Lattice fermions as spectral graphs
 -Toward a new theorem-

Tatsuhiro MISUMI

Table of contents

I. Review on Naive \& Wilson fermions

2. Lattice fermions as spectra graphs

Yumoto,TM (2I)
3. New conjecture on fermion doubling

Yumoto, TM (22)
I. Review on Naive \& Wilson fermions

Wilson fermion : species-splitting mass fermion

Lattice fermion action with species-splitting term $\sum_{n, \mu} \frac{a^{5}}{2} \bar{\psi}_{n}\left(2 \psi_{n}-\psi_{n+\mu}-\psi_{n-\mu}\right)$

$$
\Rightarrow \quad D_{W}(p)=\frac{1}{a} \sum_{\mu}\left[i \gamma_{\mu} \sin a p_{\mu}+\underline{\left(1-\cos a p_{\mu}\right)}\right]
$$

Physical $(0,0,0,0): D_{W}(p)=i \gamma_{\mu} p_{\mu}+O(a)$
$\operatorname{Doubler}(\pi / a, 0,0,0): \quad D_{W}(p)=i \gamma_{\mu} p_{\mu}+\frac{2}{a}+O(a)$
Only one flavor is massless, while others have $O(1 / a)$ mass.

- 15 species are decoupled \rightarrow doubler-less
- $1 / a$ additive mass renormalization \rightarrow Fine-tune
- Domain-wall \& Overlap fermions \rightarrow costs

Wilson fermion as $U(I)$ SPT phases

Topological \# of SPT \sim index of modes with negative mass

These indices reflect topology of Berry connection for free fermion, while gauge field topology plays the same role in gauged theory.

Wilson fermion as $U(I)$ SPT phases

Topological \# of SPT ~ index of modes with negative mass

Domain-wall fermion : gapless mode emerging at boundary between $v=0$ and $v=1$ SPTs, where 't Hooft anomaly cancels.

Wilson fermion as $U(I)$ SPT phases

Topological \# of SPT ~ index of modes with negative mass

Wilson fermion as U(I) SPT phases

Topological \# of SPT ~ index of modes with negative mass

Wilson fermion as U(I) SPT phases

Topological \# of SPT ~ index of modes with negative mass

Wilson fermion as $U(I)$ SPT phases

Topological \# of SPT \sim index of modes with negative mass

Symmetry-protected topological phase

- G-Symmetry Protected Topological phase (SPT) Wen, etal., (13)
I. Unique ground state with trivial gap as long as G is unbroken

2. Gap should be closed when moving to another SPT
3. Massless modes at boundary btwn two different SPTs
4. 't Hooft anomaly cancelled btwn bulk \& boundary with gauged G

All 't Hooft anomalies are (expected to be) classified by SPTs.

Symmetry-protected topological phase

ex.) $(2+1)$-dim free massive Dirac fermion $=U(1) S P T=I Q H S$

$$
\begin{array}{c|r}
\mathrm{m}<0 \\
Z=e^{-2 \pi i \eta} \\
\left(\eta: \text { APS } \eta \text {-invariant } \equiv \sum_{i} \operatorname{sgn}\left[\lambda_{i}\right]\right) & \mathrm{m}>0 \\
Z=1 \\
2 \text {-dim chiral fermions } Z_{\text {bndry }}
\end{array}
$$

Symmetry-protected topological phase

ex.) (2+1)-dim free massive Dirac fermion $=\mathrm{U}(1) \mathrm{SPT}=\mathrm{IQHS}$

$$
\begin{aligned}
& \mathrm{m}<0 \\
& Z=e^{-2 \pi i \eta} \\
& \text { APS index theorem } \\
& \text { cf.)Fukaya, Onogi, } \\
& \text { Yamaguchi,et.al.(17-19) } \\
& =e^{\frac{i}{4 \pi} \int A d A} \\
& \mathrm{~m}>0 \\
& Z=1 \\
& \text { 2-dim chiral fermions } Z_{\text {bndry }} \\
& Z_{\text {total }}=Z_{\text {bulk }} \cdot Z_{\text {bndry }} \longrightarrow Z_{\text {bulk }} e^{\frac{i}{4 \pi} \int F} \cdot Z_{\text {bndry }} e^{-\frac{i}{4 \pi} \int F}=Z_{\text {total }} \\
& \text { 't Hooft anomaly is cancelled between bulk and boundary }
\end{aligned}
$$

2. Lattice fermions as spectral graphs

Lattice fermion as spectral graph

Definition 1. A graph \boldsymbol{G} is a pair $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E}) . V$ is a set of vertices and E is a set of edges.

Definition 2. A directed graph is a pair ($V, E)$ of sets of vertices and edges together with two maps init $: \boldsymbol{E} \rightarrow \boldsymbol{V}$ and ter $: \boldsymbol{E} \rightarrow \boldsymbol{V}$. The two maps are assigned to every edge $e_{i j}$ with an initial vertex $\operatorname{init}\left(e_{i j}\right)=v_{i} \in V$ and a terminal vertex $\operatorname{ter}\left(e_{i j}\right)=v_{j} \in V$. If $\operatorname{init}\left(e_{i j}\right)=\operatorname{ter}\left(e_{i j}\right)$, the edge $e_{i j}$ is called a loop.

Definition 3. A weighted graph has a value (weight) for each edge in a graph.

Definition 4. A adjacency matrix A of a graph is the $/ V / \times / V /$ matrix given by

$$
A_{i j}= \begin{cases}w_{i j} & \text { if there is a edge from i to } j \\ 0 & \text { otherwise }\end{cases}
$$

where $w_{i j}$ is the weight of an edge from ito j.

Lattice fermion as spectral graph

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & -1 \\
-4 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
3 & 0 & -2 & 0
\end{array}\right)
$$

Lattice fermion as spectral graph

- Naive fermion

1D

$$
\mathcal{D}^{1 \mathrm{~d}}=P_{N} \otimes \gamma_{1}
$$

$$
D^{2 \mathrm{~d}}=\mathbf{1}_{N} \otimes P_{N} \otimes \gamma_{1}+P_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{2}
$$

Lattice fermion as spectral graph

- 4D Naive fermion

$$
\begin{aligned}
\mathcal{D} & =\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes P_{N} \otimes \gamma_{1} \\
& +\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes P_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{2} \\
& +\mathbf{1}_{N} \otimes P_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{3} \\
& +P_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{4} \\
P_{N}= & \frac{1}{2}\left(\begin{array}{ccccccc}
0 & 1 & 0 & & 0 & 0 & -1 \\
-1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & -1 & 0 & & 0 & 0 & 0 \\
& \vdots & & \ddots & & \vdots & \\
0 & 0 & 0 & & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & -1 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0
\end{array}\right)
\end{aligned}
$$

Lattice fermion as spectral graph

- Diagonalization

$$
\begin{aligned}
& P_{N} X=i \operatorname{Diag}\left[0, \sin \frac{2 \pi}{N}, \sin \frac{4 \pi}{N}, \cdots, \sin \frac{2(N-1) \pi}{N}\right] X \equiv \Lambda_{P_{N}} X . \\
& \\
& \quad \begin{aligned}
\mathcal{U}^{\dagger} \mathcal{D} \mathcal{U} & =\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \Lambda_{P_{N}} \otimes \gamma_{1} \\
& +\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \Lambda_{P_{N}} \otimes \mathbf{1}_{N} \otimes \gamma_{2} \quad \mathcal{U}=\otimes_{\mu=1}^{4} X \otimes \mathbf{1}_{4} \\
& +\mathbf{1}_{N} \otimes \Lambda_{P_{N}} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{3} \\
& +\Lambda_{P_{N}} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{4}
\end{aligned}
\end{aligned}
$$

$$
\sum_{\mu=1}^{4} \sin \left(\frac{2 \pi\left(k_{\mu}-1\right)}{N}\right) \gamma_{\mu}=\mathbf{0} .
$$

16 zero modes

16 species

Lattice fermion as spectral graph

-Wilson fermion

$$
\begin{aligned}
& D_{W}^{1 \mathrm{~d}}=P_{N} \otimes \gamma_{1}+m \mathbf{1}_{N} \otimes \mathbf{1}_{4}+r M_{W} \otimes \mathbf{1}_{4} \\
& M_{W}=\mathbf{1}_{N}-\left(E+E^{\dagger}\right) / 2 \\
& D_{W}^{2 \mathrm{~d}}=\mathbf{1}_{N} \otimes P_{N} \otimes \gamma_{1}+P_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{2} \\
& +m\left(\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{4}\right)+r\left(\mathbf{1}_{N} \otimes M_{W}+M_{W} \otimes \mathbf{1}_{N}\right) \otimes \mathbf{1}_{4}
\end{aligned}
$$

$\pm\left(\gamma_{1} \mp r \mathbf{1}_{4}\right) / 2$
$M=m+r$

$$
\begin{gathered}
\sin \left(\frac{2 \pi\left(k_{\mu}-1\right)}{N}\right)=0 \\
m+4 r-r \sum_{\mu} \cos \left(\frac{2 \pi\left(k_{\mu}-1\right)}{N}\right)=0
\end{gathered}
$$

single zero mode = one species

Lattice fermion as spectral graph

- Domain-wall fermion

Lattice fermion as spectral graph

- Domain-wall fermion

\# of zero modes depends on the range of mass parameter

Lattice fermion as spectral graph

- Naive fermion on hyperball

$$
\begin{aligned}
\mathcal{D}_{B^{1}} & =Q_{N} \otimes \gamma_{1} \\
\mathcal{D}_{B^{2}} & =\mathbf{1}_{N} \otimes Q_{N} \otimes \gamma_{1}+Q_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{2} \\
\mathcal{D}_{B^{4}} & =\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes Q_{N} \otimes \gamma_{1} \\
& +\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes Q_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{2} \\
& +\mathbf{1}_{N} \otimes Q_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{3} \\
& +Q_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{4} .
\end{aligned}
$$

$$
Q_{N}=\frac{1}{2}\left(\begin{array}{ccccccc}
0 & 1 & 0 & & 0 & 0 & 0 \\
-1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & -1 & 0 & & 0 & 0 & 0 \\
& \vdots & & \ddots & & \vdots & \\
0 & 0 & 0 & & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & -1 & 0 & 1 \\
0 & 0 & 0 & & 0 & -1 & 0
\end{array}\right)
$$

Lattice fermion as spectral graph

- Naive fermion on 4D hyperball

$$
\begin{aligned}
& Q_{N} Y=i \operatorname{Diag}\left[\cos \left(\frac{\pi}{N+1}\right), \cos \left(\frac{2 \pi}{N+1}\right), \cdots, \cos \left(\frac{N \pi}{N+1}\right)\right] \equiv \Lambda_{Q_{N}} X \\
& \qquad \begin{aligned}
\mathcal{V}^{\dagger} \mathcal{D}_{B^{4}} \mathcal{V} & =\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \Lambda_{Q_{N}} \otimes \gamma_{1} \\
& +\mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \Lambda_{Q_{N}} \otimes \mathbf{1}_{N} \otimes \gamma_{2} \\
& +\mathbf{1}_{N} \otimes \Lambda_{Q_{N}} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{3} \\
& +\Lambda_{Q_{N}} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \mathbf{1}_{N} \otimes \gamma_{4}
\end{aligned} \quad \mathcal{V} \equiv \otimes_{\mu=1}^{4} Y \otimes \mathbf{1}_{4}
\end{aligned}
$$

zero mode in bulk

I species in bulk

Lattice fermion as spectral graph

- Naive fermion on sphere

Lattice fermion as spectral graph

Lattice field theory

Lattice fermion
\# of Fermion species

Spectral graph theory

Directed and Weighted spectral graph

Nullity of spectral matrix

We can study lattice field theory in terms of SGT.
3. New conjecture on fermion doubling

Nielsen-Ninomiya's no-go theorem is just no-go theorem.
It never tells us how many fermion species emerge given a lattice fermion formulation.

Is there a theorem which informs us of \# of species?

Reconsider Naive and Wilson

What is the meaning of the numbers?

Reconsider Naive and Wilson

What is the meaning of the numbers?

Reconsider Naive and Wilson

What is the meaning of the numbers?

Reconsider Naive and Wilson

What is the meaning of the numbers?
The reason why $p=\pi$ becomes zero of Dirac operator is "periodicity"

Reconsider Naive and Wilson

What is the meaning of the numbers?
It means these numbers are related to certain topological invariants

Reconsider Naive and Wilson

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.

$$
\beta_{n}(M)=\operatorname{rank} \text { of } H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

n-th Betti number is a rank of n-th homology group

- 4D torus
$\begin{array}{lllll}\beta_{0}(M)=1 & \beta_{1}(M)=4 & \beta_{2}(M)=6 & \beta_{3}(M)=4 & \beta_{4}(M)=1\end{array}$

Sum of Betti numbers is $16 \rightarrow \#$ of naive fermion species!

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.

$$
\beta_{n}(M)=\operatorname{rank} \text { of } H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

n-th Betti number is a rank of n-th homology group
-3D torus

$$
\beta_{0}(M)=1 \quad \beta_{1}(M)=3 \quad \beta_{2}(M)=3 \quad \beta_{3}(M)=1
$$

Sum of Betti numbers is $8 \rightarrow \#$ of naive fermion species!

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.

$$
\beta_{n}(M)=\operatorname{rank} \text { of } H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

n-th Betti number is a rank of n-th homology group

- 2D torus

$$
\beta_{0}(M)=1 \quad \beta_{1}(M)=2 \quad \beta_{2}(M)=1
$$

Sum of Betti numbers is $4 \rightarrow$ \# of naive fermion species !

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.

$$
\beta_{n}(M)=\operatorname{rank} \text { of } H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

n-th Betti number is a rank of n-th homology group

- D-dim hyperball

$$
\beta_{0}(M)=1 \quad \beta_{1}(M)=0 \quad \beta_{2}(M)=0 \ldots \ldots
$$

Sum of Betti numbers is $1 \rightarrow \#$ of bulk fermion species !

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.

$$
\beta_{n}(M)=\operatorname{rank} \text { of } H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

n-th Betti number is a rank of n-th homology group

- D-dim hyperball

$$
\beta_{0}(M)=1
$$

Sum of Betti numbers is $1 \rightarrow \#$ of bulk fermion species !

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.
$\beta_{n}(M)=\operatorname{rank}$ of $H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}$
n-th Betti number is a rank of n-th homology group

- $\mathbf{T}^{4} \times \mathbf{R}^{\mathbf{1}}$
$\beta_{0}(M)=1 \quad \beta_{1}(M)=4 \quad \beta_{2}(M)=6 \quad \beta_{3}(M)=4 \quad \beta_{4}(M)=1 \quad \beta_{5}(M)=0$

Sum of Betti numbers is $16 \rightarrow$ maximal \# of species !

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.
$\beta_{n}(M)=\operatorname{rank}$ of $H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}$
n-th Betti number is a rank of n-th homology group

- $\mathbf{T}^{\mathbf{2}} \times \mathbf{R}^{\mathbf{2}}$
$\beta_{0}(M)=1 \quad \beta_{1}(M)=2 \quad \beta_{2}(M)=1 \quad \beta_{3}(M)=0 \quad \beta_{4}(M)=0$

Sum of Betti numbers is $4 \rightarrow$ maximal \# of species!

Topological invariants

- Topological invariant

Betti number is an indicator how many n-dimensional holes the space has.

$$
\beta_{n}(M)=\operatorname{rank} \text { of } H_{n}(M)=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1}
$$

n-th Betti number is a rank of n-th homology group

- 2D Spheres

$$
\beta_{0}(M)=1 \quad \beta_{1}(M)=0 \quad \beta_{2}(M)=1
$$

Sum of Betti numbers is $2 \rightarrow \#$ of fermion species !

Topological invariants

	sum of $\beta_{\mathrm{n}}(\mathrm{M})$	maximal \# of species
1D torus	$1+1$	2
2D torus	$1+2+1$	4
3D torus	$1+3+3+1$	8
4D torus	$1+4+6+4+1$	16
$\mathrm{~T}^{\mathrm{D}}$	$(1+1)^{\mathrm{D}}$	2^{D}
Hyperball	$1+0+0+\ldots$	1
for bulk		
$\mathrm{T}^{\mathrm{D}} \times \mathrm{R}^{\mathrm{d}}$	$2^{\mathrm{D}}+0$	2

Conjecture on fermion species

- Conjecture

A sum of Betti numbers of background space is a maximal number of fermion species when the fermion is defined on the discretized space.

How can we prove it?

Definition of maximal \# of species

maximal number of fermion species
 $$
=
$$

number of modes on real axis

Sketch of proof

Prove each of Betti numbers ($\beta_{0}=1$ and $\beta_{1}=1$) is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

By use of Künneth theorem, elevate the above argument to higher dimensional space such as 4D Torus and Hyperball.

$$
H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \cong \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right)
$$

Classify necessary conditions and complete proof.

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- ID torus lattice fermion as Chain complex

$$
\begin{aligned}
\mathcal{C}^{1}\left(L_{N}^{(\mathrm{p})}\right) & \equiv\left\{\sum_{k=1}^{N} a_{k, k+1}\left\langle v_{k}, v_{k+1}\right\rangle \mid a_{k, k+1} \in \mathbb{Z}\right\} \\
& =\left\{a_{1,2}\left\langle v_{1}, v_{2}\right\rangle+a_{2,3}\left\langle v_{2}, v_{3}\right\rangle+\cdots+a_{N, 1}\left\langle v_{N}, v_{1}\right\rangle \mid a_{1,2}, a_{2,3}, \cdots, a_{N, 1} \in \mathbb{Z}\right\}
\end{aligned}
$$

$L_{N}^{(\mathrm{p})} \quad:$ simplical complex \rightarrow graph (1D lattice)
$\left\langle v_{k}, v_{k+1}\right\rangle: 1$-simplices of complex $L_{N}^{(\mathrm{p})} \rightarrow$ edges (links)
$v_{k} \quad:$ boundaries of simplices \rightarrow vertices (lattice points)
$a_{k, k+1} \quad$: coefficients of simplices (should be abelian ring)

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- ID torus lattice fermion as Chain complex

$$
\begin{aligned}
\mathcal{C}^{1}\left(L_{N}^{(\mathrm{p})}\right) & \equiv\left\{\sum_{k=1}^{N} a_{k, k+1}\left\langle v_{k}, v_{k+1}\right\rangle \mid a_{k, k+1} \in \mathbb{Z}\right\} \\
& =\left\{a_{1,2}\left\langle v_{1}, v_{2}\right\rangle+a_{2,3}\left\langle v_{2}, v_{3}\right\rangle+\cdots+a_{N, 1}\left\langle v_{N}, v_{1}\right\rangle \mid a_{1,2}, a_{2,3}, \cdots, a_{N, 1} \in \mathbb{Z}\right\}
\end{aligned}
$$

$L_{N}^{(\mathrm{p})} \quad:$ simplical complex \rightarrow graph (1D lattice)
$\left\langle v_{k}, v_{k+1}\right\rangle: 1$-simplices of complex $L_{N}^{(\mathrm{p})} \rightarrow$ edges (links)
$v_{k} \quad$: boundaries of simplices \rightarrow vertices (lattice points)
$a_{k, k+1}$: coefficients of simplices (should be abelian ring)

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- ID torus lattice fermion as Chain complex

$$
\begin{aligned}
\mathcal{C}^{1}\left(L_{N}^{(\mathrm{p})}\right) & \equiv\left\{\sum_{k=1}^{N} a_{k, k+1}\left\langle v_{k}, v_{k+1}\right\rangle \mid a_{k, k+1} \in \mathbb{Z}\right\} \\
& =\left\{a_{1,2}\left\langle v_{1}, v_{2}\right\rangle+a_{2,3}\left\langle v_{2}, v_{3}\right\rangle+\cdots+a_{N, 1}\left\langle v_{N}, v_{1}\right\rangle \mid a_{1,2}, a_{2,3}, \cdots, a_{N, 1} \in \mathbb{Z}\right\}
\end{aligned}
$$

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)
$$

$$
v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
. \\
\\
0
\end{array}\right)
$$

$$
v_{N}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
\cdot \\
\cdot \\
1
\end{array}\right)
$$

represented as linearly independent vectors

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

$$
\beta_{1}(M)=\operatorname{rank} \text { of } H_{1}(M)=\operatorname{Ker} \partial_{1}
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

Cycle group Kerд ${ }_{1} \quad c_{1} \in \mathcal{C}^{1}\left(L_{N}^{(\mathrm{p})}\right)$

$$
\begin{aligned}
& \partial_{1} c_{1}= \sum_{k=1}^{N} a_{k, k+1} \partial_{1}\left\langle v_{k}, v_{k+1}\right\rangle=\sum_{k=1}^{N} a_{k, k+1}\left(v_{k}-v_{k+1}\right) \\
&=a_{1,2}\left(v_{1}-v_{2}\right)+a_{2,3}\left(v_{2}-v_{3}\right)+\cdots+a_{N, 1}\left(v_{N}-v_{1}\right) \\
&=\left(a_{12}-a_{N 1}\right) v_{1}+\left(a_{23}-a_{12}\right) v_{2}+\cdots+\left(a_{N, 1}-a_{N-1, N}\right) v_{N}=0 \\
& a=a_{1,2}=a_{2,3}=\ldots=a_{N-1, N} \\
& c_{1}^{\prime}=a \sum_{k=1}^{N}\left\langle v_{k}, v_{k+1}\right\rangle \quad c_{1}^{\prime} \in \operatorname{Ker} \partial_{1}
\end{aligned}
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

Cycle group Kerд ${ }_{1} \quad c_{1} \in \mathcal{C}^{1}\left(L_{N}^{(\mathrm{p})}\right)$

$$
\begin{aligned}
& \begin{aligned}
\partial_{1} c_{1} & =\sum_{k=1}^{N} a_{k, k+1} \partial_{1}\left\langle v_{k}, v_{k+1}\right\rangle=\sum_{k=1}^{N} a_{k, k+1}\left(v_{k}-v_{k+1}\right) \\
& =a_{1,2}\left(v_{1}-v_{2}\right)+a_{2,3}\left(v_{2}-v_{3}\right)+\cdots+a_{N, 1}\left(v_{N}-v_{1}\right) \\
& =\left(a_{12}-a_{N 1}\right) v_{1}+\left(a_{23}-a_{12}\right) v_{2}+\cdots+\left(a_{N, 1}-a_{N-1, N}\right) v_{N}=0
\end{aligned} \\
& \quad \begin{array}{l}
a=a_{1,2}=a_{2,3}=\ldots=a_{N-1, N}
\end{array} \\
& H_{1}\left(L_{N}^{(\mathrm{p})}\right)=\operatorname{Ker} \partial_{1}=\left\{a\left(\left\langle v_{1}, v_{2}\right\rangle+\left\langle v_{2}, v_{3}\right\rangle+\cdots+\left\langle v_{N}, v_{1}\right\rangle\right) \mid a \in \mathbb{Z}\right\} \cong \mathbb{Z}
\end{aligned}
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

Cycle group Kerд ${ }_{1} \quad c_{1} \in \mathcal{C}^{1}\left(L_{N}^{(\mathrm{p})}\right)$

$$
\begin{aligned}
& \partial_{1} c_{1}=\sum_{k=1}^{N} a_{k, k+1} \partial_{1}\left\langle v_{k}, v_{k+1}\right\rangle=\sum_{k=1}^{N} a_{k, k+1}\left(v_{k}-v_{k+1}\right) \\
&=a_{1,2}\left(v_{1}-v_{2}\right)+a_{2,3}\left(v_{2}-v_{3}\right)+\cdots+a_{N, 1}\left(v_{N}-v_{1}\right) \\
&=\left(a_{12}-a_{N 1}\right) v_{1}+\left(a_{23}-a_{12}\right) v_{2}+\cdots+\left(a_{N, 1}-a_{N-1, N}\right) v_{N}=0 \\
& a=a_{1,2}=a_{2,3}=\ldots=a_{N-1, N} \\
& \beta_{1}\left(L_{N}^{(\mathrm{p})}\right)=1
\end{aligned}
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

$$
c_{1}^{\prime}=a \sum_{k=1}^{N}\left\langle v_{k}, v_{k+1}\right\rangle \quad c_{1}^{\prime} \in \operatorname{Ker} \partial_{1}
$$

$$
\partial_{1} c_{1}^{\prime}=a \sum_{k=1}^{N} \partial_{1}\left\langle v_{k}, v_{k+1}\right\rangle=a \sum_{k=1}^{N}\left(v_{k}-v_{k+1}\right)=0
$$

$$
\partial_{1} c_{1}^{\prime}=a\left(v_{2}-v_{1}+v_{2}-v_{3}+\cdots+v_{N}-v_{1}\right)
$$

$$
=a\left(-v_{2}+v_{N}+v_{1}-v_{3}+\cdots+v_{N-1}-v_{1}\right)
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

$$
c_{1}^{\prime}=a \sum_{k=1}^{N}\left\langle v_{k}, v_{k+1}\right\rangle \quad c_{1}^{\prime} \in \operatorname{Ker} \partial_{1}
$$

$$
\partial_{1} c_{1}^{\prime}=a \sum_{k=1}^{N} \partial_{1}\left\langle v_{k}, v_{k+1}\right\rangle=a \sum_{k=1}^{N}\left(v_{k}-v_{k+1}\right)=0
$$

$$
\partial_{1} c_{1}^{\prime}=a\left(v_{2}-v_{1}+v_{2}-v_{3}+\cdots+v_{N}-v_{1}\right)
$$

$$
=a\left(\underline{\left(-v_{2}+v_{N}\right.}+\underline{v_{1}-v_{3}}+\cdots+\underline{v_{N-1}-v_{1}}\right)=0
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

$$
\begin{aligned}
\partial_{1} c_{1}^{\prime} & =a\left(v_{2}-v_{1}+v_{2}-v_{3}+\cdots+v_{N}-v_{1}\right) \\
& =a\left(-v_{2}+v_{N}+\underline{\left.v_{1}-v_{3}+\cdots+v_{N-1}-v_{1}\right)}=0\right. \\
\left(\begin{array}{c}
0 \\
-1 \\
0 \\
\cdot \\
\cdot \\
1
\end{array}\right) & =\left(\begin{array}{c}
1 \\
0 \\
-1 \\
\cdot \\
0
\end{array}\right) \\
& =\cdots\left(\begin{array}{c}
-1 \\
0 \\
\cdot \\
\cdot \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

$$
\begin{aligned}
& \partial_{1} c_{1}^{\prime}=a\left(v_{2}-v_{1}+v_{2}-v_{3}+\cdots+v_{N}-v_{1}\right) \\
&=a\left(\frac{\left(-v_{2}+v_{N}\right.}{}+\underline{\left.v_{1}-v_{3}+\cdots+\underline{v_{N-1}-v_{1}}\right)}=0\right. \\
&\left(\begin{array}{c}
0 \\
-1 \\
0 \\
\cdot \\
1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1 \\
\cdot \\
w_{1} \\
0
\end{array}\right) \\
& w_{2}\left.\cdots \cdots \begin{array}{c}
-1 \\
0 \\
\cdot \\
1 \\
0
\end{array}\right) \\
& w_{N}
\end{aligned}
$$

$$
\mathcal{D}_{1 \mathrm{D}}=\frac{1}{2}\left(w_{1}, w_{2} \cdots w_{N}\right)
$$

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{1}=1$ is equivalent to degeneracy of Dirac matrix

$$
c_{1}^{\prime}=a \sum_{k=1}^{N}\left\langle v_{k}, v_{k+1}\right\rangle \quad c_{1}^{\prime} \in \operatorname{Ker} \partial_{1}
$$

$$
\partial_{1} c_{1}^{\prime}=a \sum_{k=1}^{N} \partial_{1}\left\langle v_{k}, v_{k+1}\right\rangle=a \sum_{k=1}^{N}\left(v_{k}-v_{k+1}\right)=0
$$

$$
\partial_{1} c_{1}^{\prime}=a\left(v_{2}-v_{1}+v_{2}-v_{3}+\cdots+v_{N}-v_{1}\right)
$$

degeneracy (nullity)

$$
\begin{aligned}
& =a\left(-v_{2}+v_{N}+v_{1}-v_{3}+\cdots+v_{N-1}-v_{1}\right) \\
& =w_{1}+w_{2}+\cdots+w_{N}=0
\end{aligned}
$$ of Dirac matrix

zero mode (fermion species)

Sketch of proof

Prove each of Betti numbers $\left(\beta_{0}=1\right.$ and $\left.\beta_{1}=1\right)$ is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

- prove $\beta_{0}=1$ is equivalent to degeneracy of Dirac matrix
$\beta_{0}(M)=\operatorname{rank}$ of $H_{0}(M)=\operatorname{ker} \partial_{0} / \operatorname{Im} \partial_{1}$

Sketch of proof

Prove each of Betti numbers ($\beta_{0}=1$ and $\beta_{1}=1$) is equivalent to each of nullity of the Dirac matrix on 1D torus or 1D ball by regarding lattice fermion as chain complex.

By use of Künneth theorem, elevate the above argument to higher dimensional space such as 4D Torus and Hyperball.

$$
H_{n}\left(C_{*} \otimes C_{*}^{\prime}\right) \cong \bigoplus_{p+q=n} H_{p}\left(C_{*}\right) \otimes H_{q}\left(C_{*}^{\prime}\right)
$$

Classify necessary conditions and complete proof.

Summary

- Lattice fermions are interpreted as spectral graphs. It means we can study them in terms of topology of graphs.
- New conjecture on fermion doubling is proposed: The maximal \# of species is the sum of Betti numbers.
- The proof is based on use of chain complex and Kunneth's theorem.

