ball B2 (or disk), the digraph is given as Fig. 11. The Dirac

matrix in two dimensions is given by

DB2 = 1N ⊗QN ⊗ γ1 +QN ⊗ 1N ⊗ γ2. (43)

As seen from Figs. 10 and 11, the translational symmetry is partially broken since there is a

boundary.

Through a parallel discussion, we find the shape of the digraph corresponding to fermions on

the discretized three dimensional ball B3 become a box, where the sites in this space is expressed

by (n1, n2, n3) whith 1 ≤ ni ≤ N . The Dirac matrix on the discretized B3 is given as

DB3 = 1N ⊗ 1N ⊗QN ⊗ γ1 + 1N ⊗QN ⊗ 1N ⊗ γ2 +QN ⊗ 1N ⊗ 1N ⊗ γ3. (44)

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

・D-dim hyperball

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1



Yumoto, TM (22)

・Topological invariant

・T4 × R1

Sum of Betti numbers is 16 → maximal # of species !

β0(M) = 1 β1(M) = 4 β2(M) = 6 β3(M) = 4 β4(M) = 1 β5(M) = 0

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1



Yumoto, TM (22)

・Topological invariant

・T2 × R2

Sum of Betti numbers is 4 → maximal # of species !

β0(M) = 1 β1(M) = 2 β2(M) = 1 β3(M) = 0 β4(M) = 0

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1



Yumoto, TM (22)

・Topological invariant

・2D Spheres

Sum of Betti numbers is 2 → # of fermion species !

β0(M) = 1 β1(M) = 0 β2(M) = 1

Kamata, Matsuura, TM, Ohta (16)
Yumoto, TM (21)

Topological invariants

Betti number is an indicator how many n-dimensional holes 
the space has.

n-th Betti number is a rank of n-th homology group

βn(M)    =     rank of Hn(M) = Ker∂n/Im∂n+1



Yumoto, TM (22)

1+1

sum of βn(M) 

1D torus

maximal # of species

2D torus

3D torus

4D torus

Hyperball

Sphere

TD × Rd

2

1+2+1 4

1+3+3+1 8

1+4+6+4+1 16

1+0+0+…. 1    for bulk

1+0+0+…+1 2

2D + 0 2D

Topological invariants

TD (1+1)D 2D



Conjecture on fermion species Yumoto, TM (22)

A sum of Betti numbers of background space is  
a maximal number of fermion species  

when the fermion is defined on the discretized space.

・Conjecture

How can we prove it?



Definition of maximal # of species Yumoto, TM (22)

New fermion discretizations Tatsuhiro Misumi
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ &=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ &=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

1 14 6 4

4D Wilson

maximal number of fermion species  
= 

number of modes on real axis



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent 
to each of nullity of the Dirac matrix on 1D torus or 1D 
ball by regarding lattice fermion as chain complex.

By use of Künneth theorem, elevate the above argument to 
higher dimensional space such as 4D Torus and Hyperball.

Classify necessary conditions and complete proof.

キネットの公式・チェイン複体のホモロジー
普遍係数定理・コホモロジー群

キネットの公式の証明
キネットの公式は次のものである。C∗, C′

∗を自由加群からなるチェイン複体とする。

Hn(C∗ ⊗ C′
∗) ∼=

⊕

p+q=n

Hp(C∗) ⊗ Hq(C′
∗) ⊕

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C′
∗))

証明は

0 −→
⊕

p+q=n

Hp(C∗)⊗Hq(C
′
∗)

I−−−→ Hn(C∗ ⊗ C′
∗) −→

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗)) −→ 0

が分裂する完全系列であることを示す。
まず、Zp = ker(∂ : Cp −→ Cp−1)とし、Bp = im(∂ : Cp −→ Cp−1)とする（普通は

Bp は Bp−1 と書かれる）。このとき、

0 −→ Z∗
i−→ C∗

∂−→ B∗ −→ 0

は自由加群からなるチェイン複体の短完全系列である。よって、sp : Bp −→ Cp で
∂ ◦ sp = idBp

となるもの、あるいは rp : Cp −→ Zpで、rp ◦ ∂ = idZp となるものが存
在する（このことを「分裂する」という）。とくに Cp

∼= Zp ⊕ Bp である。
B∗ は自由加群だから、完全系列

0 −→ Z∗ ⊗ C′
∗

i−→ C∗ ⊗ C′
∗

∂−→ B∗ ⊗ C′
∗ −→ 0

が得られる。（ここで p : C∗ ⊗C′
∗ −→ Z∗ ⊗C′

∗で p ◦ i = idC∗⊗C′
∗ となるものがある。）

このチェイン複体の短完全系列から、ホモロジー群の長完全系列が得られる。

Hn+1(B∗ ⊗ C′
∗)

∂−→ Hn(Z∗ ⊗ C′
∗) −→ Hn(C∗ ⊗ C′

∗) −→ Hn(B∗ ⊗ C′
∗)

∂−→ Hn−1(Z∗ ⊗ C′
∗)

ここで、
#

Zp−1 ⊗ C′
q

0←−−− Zp ⊗ C′
q#(−1)p∂′′

Zp ⊗ C′
q−1

#

Bp−1 ⊗ C′
q

0←−−− Bp ⊗ C′
q#(−1)p∂′′

Bp ⊗ C′
q−1

であり F が自由加群のときH∗(F ⊗ C′
∗) ∼= F ⊗ H∗(C′

∗)となるから、
⊕

p+q=n+1

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)

∂ の定義をみると、∂ = j ⊗ id (j : Bp+1 = Bp ⊂ Zp)であることがわかる。
⊕

p+q=n

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n−1

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)



Sketch of proof Yumoto, TM (22)

・1D torus lattice fermion as Chain complex 

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: 1-simplices of complex           →  edges (links) 

: simplical complex   →  graph (1D lattice) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: boundaries of simplices   →  vertices (lattice points) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: coefficients of simplices (should be abelian ring) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)
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(12)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)
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1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)
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Sketch of proof Yumoto, TM (22)

・1D torus lattice fermion as Chain complex 

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: 1-simplices of complex           →  edges (links) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: simplical complex   →  graph (1D lattice) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

: boundaries of simplices   →  vertices (lattice points) 

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1
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N is
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Sketch of proof Yumoto, TM (22)

・1D torus lattice fermion as Chain complex 

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.
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(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

v2 =
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1
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·

·

0
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1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

v1 =
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·
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1

………

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

vN =





0

0

0

·

·

1
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1

represented as 
linearly 

independent vectors

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 = a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1)

= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN
(3)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (4)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 4 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(5)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(6)

the 0-th homology group H0(L
(p)
N ) is defined as

H0(L
(p)
N ) ≡ Ker ∂0/ Im ∂1 = {[v] | [v] ∈ Ker ∂0/ Im ∂1} . (7)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)
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1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

w1 − w2 + w3 − w4 · · ·+ wN−1 − wN = 0 (10)

D1D =
1

2

(
w1, w2 · · · wN

)
(11)
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1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

・prove β1=1 is equivalent to degeneracy of Dirac matrix

β1(M)  =  rank of H1(M)=Ker∂1
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.
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∣∣∣∣∣ ak,k+1 ∈ Z
}
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N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)
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since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · ·+ wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. ?? is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(7)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(8)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 6 is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(8)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(9)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}
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We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
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where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is
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〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
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N ). It is denoted by βn(L
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N ). By this definition, the first Betti number is
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N ) = 1 since H1(L
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N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1
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σ1 for

the lattice constant aL, so
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′
1 =
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=
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2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN
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where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

・prove β1=1 is equivalent to degeneracy of Dirac matrix
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Sketch of proof Yumoto, TM (22)
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even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(10)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

D1D =
1

2

(
w1, w2 · · · wN

)
(10)
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・prove β1=1 is equivalent to degeneracy of Dirac matrix



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(10)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

D1D =
1

2

(
w1, w2 · · · wN

)
(10)
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・prove β1=1 is equivalent to degeneracy of Dirac matrix



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(10)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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1

……

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.





−1

0

·

·

1

0





(10)

1

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.
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σ1 for
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satisfy orthonormal en′en = δn′n ≡
∏4

i=1 δn′
ini

. δkl is the Kronecker delta. Here we specify that

the order of components ψn in the vector is (1, 1, 1, 1) → · · · → (N, 1, 1, 1) → (1, 2, 1, 1) → · · · →

(N,N, 1, 1) → (1, 1, 2, 1) → · · · → (N,N,N,N) in descending order. Namely,

ψ =

















































ψ(1,1,1,1)

...

ψ(N,1,1,1)

ψ(1,2,1,1,1)

...

ψ(N,N,1,1)

ψ(1,1,2,1)

...

ψ(N,N,N,N)

















































(4)

in term of the vector. Thus, the action of naive fermion can be rewritten as S = ψ̄Dψ =
∑

m

∑

n ψ̄mDmnψn where D is Dirac matrix having Dmn as (m,n) component. For later use, we

now introduce the tensor-product representation: By the tensor product (or Kronecker product),

this matrix can be represented as

D = 1N ⊗ 1N ⊗ 1N ⊗ PN ⊗ γ1

+ 1N ⊗ 1N ⊗ PN ⊗ 1N ⊗ γ2

+ 1N ⊗ PN ⊗ 1N ⊗ 1N ⊗ γ3

+ PN ⊗ 1N ⊗ 1N ⊗ 1N ⊗ γ4

(5)

where 1N is an identity matrix of order N and PN is a square matrix of order N [72–74]. The

components of the matrix PN is defined as (PN )ab ≡ (Eab −E−1
ab )/2 where Eab ≡

∑N−1
i=1 δaiδi+1 b +

δaNδ1b and E−1
ab ≡ δa1δNb +

∑N
i=2 δaiδi−1 b for a, b = 1, 2, · · · , N . PN is explicitly written as

PN =
1

2





































0 1 0 0 0 −1

−1 0 1 · · · 0 0 0

0 −1 0 0 0 0
...

. . .
...

0 0 0 0 1 0

0 0 0 · · · −1 0 1

1 0 0 0 −1 0





































(6)

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator.
a = a1,2 = a2,3 = ... = aN−1,N (6)

Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (7)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

H1(L
(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Z} ∼= Z (8)

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
1 = a (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

= a (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN = 0

(9)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

D1D =
1

2

(
w1, w2 · · · wN

)
(10)
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・prove β1=1 is equivalent to degeneracy of Dirac matrix



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

1 Periodic boundary condition

1.1 The first Betti number

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Z
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Z}
(1)

We consider one dimensional lattice with N lattice points imposed the periodic boundary condition. This lattice is denoted by
L(p)
N . In terms of graph, this lattice is identified with the closed path with N nodes. On the other hand, this is identified with

circle or the 1-sphere S1 in terms of topology. Then, the one dimensional chain complex C1(L(p)
N ) is defined as

C1(L(p)
N ) ≡

{
N∑

k=1

ak,k+1 〈vk, vk+1〉

∣∣∣∣∣ ak,k+1 ∈ Q
}

= {a1,2 〈v1, v2〉+ a2,3 〈v2, v3〉+ · · ·+ aN,1 〈vN , v1〉 | a1,2, a2,3, · · · , aN,1 ∈ Q}
(2)

where 〈vi, vj〉 is defined as the edge from vi to vj with the lattice point vk.The boundary of c1 ∈ C1(L(p)
N ) is

∂1c1 =
N∑

k=1

ak,k+1∂1 〈vk, vk+1〉 =
N∑

k=1

ak,k+1 (vk − vk+1) (3)

= a1,2 (v1 − v2) + a2,3 (v2 − v3) + · · ·+ aN,1 (vN − v1) (4)
= (a12 − aN1) v1 + (a23 − a12) v2 + · · ·+ (aN,1 − aN−1,N ) vN = 0 (5)

where ∂1 is the boundary operator. Thus, c′1 ∈ Ker ∂1 is

c′1 = a
N∑

k=1

〈vk, vk+1〉 (6)

since ∂1c′1 = a
∑N

k=1 ∂1 〈vk, vk+1〉 = a
∑N

k=1 (vk − vk+1) = 0 by periodic boundary condition. The n-th Betti number of L(p)
N is

defined as the rank of the n-th homology group Hn(L
(p)
N ). It is denoted by βn(L

(p)
N ). By this definition, the first Betti number is

β1(L
(p)
N ) = 1 since H1(L

(p)
N ) = Ker ∂1 = {a (〈v1, v2〉+ 〈v2, v3〉+ · · ·+ 〈vN , v1〉) | a ∈ Q} ∼= Q.

This result that βn(L
(p)
N ) = 1 can identify with one of the nullity in the Dirac matrix on L(p)

N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · ·+ wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. ?? is a = 1

2aL
σ1 for

the lattice constant aL, so

0 = ∂1c
′
1 =

1

2aL
σ1 (v2 − v1 + v2 − v3 + · · ·+ vN − v1)

=
1

2aL
σ1 (−v2 + vN + v1 − v3 + · · ·+ vN−1 − v1)

= w1 + w2 + · · ·+ wN

(7)

where wi is the row vector in Dirac matrix. This result is not depended on the lattice constant. However if the lattice constant of
even one edge in whole edge is different, this result cannot be obtained since a ∂1 (〈v1, v2〉+ · · ·+ 〈vN−1, vN 〉) + b ∂1 〈vN , v1〉 '= 0.

1.2 the zeroth Betti number

The zero dimensional chain complex C0 is given as C0 ≡
{∑N

k=1 akvk
∣∣∣ an ∈ Q

}
and the boundary of c0 ∈ C0 is ∂0c0 = 0. And,

the image of the boundary of C1 is

Im ∂1 ≡
{
∂1

(
N∑

k=1

ak,k+1 〈vk, vk+1〉
) ∣∣∣∣∣ an,n+1 ∈ Q

}

=

{
N−1∑

k=1

bkvk −
(

N−1∑

l=1

bl

)
vN

∣∣∣∣∣ bn = an,n+1 − an−1,n ∈ Q
}

=

{
N−1∑

k=1

bk (vk − vN )

∣∣∣∣∣ bn ∈ Q
}

=

{
N−1∑

k=1

bkwk

∣∣∣∣∣ bn ∈ Q, wn = vn − vN

}

(8)
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Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent to 
each of nullity of the Dirac matrix on 1D torus or 1D ball by 
regarding lattice fermion as chain complex.

・prove β0=1 is equivalent to degeneracy of Dirac matrix

degeneracy (nullity) 
of Dirac matrix

↓
zero mode 

(fermion species)
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N since one of the linear dependents
in the Dirac matrix w1 + w2 + · · · + wN = 0 is one element of the image of ∂1 when the coefficient a in Eq. 7 is a = 1

2aL
σ1 for

the lattice constant aL, so

∂1c
′
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D1D =
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w1, w2 · · · wN
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β0(M)  =  rank of H0(M)=ker∂0/Im∂1



Sketch of proof Yumoto, TM (22)

Prove each of Betti numbers (β0=1 and β1=1) is equivalent 
to each of nullity of the Dirac matrix on 1D torus or 1D 
ball by regarding lattice fermion as chain complex.

By use of Künneth theorem, elevate the above argument to 
higher dimensional space such as 4D Torus and Hyperball.

Classify necessary conditions and complete proof.

キネットの公式・チェイン複体のホモロジー
普遍係数定理・コホモロジー群

キネットの公式の証明
キネットの公式は次のものである。C∗, C′

∗を自由加群からなるチェイン複体とする。

Hn(C∗ ⊗ C′
∗) ∼=

⊕

p+q=n

Hp(C∗) ⊗ Hq(C′
∗) ⊕

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C′
∗))

証明は

0 −→
⊕

p+q=n

Hp(C∗)⊗Hq(C
′
∗)

I−−−→ Hn(C∗ ⊗ C′
∗) −→

⊕

p+q=n−1

Tor(Hp(C∗), Hq(C
′
∗)) −→ 0

が分裂する完全系列であることを示す。
まず、Zp = ker(∂ : Cp −→ Cp−1)とし、Bp = im(∂ : Cp −→ Cp−1)とする（普通は

Bp は Bp−1 と書かれる）。このとき、

0 −→ Z∗
i−→ C∗

∂−→ B∗ −→ 0

は自由加群からなるチェイン複体の短完全系列である。よって、sp : Bp −→ Cp で
∂ ◦ sp = idBp

となるもの、あるいは rp : Cp −→ Zpで、rp ◦ ∂ = idZp となるものが存
在する（このことを「分裂する」という）。とくに Cp

∼= Zp ⊕ Bp である。
B∗ は自由加群だから、完全系列

0 −→ Z∗ ⊗ C′
∗

i−→ C∗ ⊗ C′
∗

∂−→ B∗ ⊗ C′
∗ −→ 0

が得られる。（ここで p : C∗ ⊗C′
∗ −→ Z∗ ⊗C′

∗で p ◦ i = idC∗⊗C′
∗ となるものがある。）

このチェイン複体の短完全系列から、ホモロジー群の長完全系列が得られる。

Hn+1(B∗ ⊗ C′
∗)

∂−→ Hn(Z∗ ⊗ C′
∗) −→ Hn(C∗ ⊗ C′

∗) −→ Hn(B∗ ⊗ C′
∗)

∂−→ Hn−1(Z∗ ⊗ C′
∗)

ここで、
#

Zp−1 ⊗ C′
q

0←−−− Zp ⊗ C′
q#(−1)p∂′′

Zp ⊗ C′
q−1

#

Bp−1 ⊗ C′
q

0←−−− Bp ⊗ C′
q#(−1)p∂′′

Bp ⊗ C′
q−1

であり F が自由加群のときH∗(F ⊗ C′
∗) ∼= F ⊗ H∗(C′

∗)となるから、
⊕

p+q=n+1

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n

Bp⊗Hq(C
′
∗)

∂−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)

∂ の定義をみると、∂ = j ⊗ id (j : Bp+1 = Bp ⊂ Zp)であることがわかる。
⊕

p+q=n

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n

Zp⊗Hq(C
′
∗) −→ Hn(C∗⊗C′

∗) −→
⊕

p+q=n−1

Bp⊗Hq(C′
∗)

j⊗id−→
⊕

p+q=n−1

Zp⊗Hq(C
′
∗)



Summary

• Lattice fermions are interpreted as spectral graphs. It 
means we can study them in terms of topology of graphs.

• New conjecture on fermion doubling is proposed:          
The maximal # of species is the sum of Betti numbers.

• The proof is based on use of chain complex and Kunneth’s 
theorem.


