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Background (1/3)

Interest for the real-time path integral

Nonperturbative calculation of Euclidean path integrals
has been successfully performed with Monte Carlo methods;

Real-time dynamics of quantum theories, especially non-perturbative features:

• creation and evolution of jets in heavy-ion collisions
• evolution of the universe in very early stage
• non-equilibrium properties of quark-gluon plasma

however, there exists the notorious sign problem
in its application to real-time path integrals:

e.g.,

Since integrands are highly oscillatory,
we need an exponentially large sample size, ! "!"# , to a have meaningful estimation

#: (Minkowski) action

[2/36]

! ≡ ∫ $% &!" # !(%)
∫ $% &!" #

$: observable

%: SU(3) link field

The real-time path integral of QCD has hardly been explored.

taken from PHENIX website

makes the conventional way of calculation practically impossible.

e.g., Fukaya, Onogi, et al. [JLQCD] 08



[3/36]

It is becoming of practical importance (not only of theoretical interest)
to establish an appropriate way to evaluate real-time path integrals.

Recently, many ideas have been developed to overcome the sign problem
real-time path integrals becoming numerically accessible.

complex Langevin

tensor renormalization group (TRG)

Witten 10, Cristoforetti-Di Renzo-Scorzato12, Fujii-Honda-Kato-Kikukawa-Komatsu-Sano 13
Alexandruet al. 15, Fukuma-Umeda 17, Alexandruet al. 17, Fukuma-NM 20

Berges-Borsanyi-Sexty-Stamatescu 07, Berges-Sexty-Stamatescu 08
Boguslavski-Hotzy-Müller 22

Levin-Nave 06

• real-time Yang-Mills

contour deformation

Parisi 83, Klauder 83, 84, 
Aarts-Seiler-Stamatescu 09, Aarts-James-Seiler-Stamatescu 09

Takeda 19, 21

• real-time QM

Kanwar-Wagman 21

• real-time scalar field

• real-time Yang-Mills

Alexandru-Basar-Bedaque-Ridgway 17
Mou-Saffin-Tranberg-Woodward 19

Alexandru-Basar-Bedaque-Vartak-Warrington 16 
Fujisawa-Nishimura-Sakai-Yosprakob 21

• real-time scalar field

• real-time scalar field Berges-Stamatescu 05, Berges-Borsanyi-Sexty-Stamatescu 07

cf. Hoshina-Fujii-Kikukawa 20

Background (2/3)



- Hoshina-Fujii-Kikukawa 20:

- Kanwar-Wagman 21:

• Unitarity and convergence in lattice gauge theory 

• Need of &' discussed in non-relativistic QM

See also Fatollahi 16 for a discussion on unitarity in theories with compact variables.

It has been discussed that
real-time path integral requires care (especially in theories with compact variables):

- The discretized path integral is not well-defined exactly on ' = 0
for systems with compact variables.

Langguth-Inomata 79, Bohm-Junker 87

- Need of &' can be seen from
the asymptotic expansion of the modified Bessel function *$ + .

[4/36]

developed Schwinger-Keldysh formalism
with the transfer matrix respecting unitarity
using character expansion.

proposed alternative actions to the Wilson action 
removing divergences that existed in the character expansion action
with contour deformation.

QCD on the lattice: gauge field takes values on a compact group. Wilson 74

Background (3/3)



Summary of this work (1/2)

• We can use conventional lattice gauge theory actions (in particular, Wilson), 
but by properly implementing the &'.

We here would like to clarify that:

• It is here important that the &' should be implemented
both for timelike and spacelike plaquettes.

We would further like to argue the reason why &' becomes necessary in lattice gauge theories
from the Feynman kernel derived in Hamiltonian formalism.

[5/36]

• Note that the plaquette action reproduces the continuum action 
only for continuous field configurations;

• The &' is required to manifestly suppress the contributions from these large fluctuations,
as is the case in Euclidean path integral.

naive use of the plaquette action makes the phase factor 
associated with large fluctuations different from the continuum theory.

Consequently, it breaks the delicate cancelation in the real-time path integral
for the large fluctuations.

Use of !" to stabilize Complex Langevin:
Berges-Borsanyi-Sexty-Stamatescu 07
See also Boguslavski-Hotzy-Müller 22

It should be noted that this subtlety is not evident in noncompact scalar field theories
discretized with the ordinary differences into a Gaussian form.



Summary of this work (2/2)

[6/36]

• In this work, no Monte Carlo result is presented.

• Kanwar-Wagman 21’s idea: 
Deform the integration contour under ' > 0 in a way that
we can take ' → 0 limit on the deformed contour without divergences.

They addressed the unitarity of the real-time transfer matrix,
and considered the &' in the kinetic term in constructing the contour deformation analytically.

however, as we argue below, the asymptotic expansion analysis explains 
the need of &' also for the spatial plaquettes in higher dimensions to obtain the continuum theory, 
in which case such analytic contour deformation is difficult to find.

They showed that the deformation removes the problem of convergence 
together with the sign problem that works perfectly in 2D YM theory;

• The &' for spatial plaquettes has a peculiar consequence:

It restricts the configuration space to have continuity to an extent,
but prevents the transfer matrix from being unitary for finite /.
We discuss possible consequences in quantum algorithms on the last slide.

Construction of an algorithm 
and calculation in progress [NM+]
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Example in quantum mechanics (review) (1/3)

energy eigenvalues

The simplest example having the subtlety: particle in a periodic box 

particle 0 ≡ %

&'
2 with mass 3 ≡ 25 &6/8&,

Hamiltonian

# $ ≡
&

2
(
!

"

)* +#$
$, 2: angular variable on #(

8: spatial extent

- ≡
1

2&
/%
$ :): conjugate momentum of 2

momentum eigenstates: plane waves

0&'% (2 ∈ ℤ)

6' ≡
1

2&
2$

transition amplitude

7'*,'+ 8 ≡ ⟨2) 0
*& +, " 2&⟩

[7/36]

Kanwar-Wagman 21
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Langguth-Inomata 79



Example in quantum mechanics (review) (2/3)

A naive discretization gives the path integral:

7'*,'+
(./0)

8 ≡ A( )B 0&2 3 B4
∗ '*B!

'+ ; ≡ </

%ℓ ≡ "-)ℓ

2ℓ ≡ 2 /ℓ (ℓ = 0,⋯ ,<)

plaquette-like action

)B ≡C

ℓ7!

4

)Bℓ ≡C

ℓ7!

4
)$ℓ

2D

# B ≡ −
&

E
F

ℓ7!

4*8

Re (Bℓ98Bℓ
∗) = −

&

E
F

ℓ7!

4*8

cos($ℓ98 − $ℓ) .

normalization

[8/36]

cf. Kanwar-Wagman 21

Haar measure



Example in quantum mechanics (review) (3/3)

7'*,'+
(./0)

8 = A( )B C

ℓ7!

4*8

F

'ℓ∈ℤ

L'ℓ −
!&

E
Bℓ98
'ℓ Bℓ

'ℓ ∗
B4
∗ '*B!

'+

Fourier/character expansion:

0
*& <= >? 3 =F

'∈ℤ

L' −
!&

E
B'

L' M ≡ (
*@

@ )$

2D
0*&'%0A BCD%

*$(+) modified Bessel function

orthogonality

()B B' BE ∗ = <'E

= A C

ℓ7!

4*8

L'ℓ −
!&

E
<'*,'.⋯<'/,'+

= A<'*,'+L'*
4 −

!&

E

[9/36]

∴

cf. Kanwar-Wagman 21



Subtlety from the asymptotic expansion (1/2)

For arg+ <
'

&
, 2nd term is completely ignorable.

7'*,'+
(./0)

8 = A<'*,'+L'*
4 −

!&

E

analytic for all 6 ∈ ℂ for finite /, 
but the situation changes in the limit / → 0.

L' M ∼
0A

2DM
F

FG!

Γ(2 + R + 1/2)

R! Γ(2 − R + 1/2)
−
1

2M

F

± !0±&'@
0*A

2DM
F

FG!

Γ(2 + R + 1/2)

R! Γ(2 − R + 1/2)

1

2M

F

asymptotic expansion of *$ + ( + → ∞)

+:−
L

2
< argR <

3L

2

−:−
3L

2
< argR <

L

2

For arg + = −
'

&
(naive real-time case), 2nd term equally contributes.

J$" ,$#
(234) ; behaves differently depending on how we take / → 0 when using the real-time.∴

[10/36]

Langguth-Inomata 79

Kanwar-Wagman 21

derived naive amplitude
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real-time, 
continuum theory



7'*,'+
(./0)

8 = A<'*,'+L'*
4 −

!&

E
→ A<'*,'+L'*

4 −
!0&T&

E

The correct continuum limit is the one we obtain by introducing &' (' > 0): 

By first taking / → 0 while keeping ' finite:

*$ +
*6 +

∼ 1 −
M&

2
1
+
+ ⋯

L'*

−!0&T&

E
/L!

−!0&T&

E

4

∼ 1 − ! 0*&T
2)
$

2

E

&
+⋯

4

=→!
exp −!0*&T

2)
$8

2&
.

7'*,'+
(./0)

8
=→!

<'*,'+exp −!0*&T6'*8
T→!

<'*,'+exp −!6'*8 .

We need to introduce &' in path integral to obtain the appropriate continuum limit,
Without &', the 2nd term of the asymptotic expansion gives severe oscillation.

[11/36]

Langguth-Inomata 79
Bohm-Junker 87

Subtlety from the asymptotic expansion (2/2)

Indeed, we can then use the expansion for arg+ <
'

&
:

2.×10-6 4.×10-6 6.×10-6 8.×10-6 0.00001
a

0.606529

0.606530

0.606530

e-1/2

(1-a/2)^(1/a)

(I1(1/a)/I0(1/a))1/a

Existence of the limit:
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Hamiltonian formalism (1/2)

It may be uncertain at which stage such &' becomes required.

We here clarify these points from Hamiltonian formalism.

Feynman kernel (/: time increment)

%′ &$!% &' % = %( &
$!%
)* +,#

$
%

,% | % ⟩ = % | % ⟩

• WB, /̂%: canonical operators O% is not the time evolution operator;
rather O% ∼ "- 7)

[WB, /̂%] = WB

• 2 : momentum basis ⟨ % | 0 ⟩ ≡ %-

• B : configuration basis

[12/36]

commutation relation

=F

'∈ℤ

exp
−!E

2&
2$ + !2($′ − $)

B = 0&%, B′ = 0&%
8

$,$W ∈ [−D, D)

insert 1 = ∑(∈ℤ [ [

Judge-Lewis 63
Susskind-Glogower 64
review: Carruthers-Nieto 68



not well-defined as an ordinary function, but has a definite meaning as a distribution.

B′ 0*&=
+, B = F

'∈ℤ

0

*&=
$< '

9

0&'(%W*%) = \
($′ − $)

2D
,
−E

2D&

Jacobi \ function:

(analytic for Im _ > 0)

P Q, R ≡ S
$∈ℤ

"'-$
$< "&'-$=

[13/36]

obtained kernel

Hamiltonian formalism (2/2)

∫ )BW 2 B′ ⟩ BW 0*&=
+, B

= 0
>+?
9@
'9
0*&'%

which is a well-defined number for given M and 2

%&
'(
2* ,

−-
2*.

%&' ()%*(+,*)- *. / |1|
- = 0.01, . = 1

Inclusion of large [ components makes 
the quantity oscillatory and singular. 

- state space = span %$ $∈ℤ

- Trivially,

Sincere thanks to Yoshio Kikukawa and referee of PTEP.

• As a function:

• As a distribution:

establishes the meaning 
as a distribution

See, e.g., Iwanami III p.46

In fact,



In the previous naive path integral, we replaced the kernel by

%A "B-C 7D % = S
$∈ℤ

exp
−&/
26

M& + &M(2′ − 2)

→ 0&@/c
2D &

−E
0
&<
= 8*>? 383∗

Meaning of 12 (1/4)

[14/36]
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= "-'/G
25 6
−/

S
H∈ℤ

exp &
6
2/

2A − 2 + 25 Z &

Poisson resummation

This replacement cannot be justified as a relation between distributions.
In fact, for an infinitesimal / (as we have just seen):

∫)BW (BW∗)' ⋅ 0
+@
?
8*>? 383∗

= 0*&'%0
+@
? L'

*&<

=

which is different from the original case:

∫ )BW(BW∗)' BW 0*&=
+, B = 0*&'%0

*&=
$< '

9

∼ "B-$) 1 − M& −
(

G

-C

&I
− & −1 $"

$#2
3 1 + M& −

(

G

-C

&I

∼ "B-$) "
B
#3
$2

$$B
4
5 − & −1 $"

$#2
3 "

#3
$2

$$B
4
5

previous replacement

Fourier integral
ignored irrelevant 
overall constants

extra term



[15/36]

Meaning of 12 (2/4)

• However, the replacement can be justified under the &':

∫)BW (BW∗)' ⋅ 0&@/c
$@d+J<

*=
0
+K+J@
?

8*>? 383∗
= 0&@/c

$@d+J<

*=
0*&'%0

+K+J@
? L'

*&d+J<

=

∼ 0*&'% 1 − 2$ −
8

c

&=

$d+J<

∫ \%A MA %′ ⟩ ^%A "B-C 7D %
I→M#6I

= "B-$
7)"

B-C
&M#6I

$$

cf. With the original kernel:

∼ 0*&'%0

>+?

9K+J@
'9*N

O

The difference is the constant shift of the zero-point energy that does not depend on 2 and M.

We have the following equality as distribution for an infinitesimal /:

3%( &$!% &' %
*→/34*

= &
536
78349 &!0/2 )0/34*

$%
&
38349
6 3$45 #:#∗

The shift factor can be absorbed in the overall constant of the path integral.

∴

energy shift factor

and we did absorb this constant into e in the previous argument.
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Meaning of 12 (3/4)

Where and why did the &' and the 
normalization constant come in?

• We can safely introduce &' in the kernel %A "B-C 7D %
and regard the original one as its ' → +0 limit:

BW 0*&=
+, B = F

'∈ℤ

exp
−!E

2&
2$ + !2($′ − $)

_BW 0*&=
+, B

<→d+J<
= 0&@/c

2D0&T&

−E
F

f∈ℤ

exp !
0&T&

2E
$W − $ + 2D ` $

• Under ' > 0, _%A "B-C 7D %
I→M#6I

is a well-defined function
and has a sharp peak around % = %′:

≈ 0&@/c
2D 0&T&

−E
exp !

0&T&

2E
$’ − $ $ g ≡ g modulo 2L

g ∈ −L, L

become a distributional equality for an infinitesimal V

have a detailed look in the derivation

= lim
T→9!

fBW 0*&=
+, B

<→d+J<

Poisson resummation
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Meaning of 12 (4/4)

Finally, we derive the relation:

0
+P
O

$@ d+J<

*=
exp !

d+J<

$=
$’ − $ $ = 0

>+?

QK+J@ 0&@/c
$@d+J<

*=
0
+K+J@
?

8*BCD %’*%

• Again since ' > 0, the integral has a sharp peak at 2’ − 2 = 0.
This allows us to expand the exponent in the powers of 2’ − 2 :

&
!/34*
% 3$678 9’$9 = &

!/34*
)% 9’$9 $$!/

34*
)2% 9’$9 <;⋯

• The higher order terms only shifts the overall constant:

≈ 0*&'% 0
*&=$<'

9

(
*j

j )$WW

2D
0
&d+J<
$= %889

1 −
!0&T&

24E
$WWc +⋯

The remaining integral is independent of [ and g, and therefore an irrelevant constant:

(
*@

@ )$W

2D
0*&'%

8
0
&d+J<
$= %’*% 9*&d

+J<
$c= %’*% O9⋯

a
BR

R \2AA

25
"
-M#6I
&C )77$ 1 −

&"-S6
24/

2AAG +⋯ ≈ 1 +
&/

8"-S6
−/

25&"-S6

• Correcting this factor gives the desired distributional relation.

≈ "
-C

TM#6I
−/

25&"-S6

shift factor

g++ ≡ g′ − g , extend the integration region



• Note the ordering of the limit. 
Since the distributional relation is for an infinitesimal / under ' > 0:

we first take / → 0 keeping ' > 0.

• Accordingly, we take ' → +0 outside the path integral 
once written by the plaquette-like action:

[18/36]

Remarks (1/1)

BW 0*&=
+, B = lim

T→9!
0

>+?

QK+J@ 0&@/c
$@d+J<

*=
0
+K+J@
?

8*>? 383∗
,

7'*,'+ 8 = A lim
T→9!

lim
=→!

( )B 0
*
&<
= ∑ℓU/

.>N>? 3ℓVN3ℓ
∗
B4
∗ '*B!

'+
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Lattice gauge theory case (1/3)

# % ≡ 6WS
X,-

1 −
1
<Y

Re tr %X,-%XZ-,W%XZW,-
[ %X,W

[ − 6\ S
X,-]^

1 −
1
<Y

Re tr %X,-%XZ-,^%XZ^,-
[ %X,^

[

Wilson action in 4D Minkowski spacetime

6W ≡
/
/6

2<Y
g&

, 6\ ≡
/6
/
2<Y
g&

assume gauge group= >?(A,)

[19/36]

Wilson 74
Berges-Borsanyi-Sexty-Stamatescu 07

4C = 5

4!



Lattice gauge theory case (2/3)

character expansion

e
& *8 _ <_

4`
>? 0m3

= F

n:omm?p

)n hn ! −1 q&q in(B)
r-: dimension of rep s

t = u, v: labels timelike and spacelike directions 
−1 . = −1, −1 / = +1

for h =

Weyl character formula for w(x,) periodic delta function:

ia(& −1
b6b) = S

$∈ℤ

det
(c^,dce8

*ℓ9BdZ^Z$
& −1 b6b

<Y …

ℓ(

ℓe8B(

y-(w): character of w in rep s

for % ∼ diag "-):y- w =
det0,2 }

3(ℓ'62)8(

det0,2 }
6328(

ℓ9) ≡ 0 for #%(<Y)

~: � ≡
1

2L
Ä
(∈ℤ

~(� − 2L[)

[20/36]

Bars-Green 79, Brower-Rossi-Tan 81
see also Drouffe-Zuber 83, Carlsson-McKellar 03

Vandermonde Δ(∗)

>> ? = @
?@(A))

AB CBC)*(@D> B = @
@ A)

AB 'D arg det B CBC)*(@D> B

= K
1∈ℤ

@
GH

H

L
A(I
2* Δ ( ' K(I − 2*M CB ∑ ,.KL( det CM ℓ'NA)GO L( = K

1∈ℤ

det Nℓ'GONIN1 (?) .

∴



e
- B( P IP

e8
fg 4hi

= S
a:khhgl

\aia & −1 b6b la(%)

ia(& −1 b6b) = S
$∈ℤ

det
(c^,dce8

*ℓ9BdZ^Z$
& −1 b6b

<Y

0&2 3 ∝ 0

*&<m
4`

∑n,+ >? 0m 3n,+3nV+,m3nVm,+
o 3n,m

o 9
&<p
4`

∑n,+qr >? 0m 3n,+3nV+,r3nVr,+
o 3n,r

o

Boltzmann weight

character expansion

• Since 6b → ∞ in the continuum limit of asymptotically free theories, 
we again confront the problem of the asymptotic expansion of *$(+). 

6D → &!E 6D , 6F → &$!E 6F
The sign for the timelike plaquette can be justified by Hamiltonian formalism below. 

[21/36]

Lattice gauge theory case (3/3)

• For this, we introduce slight imaginary parts:

In fact, if exactly using the Minkowski signature on lattice, 
the appropriate continuum limit will not be obtained.

cf. Hoshina-Fujii-Kikukawa 20
Kanwar-Wagman 21

The sign for the spacelike plaquettes can then be chosen from Lorentz invariance 
(or repeating the similar argument in the spatial direction).
In this way, we can obtain the correct asymptotic behavior of the Boltzmann weight
not only for the (0, &) components but also for the (&, m) components. 

NM 22
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temporal gauge

At time slice u, DOF=spatial link variables w;,3. 

"-sQ,#
3 t3 %u,-

conjugate momentum

:u,-
C ≡

/
g&
ȯu,-
C

Hamiltonian

- ≡
k$

2E
F

Ç,&

/Ç,&
= $

+ l(B) p % ≡
2<Y
/g&

S
u,-]^

1 −
1
<Y
Re tr %u,-%uZ-,^%uZ^,-

[ %u,^
[

%X,W = 1 (∀Ñ)

Kogut-Susskind 75

To describe fluctuations from w;,3,

We consider the formal /6 → 0 limit keeping the spatial spacing / finite
(∴only gives a meaning of &' in the timelike plaquettes from this argument).

tr Ö<Ö= =
1

2
~<=

Lagrangian

8 ≡
/

/6
&

2<Y
g&

S
u,-

1 −
1
<Y
Re tr %u,-%u,-

[ "-sQ,#
3 CS t3 − p(%)

≈
/
2g&

S
u,-

ȯu,-
C &

− p(%)

Hamiltonian formalism for Wilson theory (review) (1/3)
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We show that &' has the same role as in the QM system [gauge group= #%(2) for simplicity]

[22/36]



Hamiltonian formalism for Wilson theory (review) (2/3)

completeness relation (∵ Peter-Weyl theorem)

O%u,-|%u,-⟩ = %u,-|%u,-⟩

O%u,-, :̂u,-C : canonical operators

[WBÇ,&, /̂Ç,&= ] = WBÇ,&

dual basis (returns matrix elements in irreps)

configuration basis

[23/36]

% ≡u
u,-

|%u,-⟩

{mu,- , wu,- , wu,-
A } ≡u

u,-

|mu,- , wu,- , wu,-
A ⟩ %u,- m,w,wA⟩ ≡ y

v,v7
^ (%u,-)

1 = S
{^Q,#,vQ,#,vQ,#

7 }

u
u,-

2mu,- + 1 {mu,- , wu,- , wu,-
A } {mu,- , wu,- , wu,-

A }

matrix element in spin-Ü rep

Kogut-Susskind 75
Creutz 77

Chin-Van Roosmalen-Umland-Koonin 85

,

,

dim of irreps



[24/36]

= ; "- ∫S
4
z\ {Q,#

3 |3 \{Q,#
3
y^ %u,-

v,vA

zC(o): differential operators s.t.

QT R ≡
1
2! cosW

X
XD − cotD sinW

X
XW −

X
X(

�

2
= y,

�<

�
= sinä cosg, sinä sing, cosä

• In particular, zC o
&
≥ 0 is the minus of the Laplacian and

BÇ,& /̂Ç,&
= $

m,n,nW = o= 0
$
qç BÇ,&

E,EW
= m m + 1 qE,E8

ç
BÇ,& .

9% 0 ) = 1$3;G6 ).

Chin-Van Roosmalen-Umland-Koonin85

QU R ≡
1
2! sinW sin(

X
XD + cotD cosW sin( − cos(

X
XW + cotW sin( + cotD

cos(
sinW

X
X(

QV R ≡
1
2! sinW cos(

X
XD + cot D cosW cos( + sin(

X
XW + cotW cos( − cotD

sin(
sinW

X
X(

Menotti-Onofri 81
Chin-Van Roosmalen-Umland-Koonin 85

(;: time-ordered product)

Kogut-Susskind 75
Creutz 77

∴

Hamiltonian formalism for Wilson theory (review) (3/3)

zC o "-s
3t3 = ;C"-s

3t3

⟨ %u,-| "
-{Q,#
3 ~̂Q,#

3
| m, w,w′⟩ = ; "- ∫S

4
z\ {Q,#

3 |3 \{Q,#
3

%u,- m,w,wA

• For finite }u,-C ,



Meaning of 12 from Hamiltonian formalism (1/3)

Feynman kernel (/6: time increment)

maximal torus of timelike plaquettes: ~2u,- ∈ −5, 5

bracket part (dropping the subscripts Ç, é)

[25/36]

%A "B-CS 7D % = ⟨%A|"
B-CS�

$

&C
∑Q,# ~̂Q,#

3 $

"B-CSÅ 7i %

=u
u,-

S
ÇQ,#

2mu,- + 1 l^Q,# %u,-
A %u,-

[ "
B-CS�

$

&C ^Q,# ^Q,#Z( "B-CSÅ i

%u,-
A %u,-

[ ∼ diag "-É)Q,# , "B-É)Q,#

=S
^

2m + 1 l^ %A%[ "
B-CS�

$

&C ^(^Z()

M ≡ 2m + 1
= −S

^

1
sin~2

\
\~2

cos ~2 2m + 1 ⋅ "
B-CS�

$

&C ^(^Z()

= −
1
2

1
sin~2

"-
CS�

$

TC
\
\~2

S
$∈ℤ

"B-
CS�

$

TC $$Z-$É)

NM 22

∴

DI BWBX =
sin[ '((2] + 1) ]

sin'(

again theta function!

insert complete set

= −
1
2

1
sin~2

"-
CS�

$

TC
\
\~2

S
$Ñ(

"B-
CS�

$

TC $$Z-$É) + "B-
CS�

$

TC $$B-$É)



Meaning of 12 from Hamiltonian formalism (2/3)

Poisson resummation & dropped the winding contributions

(Up to a shift of the zero-point energy, and for an infinitesimal V>):

• To rewrite the expression with the Wilson action, we introduce the &':

[26/36]

−
1
2

1
sin~2

"-
CS�

$

TC
\
\~2

S
$∈ℤ

"B-M
Y#6 CS�

$

TC $$Z-$É)

0
*&
=/è9

ê= '99&'ë%
→ 0

*&d>+J
=/è9

ê= '99&'ë%

≈ −
1
2

1
sin~2

"-M
Y#6CS�

$

TC
\
\~2

"
-'
G

85/
−"B-S/6g&

exp &"-S
2/
/6g&

~2 &

const ⋅
~2
sin~2

exp & "-S
2/
/6g&

~2 & = constA ⋅ exp −& "-S
2/
/6g&

tr %A%[

∴

NM 22

• Thanks to ' > 0, finite contribution comes from the fluctuations of order ~2 = !(/6).

∴



Meaning of 12 from Hamiltonian formalism (3/3)

• Despite the complications related to the field theory, 
the basic structure is the same as in the quantum mechanical model:

[27/36]

=H_,H3 > ≡ ⟨?J &$! &' K ?!⟩

≈ ÇA lim
S→Z6

a u
ℓÖ6

e

\%ℓ exp & S
ℓÖ6

eB(
−"-S

2/
/6g&

S
u,-

tr %ℓZ(,u,-%ℓZ(,u,-
[

+
2/6
/g&

S
u,-]^

1
<Y
Re tr %ℓ,u,-%ℓ,uZ-,^%ℓ,uZ^,-

[ %ℓ,u,^
[

ÖÜ
∗ %e Ö- %6

NM 22

- Since the plaquette action can reproduce the continuum action only for smooth configurations, 
its naive application to the real-time path integral 
makes the phase factor associated with large fluctuations different from the continuum theory.

- The &' is required to manifestly suppress the contributions from these large fluctuations 
in the path integral.

• Combining everything together, we have the path integral expression:



Remarks (1/1)

• Since we only have considered the formal /6 → 0 limit, 
the &' for the spatial plaquettes have not appeared in the discussion. 

∴ characters coming from the spatial plaquettes are analytic 
in the limit /6 → 0 for a fixed /, giving no complication. 

[28/36]

L'(M) =
M

2

'
F

FG!

M/2 $F

2! (2 + R)!
.

In fact, in this treatment, the characters for the spatial plaquettes 
can be expressed in terms of the modified Bessel functions of the form *$

&-CS
C�$

, 
for which we can apply the expansion of *$(+) around zero:

• The subtlety for the spatial plaquettes arises 
when we take the continuum limit taking /6 → 0 and / → 0 at the same time, 
making g& run according to the renormalization group equation. 

In this treatment, which is required in extracting the continuum physics, 
the arguments of the Bessel functions diverge both in timelike and spacelike plaquettes.

∴ We need to incorporate &' also for the spatial plaquettes.

NM 22
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Wilson 2D (1/1)

[29/36]

To check the convergence properties in ' → 0, 
we consider the #%(<Y = 2,3) Wilson theory in 2D:

# B ≡ &#0
&TF

í,&

1 −
1

rì
Re tr Bí,&Bí9&,#Bí9#,&

î
Bí,#
î

uniform spacetime: /6 = /

6W ≡
2<Y
/g &

áá : ℓ × R Wilson loop (physical area J ≡ ℓR/&)

⟨uï⟩ = rì
hñóòô −!0

&T&#

h0moö −!0
&T&#

ℓõ

g = 1, time and spatial volume=infinity below

the continuum limit is known from the analysis of the heat-kernel action:

@L → AM &$!
N
2 3$ 3

N$
O$L Menotti-Onofri 81

Kanwar-Wagman 21

Gross-Witten 80
Wadia 80

cf. Kanwar-Wagman 21



[30/36]

⟨ááÖ(⟩ for various ' (calculated directly using the modified Bessel functions *$(+))

• Instead of implementing &', we can expand the action with characters and 
replace *$(+) with the physical part of its asymptotic expansion in advance. 

Corresponding result (with ' = 0) is shown with               for the region where 
the asymptotic expansion gives a sufficient convergence up to machine precision.

• For relatively large /, 
the unwanted part of the asymptotic expansion contributes and gives oscillatory behavior. 

Given /, in turn, we need to prepare ' large enough 
s.t. the unphysical part can be neglected.

∴

For the studied range of /, 6W sin ' ≳ 4.5 (for #%(2)).

B%(2) (1/3) NM 22



B%(2) (2/3)

[31/36]

/ → 0 limits for each '

We fit five points / = 0.1, 0.15,· · · , 0.3 for each ' with the linear function of /&.

' → +0 extrapolation of the / → 0 limits

We fit with quadratic and cubic functions of '. 
Cubic result: central value; the difference from the quadratic value: estimate of the sys error. 

y?/DOF = 3.3

χ?/DOF = 1.4

obtained estimate: lim
C→6,S→Z6

⟨áá = 1 ⟩ ≈ 1.86146(93) − 0.7331(36)&

analytical value: lim
C→6,S→Z6

⟨áá = 1⟩ = 1.8610 − 0.7325& agree within the error

NM 22



[32/36]

finite / effects (under ' = 0.1)

Finite ' effects become larger for larger J.

finite ' effects

B%(2) (3/3) NM 22



[33/36]

B%(3) (1/1)

⟨ááÖ(⟩ for various '

' → +0 extrapolation of the / → 0 limits fitted range of /: / = 0.1, 0.125,· · · , 0.2

estimate: lim
C→6,S→Z6

⟨áá = 1⟩ ≈ 2.359(22) − 1.854(19)&

analytical: lim
C→6,S→Z6

⟨áá = 1⟩ = 2.358 − 1.855&

y?/DOF = 6.7

(The asymptotic expansion does not converge up to machine precision in the studied range of V.)
need to prepare ' s.t. 6W sin' ≳ 15 for the unphysical part can be neglected (#%(3))

y?/DOF = 3.3

NM 22
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Discussion (1/3)

[34/36]

• We can use the conventional lattice gauge theory actions (in particular, Wilson), 
but by properly implementing the &'.

Summary

• It is important that we implement &' both for timelike and spacelike plaquettes.

Outlook

Since the characters are expressed solely with 6b, 
these values should give a rough estimate of the required ' also in higher dimensions. 

• As mentioned, ' should be prepared s.t.

The large bounds are however unpleasant for 4D because of critical slowing down.

A similar situation occurs for the character-replaced action:
The (divergent) asymptotic expansion gives a sufficient approximation up to machine precision 
only for a comparably large 6b (especially for #%(3)).

6W sin' ≳ 4.5 (#%(2)),	6W sin' ≳ 15 (#%(3))

NM+ in progressPossible detours?

- Since the problem is the oscillation that vanishes in / → 0,
we can add a counterterm to cancel the oscillation,
or average the estimates in the 6 direction 
by a few periods, varying 6 in the simulation.

cf. Fukuma-NM 21

simple averaging with a fixed width

- We can also develop a systematic way to
truncate the character expansion,
in which case we do not need ' → 0 extrapolation
[however there is a caveat (next page)].



[35/36]

• If we use the character-replaced action,
the exponential factor is common to all irreps h and will be cancelled in expectation values.

^*$ +
hg2gà3â4

∼
"ä

25+
S
dÑ6

Γ(M + ë + 1/2)
ë! Γ(M − ë + 1/2)

−
1
2+

d 1
+
= ∓

g&

2&

Then the remainder is a power series of g&.

If this is the case, the character-replaced action may not be a good option for performing 
fully non-perturbative calculation, though it should give practically good estimates.

Correspondingly, the expectation value of an observable will be expressed as 
a power series of g&. The result seems to be a perturbative expansion.

On the other hand, this situation is the same in the Euclidean path integral.
∴ Non-perturbative effects ""(B(/�$) seem to be hidden in the difference 
between *$(+) and its asymptotic expansion.

Can instantons be directly related to the expansion of *$(+)?

Discussion (2/3) NM in progress

cf.  Fukaya-Onogi-Yamaguchi 17
Fukaya-Furuta-Matsuo-Onogi-Yamaguchi-Yamashita 19
Fukaya-Kawai-Matsuki-Mori-Nakayama-Onogi-Yamaguchi 19



Since the ordinary scope of QC is restricted to unitary evolutions,
we may avoid using the plaquette discretization in QC
by, e.g., moving to momentum space lattice.

[36/36]

• The &' for spatial plaquettes has a peculiar consequence that
it prevents the transfer matrix from being unitary for finite /
Type equation here.no matter how we write the kinetic term.

In quantum computation (QC), we construct an algorithm 
that corresponds to the time evolution:

%A "B-CS 7D % = ⟨%A|"
B-CS�

$

&C
∑Q,# ~̂Q,#

3 $

"B-CSÅ 7i % ,

whose asymptotic behavior is different in the continuum spacetime limit w/ or w/o &'.

• It is also theoretically interesting to consider causality 
from the lattice-oriented picture for the &';

Discussion (3/3) NM in progress

Kogut-Lagae 93, 94

it may be notable that the situation is similar to the relation between
the admissibility condition and the reflection positivity.

Creutz 04Luscher 99
Fukaya-Onogi 03



Thank you.


