- **Microlensing constraints on axion stars** including finite lens and source size effects Seminar at Osaka University (2022/05/31) Kohei Fujikura (RESCEU->Kobe U.)
 - In collaboration with:
 - Mark P. Hertzberg (Tufts U.)
 - Enrico D. Schiappacasse (Jyvaskyla U., Helsinki U.)
 - Masahide Yamaguchi (TiTech)

OIntroduction

OAxion Stars

Output Description Of the Microlensing Constraints on Axion Stars

Content

The Strong CP Problem $\tilde{G}_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} G^{\rho\sigma}$ Naive expectation: $\overline{ heta} \sim \mathcal{O}(1)$ $G_{\mu\nu}$:Gluon field strength A measurement of the neutron electric dipole moment [Baker et al. (2006)] $\bar{\theta} < 10^{-10}$ Why θ is tiny? (strong CP problem)

CP-violating phase in the SM

$$\mathcal{L}_{ ext{SM}} \supset ar{ heta} rac{g_s^2}{32\pi^2} G^{\mu
u} ilde{G}_{\mu
u}$$

QCD axion (1)

[Peccei*,* Quinn (1977)]

- Introduce an additional (global) $U(1)_{PO}$ symmetry
 - which is spontaneous broken at some scale F_{a} .
 - $\langle \Phi_{\rm PQ} \rangle = F_a e^{ia(x)/F_a}$
 - Nambu-Goldstone boson a(x) is called "(QCD) axion"

$${g_s^2\over 32\pi^2}\left(a(x)+ar{ heta}
ight)G^{\mu
u} ilde{G}_{\mu
u}$$

QCD axion (2) Below the QCD scale $\Lambda_{\rm OCD} \sim 100 \, {\rm MeV}$, the axion acquires potential by non-perturbative effects!

(Strong CP problem can be solved!)

$$V(a) = \frac{1}{2}m_a^2a^2 - \frac{\lambda}{4!}a^4 + \frac{V(a)}{4!}a^4$$

QCD axion (3) $V(a) \sim \Lambda_{
m QCD}^4 \cos\left(rac{a(x)}{F_a}
ight)$

 $\dots \qquad m_a = \Lambda_{
m QCD}^2/F_a \ \lambda \sim \Lambda_{
m QCD}^4/F_a^4$

The axion mass: $m_a \sim 10^{-5} \, {\rm eV}$ **Attractive self-coupling:** $\lambda \sim 10^{-52}$ when $F_a \sim 10^{12}\,{ m GeV}$

$heta_*$: initial misalignment angle Coherent oscillation of generic light scalar fields (axion-like particles) can be DM!

Dark matter axions (2)

Coherent oscillation of the axion behave like cold dark matter.

$$\Omega_{
m osc}h^2\sim heta_*^2\left(rac{F_a}{10^{12}\,{
m GeV}}
ight)^{1.1}$$

[Kawasaki, Nakayama (2013)]

[Svrcek, Witten (2006)]

[Hertzberg, Tegmark, Wilczek (2008)]

OIntroduction

OAxion Stars

Output Description Of the Microlensing Constraints on Axion Stars

Content

10

Axions in the early Universe Non-relativistic axions are produced with high occupancy. **Small velocity dispersion:**

$\delta v \sim rac{\delta p}{m_{c}} \sim rac{H(T_{ m QCD})}{m_{c}} \sim 10^{-6} \ll 1$ $n_{ m gal} = rac{ ho_{ m gal}}{m_{a}} \sim 10^{14} \, { m cm^{-3}}$ m_{a} m_{a}

Axions in the early Universe Non-relativistic axions are produced with high occupancy. **Small velocity dispersion:**

$\delta v \sim$	$rac{\delta p}{-\!\!\!-\!\!\!-\!\!\!\sim}$ \sim	$H(T_{ m QCD})$	$\sim 10^{-6}$	10^{-6}
	m_{a}	m_{a}		

Axions are bosons and no number violating process. Axion-photon coupling is suppressed by F_a .

$$\ll 1 \qquad n_{
m gal} = rac{
ho_{
m gal}}{m_a} \sim 10^{14}\,{
m cm}^{-3}$$

Axions in the early Universe Non-relativistic axions are produced with high occupancy. **Small velocity dispersion:**

 $\delta v \sim rac{\delta p}{-} \sim rac{H(T_{
m QCD})}{-} \sim 10^{-6}$ m_{a} m_{a}

Axions are bosons and no number violating process.

Thermalization of axions (?)

[Sikivie, Yang (2009)] [Erken, Sikivie, Tam, Yang (2011)] [Saikawa Yamaguchi (2013)] [Noumi, Saikawa, Sato, Yamaguchi (2014)]

$$\ll 1 \qquad n_{
m gal} = rac{
ho_{
m gal}}{m_a} \sim 10^{14}\,{
m cm}^{-3}$$

[... and so many works...]

Axions in the early Universe Non-relativistic axions are produced with high occupancy. **Small velocity dispersion:**

 $\delta v \sim rac{\delta p}{-} \sim rac{H(T_{
m QCD})}{-} \sim 10^{-6}$ m_{a} m_{a}

Axions are bosons and no number violating process.

Thermalization of axions (?)

[Sikivie, Yang (2009)] [Erken, Sikivie, Tam, Yang (2011)] [Saikawa Yamaguchi (2013)] [Noumi, Saikawa, Sato, Yamaguchi (2014)]

High occupancy and thermalization suggest axion **Bose-Einstein condensate.**

$$\ll 1 \qquad n_{
m gal} = rac{
ho_{
m gal}}{m_a} \sim 10^{14}\,{
m cm}^{-3}$$

[... and so many works...]

A consequence of Bose-Einstein condensate

- When Bose-Einstein condensate takes place, many axions
- are in the ground state labeled by wavefunction $\phi_{\text{REC}}(x,t)$!

Claim: "Localized clumps" made of axions bounded by gravity (axion stars) are formed.

The Ground State of Axions Non-relativistic effective field theory of a real scalar field: $\phi_{\rm BEC}(\mathbf{x},t) = \frac{1}{\sqrt{2m_a}} \left(e^{-im_a t} \psi(\mathbf{x},t) + e^{im_a t} \psi^*(\mathbf{x},t) \right)$ [Eby et al. (2021)]

 $\nabla \psi(x,t) \ll m_a \psi(x,t), \ \dot{\psi}(x,t) \ll m_a \psi(x,t) \quad n(x) \equiv \psi^*(x) \psi(x)$:Number density

[Salehian et al. (2021)]

The Ground State of Axions • Non-relativistic effective field theory of a real scalar field: $\phi_{ ext{BEC}}(ext{x},t) = rac{1}{\sqrt{2m_a}} \left(e^{-t} ight)$

 $\nabla \psi(x,t) \ll m_a \psi(x,t), \ \dot{\psi}(x,t) \ll m_a \psi(x,t) \quad n(x) \equiv \psi^*(x) \psi(x)$:Number density

Pressure

$$-im_a t \psi(\mathbf{x},t) + e^{im_a t} \psi^*(\mathbf{x},t))$$

[Eby et al. (2021)] [Salehian et al. (2021)]

• The equation of motion of non-relativistic field ψ with gravity:

$$\int d^3x' rac{|\psi(x')|^2}{|x-x'|} - rac{\lambda}{8m_a^2}|\psi|^2\psi$$

Gravity

Self-coupling

The Ground State of Axions Non-relativistic effective field theory of a real scalar field: $\phi_{ ext{BEC}}(ext{x},t) = rac{1}{\sqrt{2m_a}} \left(e^{-t} ight)$

 $\nabla \psi(x,t) \ll m_a \psi(x,t), \ \dot{\psi}(x,t) \ll m_a \psi(x,t)$ $n(x) \equiv \psi^*(x)\psi(x)$: Number density

• The equation of motion of non-relativistic field ψ with gravity:

$$i\dot{\psi}=-rac{1}{2m_a}
abla^2\psi-Gm_a^2\psi$$
 ,

Self-coupling Gravity Pressure This equation is similar to the Schrödinger equation of a hydrogen atom (when we forget about λ)!

$$-im_a t \psi(\mathbf{x},t) + e^{im_a t} \psi^*(\mathbf{x},t))$$

[Eby et al. (2021)] [Salehian et al. (2021)]

$\int d^3 m'$	$ \psi(x') ^2$	λ	$ \psi ^2\psi$
	x - x'	$\overline{8m_a^2}$	

Let us find the ground state for fixed particle number N by using variational principle.

N: Number of axions in the ground state $H_{
m tot} = H_{
m kin} + H_{
m int} + H_{
m gravity}$ $egin{aligned} H_{ ext{kin}} &= rac{1}{2m_a} \int d^3 ext{x}
abla \psi^*(ext{x})
abla \psi(ext{x}) \ H_{ ext{int}} &= -rac{\lambda}{16m_a^2} \int d^3 ext{x} |\psi(ext{x})|^4 \end{aligned}$ $H_{
m gravity} = -rac{G_N m_a^2}{2} \int d^3 {
m x} \int d^3 {
m x}' rac{|\psi({
m x})|^2 |\psi({
m x}')|^2}{|{
m x}-{
m x}'|}$ 19

Axion Stars (1)

$$\int d^3x |\psi(x)|^2 = N$$

Parameters

$\widetilde{N} = \alpha \widetilde{N}_{\max}, \ \widetilde{R} = rac{1}{lpha} \widetilde{R}_{\min} \left(1 + \sqrt{1 - lpha^2} \right)$ $0 \leq \alpha \leq 1$ $m_a = \Lambda_{\rm QCD}^2/F_a$ for the QCD axion (For axion-like particles, there is no relation.) F_a : the breaking scale of axion m_a : the axion mass

α : the clump density

 $\Omega_{\rm clump}/\Omega_{\rm DM}$: Fraction of dark matter collapsed into clumps (Generically, $\Omega_{\text{clump}} \leq \Omega_a$ (Ω_a :axion energy density)

Axion Stars (3) Typical radius and mass of (QCD) axion stars $N\simeq 1.7 imes 10^{60} imes lpha \left(rac{10^{-5}{ m eV}}{m_a} ight)^2 imes \left(rac{F_a}{10^{12}{ m GeV}} ight)$

 $R \simeq 1.8 imes 10^4 \,\mathrm{m} imes \left(rac{1 + \sqrt{1 - lpha^2}}{lpha}
ight) imes \left(rac{10^{-5} \mathrm{eV}}{m_a}
ight) imes \left(rac{10^{12} \mathrm{GeV}}{F_a}
ight)$

 $M_{
m clump} = Nm_a \simeq 1.5 imes 10^{-11} M_{\odot} imes lpha \left(rac{10^{-5} {
m eV}}{m_a}
ight) imes \left(rac{F_a}{10^{12} {
m GeV}}
ight)$

OIntroduction

OAxion Stars

Output Description Of the Microlensing Constraints on Axion Stars

Content

$M_{\rm clump} = Nm_a \simeq 1.5 \times 10^{-11}$

Heavy. Is it possible to constrain the axion star by observation of microlensing events?

$$M_{\odot} imes lpha \left(rac{10^{-5} \mathrm{eV}}{m_a}
ight) imes \left(rac{F_a}{10^{12} \mathrm{GeV}}
ight)$$

Gravitational lens

- Image of a background source star is distorted when massive object pass close to its line-of-sight.
- One can observe time varying amplification of the source star. (Microlensing events)
- Massive compact objects are constrained by microlensing events!

Microlensing by a point mass lens (e.g. PBHs)

Magnification (Point mass lens) **Magnification:** $\mu \equiv \text{Image area / Source area}$ $\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$ D_L D_S $u=eta/ heta_E,\; heta_E\sim\sqrt{4GM_{ m clump}}/D_L$

If $u < u_T = 1$, microlensing events occur!

Microlensing events are defined by $\mu(u) > 1.34$.

Expected number of events

Microlensing event occurs when the DM crosses microlensing tube!

$$R_{
m tube} \equiv u_T R_E \sim \sqrt{G M_{
m clump}} \left(rac{D_L (D_S)}{D}
ight)$$

 R_E : The (point-like) Einstein ring radius

~(Schwarzschild radius of compact object \times distance from source)^{1/2}

The (point-like) Einstein ring radius: $R_E \sim \sqrt{GMD_L}$

Expected number of events

Microlensing event occurs when the DM crosses microlensing tube!

$$R_{
m tube} \equiv u_T R_E \sim \sqrt{G M_{
m clump}} \left(rac{D_L (D_S)}{D}
ight)$$

 R_E : The (point-like) Einstein ring radius

For given u_T , DM halo model, DM velocity, observation time,... etc, one can calculate expected number of events. $N_{\mathrm{exp}} = N_{\mathrm{exp}}(u_T, M_{\mathrm{clump}}, \rho_{\mathrm{DM}}, f_{\mathrm{DM}}(v), T_{\mathrm{obs}})$

Microlensing Constraints

- **Assumption: Microlensing events follow Poisson distribution.** The probability to observe microlensing event: $P(N_{\rm obs}, N_{\rm exp}) = (N_{\rm exp})^{N_{\rm obs}} e^{-N_{\rm exp}} / N_{\rm obs}!$ $N_{\rm exp}$: Expected number of events N_{obs} : Observed microlensing events

If $N_{obs} = 0$ (1), $N_{exp} > 3$ (4.74) is excluded at **95% confidence level.**

Microlensing constraints on compact object

Microlensing constraints on compact object Detection time scale \sim mass of constrained compact objects

 $t_E \sim R_E/v \sim 10 \min\left(rac{M_{
m PBH}}{10^{-8}M_{\odot}}
ight)^{rac{1}{2}} \left(rac{d}{100 \,
m kpc}
ight)^{rac{1}{2}} \left(rac{v}{200 \,
m km/s}
ight)^{-1}$

e.g.) Subaru Hyper Suprime-Cam $2 \min \langle t_E \rangle \langle 7 \ln r \rangle$ $7 \,\mathrm{hr} \Rightarrow M_{\mathrm{PBH}} \sim 10^{-5} M_{\odot}$

Microlensing constraints on compact object Detection time scale \sim mass of constrained compact objects

Microlensing by axion stars

We are not satisfied this argument since...

How about axion stars?

One can consider microlensing constraints with replacements:

$M_{\rm PBH} \to M_{\rm clump}(m_a, F_a, \alpha)$

$\Omega_{\rm PBH}/\Omega_{\rm DM} \to \Omega_{\rm clump}/\Omega_{\rm DM}$

Axion Stars may not be "compact" Compact Massive Object (PBH) Axion Stars ????

Naive argument: If radius of the axion star is shorter than the (point-like) Einstein ring radius, microlensing constraints would be same as the PBHs.

We find that this argument works well!

Gravitational lens with finite extent

Mass distribution is projected onto lens plane:

$$\widehat{\alpha} = 4G \frac{\mathcal{M}(\xi_L)}{\xi_L}$$

 $\mathcal{M}(\xi_I)$: Clump mass within radius ξ_L

(Using a configuration of the axion star)

- Microlensing events occur when $\mu(u, R_E/R) > 1.34$.
 - Threshold impact parameter $u_T(R_E/R)$
 - is a function of axion star radius!

A numerical result

No microlensing events for $R_E \lesssim 0.6 \times R$. (The Axion star is too spread to cause the microlensing event.)

Answer: How about axion stars?

One can consider microlensing constraints with replacements:

 $M_{\mathrm{PBH}} \to M_{\mathrm{clump}}(m_a, F_a, \alpha)$

 $\Omega_{\rm PBH}/\Omega_{\rm DM} \to \Omega_{\rm clump}/\Omega_{\rm DM}$

 $R_E(M_{ ext{clump}}) \gtrsim R(m_a, F_a, lpha)$

Very roughly speaking, this is conclusion of our paper.

We focus on EROS-2 (and Subaru HSC) observations.

- F_a : the breaking scale of axion
- m_a : the axion mass
 - α : the clump density

I would like to show you results obtained by detailed numerical calculations.

Free Parameters:

 $\Omega_{\rm clump}/\Omega_{\rm DM}$: Fraction of dark matter collapsed into clumps

Result1 (EROS-2 survey) • The detection time scale: [1 day, 250 day] 0.50

• Free Parameters:

with fixed F_{α}, α .

Result2 (EROS-2 survey)

 $\alpha = 1$

 $M_{
m clump}/M_{\odot}$

Changing α (Smaller density)

Result3 (EROS-2 survey)

Constraint on (F_a, m_a) -plane with fixed $\Omega_{\rm clump}/\Omega_{\rm DM}$ and α .

There is no constraint for $R \gtrsim R_E$.

High breaking scale can be constrained for the QCD axion. $(10^{15} < F_a/GeV < 10^{17})$

Result4 (EROS-2 survey)

Constraint with fixed α , F_{α}

Conclusions

The QCD axion can solve strong CP problem and be a good dark matter candidate!

- In the early Universe, axions may form localized clumps called axion stars.
- We give microlensing constraints on axion stars including a finite lens size effect.
- Unfortunately, the QCD axion window cannot be constrained even if axion stars are plentiful.

Thank you!

Subaru HSC observation A finite source size effect becomes important for Subaru!

$$t_E \sim R_E/v \sim 10 \min\left(rac{M_{
m PBH}}{10^{-8}M_\odot}
ight)^{rac{1}{2}} \left(rac{d}{100 \, {
m kpc}}
ight)^{rac{1}{2}} \left(rac{2000 \, {
m kpc}}{100 \, {
m kpc}}
ight)^{rac{1}{2}}$$

 $7 \,\mathrm{hr} \Rightarrow M_{\mathrm{PBH}} \sim 10^{-5} M_{\odot}$

$$R_E \simeq 10^4 imes R_\odot imes \left(rac{M_{
m clump}}{M_\odot}
ight)^rac{1}{2} imes \left(rac{D_{
m S}}{100 \,
m k_{
m P}}
ight)$$

For $M_{\rm clump} < 10^{-8} M_{\odot}$, the Einstein ring radius is order of the solar radius.

An "effective" impact parameter is determined by a source radius.

Naive expectation:

When a radius of source star is longer than the Einstein ring radius, magnification is strongly suppressed.

A finite source size

This naive expectation is also correct.

A finite source and lens size effect R_S/R_E

- We solve lens equation including both of finite lens and source size effects!
 - R_S : Source star radius
- No microlensing events for $R_S > 2.3 \times R_E$. (A finite source size effect)
- No microlensing events for $R > 0.6 \times R_E$. (A finite lens size effect)

52

Result1 (Subaru HSC)

The detection time scale: $7 \,\mathrm{hr} \Rightarrow M_{\mathrm{PBH}} \sim 10^{-5} M_{\odot}$

For $M_{\rm clump} < 10^{-8} M_{\odot}$, the Einstein ring radius is shorter solar radius.

source size effect for a light mass region!

Result2 (Subaru HSC)

Result3 (Subaru HSC)Mass of QCD axion star $M_{clump} = Nm_a \simeq 1.5 \times 10^{-11} M_{\odot} \times \alpha \left(\frac{10^{-5} eV}{m_a}\right) \times \left(\frac{F_a}{10^{12} GeV}\right)^{10^4}$

Classical QCD axion window: $10^9 < F_a/{ m GeV} < 10^{12}$

The classical QCD axion window cannot be constrained due to a finite source size effect.

A higher breaking scale can be constrained.

Result4 (Subaru HSC)

 $\alpha = 1$

Result5 (Subaru HSC)

 $\alpha = 1$

 $(M_{
m clump}(m_a), F_a, \Omega_{
m clump}/\Omega_{
m DM}, lpha)$ with fixed $F_a, lpha$.

Subaru HSC

 $\alpha = 1$ 0.500 0.100 $\Omega_{clump}/\Omega_{DM}$ 0.050 0.010 $F_a = 10^{11} [\text{GeV}]$ 0.005 $F_a = 10^{11.5} [\text{GeV}]$ ----- $F_a = 10^{12} [\text{GeV}]$ $F_a = 10^{12.5} [\text{GeV}]$ ----QCD axion 0.001 10^{-11} 10^{-9} 10^{-7} 10^{-5} $M_{
m clump}/M_{\odot}$

Result1 $_{\rm P}/\Omega_{\rm DM}, \alpha$) with fixed F_a, α .

EROS-2

Result2 (1) $(M_{ m clump}(m_a), F_a, \Omega_{ m clump}/\Omega_{ m DM}, \alpha)$ with fixed $\Omega_a/\Omega_{ m DM}, \alpha$. Subaru HSC EROS-2

Result2 (2) Unfortunately, classical QCD axion window cannot be constrained.

Subaru HSC

EROS-2

