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|. Review on Naive & Wilson fermions



Wilson fermion : species-splitting mass fermion

r 5
Lattice fermion action with species-splitting term Z %Tﬁn(mﬁn — Vntp — Yn—p)
n,
1 . :
= Dw(p)=—) livusinap, + (1 cosap,)]
L
Physical (0,0,0,0) : Dy (p) = iv.p, + O(a) Im Im %

Doubler(7/a,0,0,0) : Dw(p) = iv.p, + 2 + O(a)

Only one flavor is massless,
while others have O(1/a) mass.

¢ |5 species are decoupled = doubler-less N
Re 0 2/a— ®

¢ 1/a additive mass renormalization — Fine-tune x /Y

¢ Domain-wall & Overlap fermions — costs




Wilson fermion as U(l) SPT phases

Topological # of SPT ~ index of modes with negative mass

A

m >0

v=0 (trivial SPT)

These indices reflect topology of Berry connection for free fermion,
while gauge field topology plays the same role in gauged theory.



Wilson fermion as U(l) SPT phases

Topological # of SPT ~ index of modes with negative mass

A

2la<m<0

v=1

Domain-wall fermion : gapless mode emerging at boundary
between v=0 and v=1 SPTs, where 't Hooft anomaly cancels.



Wilson fermion as U(l) SPT phases

Topological # of SPT ~ index of modes with negative mass

Ala<m<-2/a




Wilson fermion as U(l) SPT phases

Topological # of SPT ~ index of modes with negative mass

-6/a<m<-4/a




Wilson fermion as U(l) SPT phases

Topological # of SPT ~ index of modes with negative mass

-8/a<m <-6/a




Wilson fermion as U(l) SPT phases

Topological # of SPT ~ index of modes with negative mass

A

m < -8/a




Symmetry-protected
topological phase

~

AW —

* G-Symmetry Protected Topological phase (SPT)  wen,etal (13)

Unique ground state with trivial gap as long as G is unbroken
Gap should be closed when moving to another SPT

Massless modes at boundary btwn two different SPTs

't Hooft anomaly cancelled btwn bulk & boundary with gauged G

All ’t Hooft anomalies are (expected to be) classified by SPTs.

Kapustin (14),Witten (15),Yonekura (16),Yonekura, Witten (19)

J




Symmetry-protected
topological phase

~

m<Q0

ex.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

m >0

Z p— 6_27‘-7;77 Z: 1

(#: APS p-1nvariant = ngnw] ) \

2-dim chiral fermions Zbndry

~




Symmetry-protected
topological phase

€x.) (2+1)-dim free massive Dirac fermion = U(1) SPT = IQHS

m <0 m >0
APS index theorem :
cf.)Fukaya, Onogi, — eﬁ f AdA
Yamaguchi,et.al.(17-19)

2-dim chiral fermions Zbndry

Ztotal = ZLbulk ° andry —— Zpulke*~ S andrye—ﬂ JF = Ztotal

't Hooft anomaly 1s cancelled between bulk and boundary

\_




2. Lattice fermions as spectral graphs



Yumoto, TM (21)

Lattice fermion as spectral graph| ¢ omswia

Ohta, Matsuura (21)

Definition 1. A graph G is a pair G = (V, E). Vis a set of vertices and E is a set of edges.

Definition 2. A directed graph is a pair (V, E) of sets of vertices and edges together with
two maps init : E — V and ter : E — V. The two maps are assigned to every edge e; with an

initial vertex iit(e;) = v; € V and a terminal vertex ter(e;) = v; € V. If init(e;) = ter(e;), the
edge e is called a loop.

Definition 3. A weighted graph has a value (weight) for each edge in a graph.

Definition 4. A adjacency matrix A of a graph is the IVI x IV] matrix given by

)
w;; if there is a edge from ¢ to j

Y

Aij = 4

\ 0 otherwise

where wij is the weight of an edge from i to j.




Lattice fermion as spectral graph| vy

1
2)
—4 0 1 0 -1
—4 0 2 0
—1 2 —
0 0 0 O
—2 3 0 -2 0




2D

Lattice fermion

as spectral graph|  weema

¢ Naive fermion

n + 5k
N
§% 5@

Sl

D' = Py ®.

D=1y Pv®@v + Py 1y ® 7



Lattice fermion as spectral graph

¢ 4D Naive fermion

Yumoto, TM (21)

D=1y 1IyR1Ny R Py Q71

+ Iy RINy PN Q1IN QY

o +5
@(é@@@ g1 +1N®PN®1N®1N®’73
“n _

—n él(y@fv *
+g\\@&7{ ﬁ)@ +5 (0 1 0 0 0 —1)
N\ 10 1--- 0 0 0
+%@({% 0 —-10 0 0 O

X4 py_ L

0 0 0 0 1 0
0 00--—-10 1
\1 00 0—10)

+ Py RINKQRQINQIN XYy




Lattice fermion as spectral graph| vy

¢ Diagonalization

PoX — i Diae 0. s 2w . A . 2(N — 1)
- — —, -+, sin
N 1 Dlag |U, SI N’ S111 , ,

] X = APNX-

UTDU:1N®1N®1N®APN®’71

* +1Iv® 1y ®@Apy, ® 1y ® 79 U =Q,_1 X ® 1y
+INQAP, @Iy Q1N @3

+Ap, QINQIN R 1IN @Yy

| 6 zero modes

» Mism (27r(/<:;<]— 1)) =, »

|6 species



Lattice fermion as spectral graph

¢ Wilson fermion

M
L@,
@Q —Q@ﬁ@ Dxlz[(/iZPN®’Y1+m1N®14+TMW®14

"'0_ 3\\4— My =1y — (E+ E")/2

1D 3)

Yumoto, TM (21)

E 7/ D =1y ®Py®7y1+ Py @1y @70
+\\é @j+ +m(ANRIN® 1Y) +7r (AN My + My @ 1y) ® 14
@,
@)
+ 1.)/2 .
i)/ . (27T<ku_1)> ) single zero mode
M:m-|—’l“ N * —

2m(k, — 1)\
m+4r_r%:ms( N )_O one species



Lattice fermion as spectral graph

¢ Domain-wall fermion

Spw = s+ ¥s [Dow + Mpwl, ¥

Dpwly =0st - (INQIN®@IN® Py @71 + 1y @1y ® Pv ® 1y ® 72

+1INQOPVRINQIN®@Y3+ Py Q1IN Q1IN @1y ® Y4 )

[MDW]St:%Agt‘)-1N®1N®1N®1N®75
+0u(—Mo-IN®IN®@IN®@ Iy @ 1y
+INQINRINOMy @14 +1I8vR 1IN @ My @ 1y R 14
FINOMy @INQINO L+ My @1y @1y @1y ®1y)

1
_|_§<255t—AS_))-1N®1N®1N®1N®14

Ag:) = 21]1_11 05i0it1t 25\22 0s101—1¢

Yumoto, TM (21)



Lattice fermion as spectral graph

¢ Domain-wall fermion

@ _|l+.  Sow =2, %s [Dow + Mpwl,, ¥

Yumoto, TM (21)

—s| |+ any k, =1 0< My<?2
@ — — @ . one k, = 1+ N/2 otherwise k, = 1 2< My<4
@Y_FQ‘@(//_I_)@ A. two k, =1+ N/2 otherwise k,=1 4 < My<6
QW) —s| |+s  three k, =1+ N/2 otherwise k, =1 6 < My <8

Y any k, =1+ N/2 8 < My < 10

1

A the solutions of £, the range of My the number of zero eigenvalues
0+

4
6
4
1

# of zero modes depends on
the range of mass parameter



Lattice fermion

Yumoto, TM (21)

as spectral graph

+ Naive fermion on hyperball

-3 [+%
3| |+
3| |+
3| [+%
(B e 3
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+ - +1/ -
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+ v ‘I‘u -
A\ 4
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Dpi =QN®m
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Lattice fermion as spectral graph| vy

¢ Naive fermion on 4D hyperball

2 N
QnNY = 1Diag lcos (N7_T|_ 1) , COS (Nj—l) , -+, COS (Nfl)] = Aoy X

VTDB4V:1N®1N®1N®AQN®W1

* +INRIN Q@ Agy @ 1IN ® 72

+INQAQy RIN Q1IN ® 3

V=Q,_ Y ®1y
+ Aoy ®INRIN® 1IN ® Yy

| zero mode in bulk

P Te(yh)e P -

| species in bulk




Lattice fermion as spectral graph

Yumoto, TM (21)

# Naive fermion on sphere

8 9 8
H 6 5
2 3 2
9 :
—
1 :
- I
el i /
0 1 9

| /2 ZEero

modes

Empirically

2 Zero

2 species !

modes



Lattice fermion as spectral graph| vy

i -

Lattice field theory * Spectral graph theory

* Directed and Weighted

Lattice fermion
spectral graph

Nullity of

# of Fermion species * .
spectral matrix

\ J

We can study lattice field theory in terms of SGT.



3. New conjecture on fermion doubling



Nielsen-Ninomiya’s no-go theorem is just no-go theorem.

It never tells us how many fermion species emerge
given a lattice fermion formulation.

Is there a theorem which informs us of # of species!?




Reconsider Naive and Wilson Yoo TM (22

4D Wilson

(0,0,0,0) (#,0,0,0) (7,70,0) (7,7,x,0) (7,m,7,7)
(0,7,0,0) (7,0,7,0) (7, 0,7)
(0,0,7,0) (7,0,0,7) (7,0,7,7)
(0,0,0,7) (0,7,0,7) (0,7, )
(0,0,7,7)
(0,7,7,0)

What is the meaning of the numbers!?



Reconsider Naive and Wilson

(0,0,0) (,0,0) (7,7,0) (7,7,7r)
(0,7,0) (,0,7)
(0,0,7) (0,7,7)

What is the meaning of the numbers!?

Yumoto, TM (22)

3D Wilson



Reconsider Naive and Wilson Yoo TM (22

o 2D Wilson
1 el 1 .
. 'y Re A
(0,0) (7,0) (7,7r)
(0,7)

What is the meaning of the numbers?



Reconsider Naive and Wilson

4D Naive

1 16
T
| 4 6 4 |
(0,0,0,0) (#0,0,0) (7,70,0) (7,x,x,0) (7,7, 7,T)

1

What is the meaning of the numbers!?

The reason why p=r becomes zero of Dirac
operator is "periodicity”

Yumoto, TM (22)



Reconsider Naive and Wilson

1 16
T
| 4 6 4 |
(0,0,0,0) (#0,0,0) (7,70,0) (7,x,x,0) (7,7, 7,T)

1

What is the meaning of the numbers!?

It means these numbers are related to certain
topological invariants

4D Naive

Yumoto, TM (22)



Reconsider Naive and Wilson

4D Naive

1 16
T
| 4 6 4 |
(0,0,0,0) (#0,0,0) (7,70,0) (7,x,x,0) (7,7, 7,T)

1

# of H c;f #.of # of # of
Od holes |Id holes 2d holes 3d holes 4d holes

Yumoto, TM (22)



Topological invariants —

* Topological invariant

Betti number 1s an indicator how many n-dimensional holes
the space has.

B.(M) = rank of H,(M) = Kero,/Imo,+i
n-th Betti number 1s a rank of n-th homology group
4 B
* 4D torus

poM)=1 piM)=4 [M=6 pM)=4 [sM)=1

\ 4

Sum of Betti numbers 1s 16 — # of naive fermion species !
\ Y




Topological invariants —

* Topological invariant

Betti number 1s an indicator how many n-dimensional holes
the space has.

B.(M) = rank of H,(M) = Kero,/Imo,+i
n-th Betti number 1s a rank of n-th homology group
g ™
* 3D torus

poM)=1 [iM)=3 p(M)=3 [s(M)=1

\ 4

Sum of Betti numbers 1s 8 — # of naive fermion species !
\ Y




Topological invariants —

* Topological invariant

Betti number 1s an indicator how many n-dimensional holes
the space has.

B.(M) = rank of H,(M) = Kero,/Imo,+i
n-th Betti number 1s a rank of n-th homology group
4 B
* 2D torus

poM)=1 piM)=2 [(M)=1

\ 4

Sum of Betti numbers 1s 4 — # of naive fermion species !
\ Y




Topological invariants —

* Topological invariant

Betti number 1s an indicator how many n-dimensional holes
the space has.

Bu(M) = rank of H,(M) = Kerd,/Imoy+i

n-th Betti number 1s a rank of n-th homology group

4 R
* D-dim hyperball

Lo M)y=1 pi(M)=0 [(M)=0 .....

\ 4

Sum of Betti numbers 1s 1 — # of bulk fermion species !
\ Y




* Topological invariant

Betti number 1s an indicator how many n-dimensional holes
the space has.

Topological invariants —

bn(M) = rank of H,(M) = Kero,/Imo,+

n-th Betti number 1s a rank of n-th homology group
( (0 1 0 0 O 0\
* D-dim hyperball o o

po(M) = 1 W=y |
* \0 00 0 —10)
Sum of Betti numbers 1s 1 — # of bulk fermion species !
"

J




Topological invariants

* Topological invariant

Yumoto, TM (22)

Betti number 1s an indicator how many n-dimensional holes

the space has.

Bu(M) = rank of H,(M) = Kerd,/Imoy+i
n-th Betti number 1s a rank of n-th homology group
g ™
. T4 x RI
B =1 R(M)=4 [M=6 [HM=4 fM)=1 psM)=0
\ 4
i Sum of Betti numbers 1s 16 — maximal # of species ! |




Topological invariants

* Topological invariant

Yumoto, TM (22)

Betti number 1s an indicator how many n-dimensional holes
the space has.

Bu(M) = rank of H,(M) = Kerd,/Imoy+i
n-th Betti number 1s a rank of n-th homology group
g ™
e T2 x R2
poM)=1 pM)=2 pM)=1 pM=0 /[sM)=0
\ 4
i Sum of Betti numbers 1s 4 — maximal # of species ! |




Topological invariants —

* Topological invariant

Betti number 1s an indicator how many n-dimensional holes
the space has.

-

bn(M) = rank of H,(M) = Kero,/Imo,+
n-th Betti number 1s a rank of n-th homology group
N
* 2D Spheres
poM)=1 piM)=0 (M) =1
* Kamata, Matsuura, TM, Ohta (16)
Yumoto, TM (21)
Sum of Betti numbers 1s 2 — # of fermion species !
y,




Topological invariants

Yumoto, TM (22)

sum of fn(M) maximal # of species
1D torus 1+1 2
2D torus 1+2+1 4
3D torus 1+3+3+1 3
4D torus 1+4+6+4+1 16
TD (1+1)P 7D
Hyperball 1+0+0+.... 1 for bulk
Sphere 1+0+0+...+1 2
TD x Rd 2D+ 0 2D




Conjecture on fermion species|  vmemay

* Conjecture
(- )

A sum of Betti numbers of background space is
a maximal number of fermion species

when the fermion is defined on the discretized space.
_ J

How can we prove it!



Definition of maximal # of species| e

4D Wilson

maximal number of fermion species

number of modes on real axis



Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent
to each of nullity of the Dirac matrix on 1D torus or 1D
ball by regarding lattice fermion as chain complex.

A4

By use of Kinneth theorem, elevate the above argument to
higher dimensional space such as 4D Torus and Hyperball.

H,(C.®Cl) = @ Hy(C.)® Hy(CY)

pPt+q=n

Jv

Classify necessary conditions and complete proof.




Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by

regarding lattice fermion as chain complex.

: : : Uk+1
| D torus lattice fermion as Chain complex (s Upor 1)
¢ N Uk
CHIW) = anert (i, vir1) | ar et € Z}
k=1
= {a1,2 (v1,v2) + az,3 (V2,v3) + -+ -+ an1 (vn, 1) | a1,2,023, - ,an,1 € L}

Lg\?) : sitmplical complex — graph (1D lattice)
(Ui, Vg+1) : 1-simplices of complex LE\I;) — edges (links)
Vg : boundaries of simplices — vertices (lattice points)

ar.k+1  : coefficients of sitmplices (should be abelian ring)



Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by

regarding lattice fermion as chain complex.

: : : Uk+41
* | D torus lattice fermion as Chain complex (Vg Vs 1)
(N (5
Cl(Lg\If))) = Zak’k_H <vk,vk+1> Ak k+1 € Z}
\ k=1
= {a1,2 (v1,v2) +az3 (v2,v3) +---+an1{vN,v1) | ar12,a23, -+ ,an,1 € Z}
Lg\?) : simplical complex — graph (1D lattice)
(Ui, Vg+1) : 1-simplices of complex LE\I;) — edges (links)
[ Vi : boundaries of simplices — vertices (lattice points) j

ar.k+1  : coefficients of sitmplices (should be abelian ring)



Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by

regarding lattice fermion as chain complex.

: : : Uk+1
| D torus lattice fermion as Chain complex (Vg Vet 1)
‘N Uk
Cl(Lg\If))) = Zak’k+1 <vk,vk+1> Ak k+1 € Z}
k=1
= {a1,2 (v1,v2) + az,3 (V2,v3) + -+ -+ an1 (vn, 1) | a1,2,023, - ,an,1 € L}
1) (0) (0)
0 1 0
) ) ) represented as
oy — me |01 oy  linearly
independent vectors

\0) \0) \1)



Sketch of proof

Yumoto, TM (22)

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

-

\_

B1(M) = rank of Hi(M)=Kero;

~N




Sketch of proof

Yumoto, TM (22)

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

Cycle group Kerd; ¢ €CY(L¥)

N

N
0101 =Y k4101 (Vg Ves1) = ¥ Gy (U — Vpp1)
k=1 k=

1
=a12(v1 —v2)+ass(va—v3)+---+ani(vny —v1)

= (a12 —an1)v1 + (ag3 —ai2)vea + -+ (a1 —an—1,.n)vn =0

a@—=day2 —=0a23 = ... = AN—-1,N

N
= a E (Vk, Ukt 1) ¢y € Ker 0y
k=1



Sketch of proof

Yumoto, TM (22)

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

Cycle group Kerd; ¢ €CY(L¥)
N N

0101 =Y k4101 (Vg Ves1) = ¥ Gy (U — Vpp1)
k=1 k=1

=a12(v1 —v2)+ass(va—v3)+---+ani(vny —v1)

= (a12 —an1)v1 + (ag3 —ai2)vea + -+ (a1 —an—1,.n)vn =0

* a@=0ay2—=0a23 = ... =AaAN—-1,N

Hy(L'2)) = Ker 0, = {a ({vy,v2) + (va,v3) + -+ + (o, v1)) |a € Z} 2 Z




Sketch of proof

Yumoto, TM (22)

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

Cycle group Kerd; ¢ €CY(L¥)
N N

0101 =Y k4101 (Vg Ves1) = ¥ Gy (U — Vpp1)
k=1 k=1

=a12(v1 —v2)+ass(va—v3)+---+ani(vny —v1)

= (a12 —an1)v1 + (ag3 —ai2)vea + -+ (a1 —an—1,.n)vn =0

* a=aj2=0a3=..=0aN_1,N
[ BILY) =1 ]




Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

N
= a g (U, Vet 1) ¢y € Ker 04
k=1

» Orch = a5y 01 (U, Ups1) = @Yy (Vg — Upg1) = 0

* 810/1:a(UQ_U1‘|‘7J2_U3‘|‘"°‘|‘UN_U1)

=a(—v2 +oNy+vi—v3+-+uN_1— V1)



Sketch of proof

Yumoto, TM (22)

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

N
= a g (U, Vet 1) ¢y € Ker 04
k=1

» Orch = a5y 01 (U, Ups1) = @Yy (Vg — Upg1) = 0

* 810/1:a(UQ—”U1+?J2—U3+---+UN—U1)

:a(—U2+UN+U1—2}3—|—“'—|—UN_1—”Ul) =0




Sketch of proof

Yumoto, TM (22)

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

* 316/1Z&(Uz—m-HJz—U3+--~+UN—111)

=a(—ve+ony+vi—v3+- - +UN_1— V1) =0
[0 (1) (1)
—1 0 0

0 —1

\ 1) \ 0 \ 0 )



Sketch of proof

Yumoto, TM (22)

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

* 316/1Z&(Uz—m-HJz—U3+--~+UN—01)

:a(—v2+UN+U1—U3-|—“'—|—UN—1—Ul)=O ( 1
DlD — 5 (Ujl,ZUQ wN>
/0\ (1) /—1\ (0 1 0 0 0 —1)
—1 0 0 1 0 1 0 0 O
0 -1 ...... : 0 —10 0 0 0
=3 :
: : 1 0 0 0 0 1 0
\1) \ 0 \0/ 0 00-- 10 1
W Wo WA \1 0 0 0 -1 0
\_




Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove f1=1 is equivalent to degeneracy of Dirac matrix

N
= a g (U, Vet 1) ¢y € Ker 04
k=1

» Orch = a5y 01 (U, Upg1) = @Yy (Vg — Vpg1) = 0

degeneracy (nullity)

a / — L _ — . .
* 16 = a (v = v+ vy — U3+ oy — v of Dirac matrix
:a(—vg+’UN—|—v1—vs+“'+UN—1—’Ul) » l

=w1+w2+---+wN=0)

zero mode
(fermion species)




Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent to
each of nullity of the Dirac matrix on 1D torus or 1D ball by
regarding lattice fermion as chain complex.

* prove fo=1 is equivalent to degeneracy of Dirac matrix

Bo(M) = rank of Ho(M)=kerdo/Imo:

* degeneracy (nullity)

of Dirac matrix
(wl_w2‘|‘w3_w4°"‘|‘wN—1_wN:O> *

!

zero mode
(fermion species)




Sketch of proof S

Prove each of Betti numbers (fo=1 and f1=1) 1s equivalent

to each of nullity of the Dirac matrix on 1D torus or 1D
ball by regarding lattice fermion as chain complex.

A4

By use of Kinneth theorem, elevate the above argument to
higher dimensional space such as 4D Torus and Hyperball.

H,(C.®Cl) = @ Hy(C.)® Hy(CY)

pPt+q=n

Jv

Classify necessary conditions and complete proof.




Summary

* Lattice fermions are interpreted as spectral graphs. It
means we can study them in terms of topology of graphs.

* New conjecture on fermion doubling is proposed:
The maximal # of species is the sum of Betti numbers.

* The proof is based on use of chain complex and Kunneth’s
theorem.




