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1. Narain CFT



CFT

• A conformal field theory (CFT) is a quantum field theory that is 
invariant under conformal transformations.

• A two-dimensional CFT has rich mathematical structure and is used to 
describe condensed matter, critical phenomena, and string theory.

= angle preserving :



Narain CFT

• We consider “a closed string” : 𝑋 𝑡, 𝜎 , 𝜎 ≅ 𝜎 + 2𝜋

• A Narain CFT is a 2d CFT that describes a closed string on the 
compactified space :

• The action : 

𝑡

𝜎

𝑋𝑖 ≅ 𝑋𝑖 + 2𝜋𝑅, 𝑅 : radius, 𝑖 = 1,… , 𝑛

𝑇𝑛=2

𝑆 =
1

4𝜋𝛼′
න𝑑𝑡න

0

2𝜋

𝑑𝜎 𝐺𝑖𝑗 𝜕𝑡𝑋
𝑖𝜕𝑡𝑋

𝑗 − 𝜕𝜎𝑋
𝑖𝜕𝜎𝑋

𝑗 − 2𝐵𝑖𝑗𝜕𝑡𝑋
𝑖𝜕𝜎𝑋

𝑗

𝐺𝑖𝑗 : metric, 𝐵𝑖𝑗 : antisymmetric background



Effects of the compactification

⚫ The center-of-mass momentum 𝑃

• The operator exp(2𝜋𝑖𝑅𝑃𝑖), which translates strings once around the 𝑖-th
direction, must be the identity for states.

⚫ winding number 𝑤

• A string can wind around the compact direction.

𝑃𝑖 ≔
𝜕𝐿

𝜕 𝜕𝑡𝑋
𝑖
=
1

𝑅
𝑚𝑖 , 𝑚𝑖 ∈ ℤ

𝑋𝑖 𝑡, 𝜎 − 𝑋𝑖 𝑡, 𝜎 + 2𝜋 = 2𝜋𝑅𝑤𝑖 , 𝑤𝑖 ∈ ℤ

①

②



Momentum

• From the equation of motion, the mode expansion of 𝑋𝑖 is

• By substituting these for ①②, eigenvalues of Ƹ𝑝𝐿, Ƹ𝑝𝑅 on orthogonal basis 
are

𝑋𝑖 𝑡, 𝜎 = 𝑋𝐿
𝑖 𝑡 − 𝜎 + 𝑋𝑅

𝑖 𝑡 + 𝜎 ,

𝑋𝐿
𝑖 𝑡 − 𝜎 = ො𝑥𝐿

𝑖 +
𝛼′

2
Ƹ𝑝𝐿
𝑖 𝑡 − 𝜎 + 𝑖 𝛼′

2 

𝑛∈ℤ∖ 0

ො𝛼𝑛
𝑖

𝑛
𝑒−𝑖𝑛(𝑡−𝜎),

𝑋𝑅
𝑖 𝑡 + 𝜎 = ො𝑥𝑅

𝑖 +
𝛼′

2
Ƹ𝑝𝑅
𝑖 𝑡 + 𝜎 + 𝑖 𝛼′

2 

𝑛∈ℤ∖ 0

𝛼𝑛
𝑖

𝑛
𝑒−𝑖𝑛(𝑡+𝜎)

𝑘𝐿𝜇 = 𝑒𝜇
𝑖 1

𝑅
𝑚𝑖 +

𝑅

2
𝐵 + 𝐺 𝑖𝑗𝑤

𝑗 , 𝑘𝑅𝜇 = 𝑒𝜇
𝑖 1

𝑅
𝑚𝑖 +

𝑅

2
𝐵 − 𝐺 𝑖𝑗𝑤

𝑗 ,

𝑒𝜇
𝑖 : tetrad  𝐺𝑖𝑗𝑒𝜇

𝑖 𝑒𝜈
𝑗
= 𝛿𝜇𝜈



A lattice from a Narain CFT

• The momenta form a lattice :

• For later convenience, we define another lattice.

Λ 𝑅, 𝐺, 𝐵 =
𝑘𝐿
𝑘𝑅

𝑚,𝑤 ∈ ℤ𝑛 ⊂ ℝ2𝑛

ℝ2𝑛=2

Λ𝑁 𝑅, 𝐺, 𝐵 =
𝛼
𝛽 𝑚,𝑤 ∈ ℤ𝑛 ⊂ ℝ2𝑛,

𝛼𝜇 =
𝑘𝐿𝜇+𝑘𝑅𝜇

2
= 𝑒𝜇

𝑖 2

𝑅
𝑚𝑖 +

𝑅

2
𝐵𝑖𝑗𝑤

𝑗 ,

𝛽𝜇 =
𝑘𝐿𝜇−𝑘𝑅𝜇

2
= 𝑒𝜇

𝑖 𝑅

2
𝐺𝑖𝑗𝑤

𝑗.

← We will associate a code 
with this lattice



Even self-duality

• Prop. The lattice Λ𝑁 𝑅, 𝐺, 𝐵 is even and self-dual with a metric

𝑔 =
0 𝐼
𝐼 0

.

⚫ Even

• A lattice Λ is even ∶⇔ ∀𝑥 ∈ Λ, 𝑥 ⋅ 𝑥 ∈ 2ℤ

⚫ Self-dual

• A dual lattice of Λ ⊂ ℝ𝑛 : Λ∗ = 𝑥′ ∈ ℝ𝑛 ∀𝑥 ∈ Λ, 𝑥 ⋅ 𝑥′ ∈ ℤ

• A lattice Λ is self-dual ∶⇔ Λ = Λ∗

• We can verify these properties directly.



Proof (even)

• （A lattice Λ is even ∶⇔ ∀𝑥 ∈ Λ, 𝑥 ⋅ 𝑥 ∈ 2ℤ）

• For ∀𝑥 = 𝛼
𝛽

∈ Λ𝑁 𝑅, 𝐺, 𝐵 , 

𝑥 ⋅ 𝑥 = 𝛼𝑇 𝛽𝑇
0 𝐼
𝐼 0

𝛼

𝛽
= 2𝛼𝑇𝛽 = 2𝑚𝑖𝐺𝑖𝑗𝑤

𝑗 + 𝑅2𝐵𝑖𝑗𝑤
𝑖𝑤𝑗 = 2𝑚𝑖𝑤

𝑖

𝛼𝜇 =
𝑘𝐿𝜇+𝑘𝑅𝜇

2
= 𝑒𝜇

𝑖 2

𝑅
𝑚𝑖 +

𝑅

2
𝐵𝑖𝑗𝑤

𝑗 ,

𝛽𝜇 =
𝑘𝐿𝜇−𝑘𝑅𝜇

2
= 𝑒𝜇

𝑖 𝑅

2
𝐺𝑖𝑗𝑤

𝑗.

𝐵 is antisymmetric → vanishes



Spectrum 

• We can describe important quantities of the CFT in the language of the 
lattice.

• The spectral gap (of primary states) = the energy difference between 
its ground state and first excited state :

• The partition function = Trstates exp 2𝜋𝑖𝜏1𝑃 − 2𝜋𝜏2𝐻 :

Δ = min
𝑘𝐿,𝑘𝑅 ∈Λ 𝑅,𝐺,𝐵

𝑘𝐿,𝑘𝑅 ≠0

𝑘𝐿
2
+ 𝑘𝑅

2

2
= min

𝛼,𝛽 ∈Λ𝑁 𝑅,𝐺,𝐵

𝛼,𝛽 ≠0

𝛼2 + 𝛽2

2

𝑍 𝜏 = 𝜂 𝜏 −2𝑛 

𝑘𝐿,𝑘𝑅 ∈Λ(𝑅,𝐺,𝐵)

𝑞 ൗ𝑘𝐿
2
2 ത𝑞 ൗ𝑘𝑅

2
2

= 𝜂 𝜏 −2𝑛 

𝛼,𝛽 ∈Λ𝑁(𝑅,𝐺,𝐵)

𝑞 Τ(𝛼+𝛽)2 4 ത𝑞 𝛼−𝛽 2/4

𝜂(𝜏) : Dedekind eta function,
𝑞 = 𝑒2𝜋𝑖𝜏, ത𝑞 = 𝑒−2𝜋𝑖ത𝜏

𝛼𝜇 =
𝑘𝐿𝜇+𝑘𝑅𝜇

2
,

𝛽𝜇 =
𝑘𝐿𝜇−𝑘𝑅𝜇

2



2. Error correcting code



Error correcting code

• An error correcting code is a concept in information theory for 
transmitting information correctly in spite of errors.

“string”

“string” 

error

“shring”

Alice Bob

“shrink” ?
“spring” ?



Finite field

• A finite field 𝐹 is a field that contains a finite number of elements, 
which is a prime 𝑝 or a prime power 𝑝𝑙.

• For a prime 𝑝, 𝐹𝑝 = ℤ/𝑝ℤ = 0,1,… , 𝑝 − 1

• We define a distance 𝑑 between 𝑎, 𝑏 ∈ 𝐹𝑝
𝑛 by

0 1
2

𝑝 − 1
𝑎

𝑏

𝑑 𝑎, 𝑏 = 

𝑖=1

𝑛

𝑎𝑖 − 𝑏𝑖
2 , 𝑎𝑖 − 𝑏𝑖 = min 𝑎𝑖 − 𝑏𝑖 , 𝑏𝑖 − 𝑎𝑖 (∈ ℤ)



・𝑒↗
𝑝𝑘 points →

𝐶 = 𝐺𝑥 𝑥 ∈ 𝐹𝑝
𝑘

Error correction

• The error correction using an 𝑛 × 𝑘 matrix 𝐺 on 𝐹𝑝 :

• We call 𝐶 = 𝐺𝑥 𝑥 ∈ 𝐹𝑝
𝑘 ⊂ 𝐹𝑝

𝑛 a code.

• Bob can get the correct message if

→ 𝐷 𝐶 : error correction capability

𝑎 ∈ 𝐹𝑝
𝑘

𝐺𝑎 ∈ 𝐹𝑝
𝑛

error：𝑒 ∈ 𝐹𝑝
𝑛

𝑟 = 𝐺𝑎 + 𝑒 ∈ 𝐹𝑝
𝑛

argmin
𝑥∈𝐹𝑝

𝑘
𝑑(𝑟, 𝐺𝑥)

Alice Bob

𝐹𝑝
𝑛

𝐺𝑎

𝐺𝑏
𝑟

𝐺𝑐

・𝑒′
𝑟′2𝑑 𝑒, 0 < 𝐷 𝐶 ≔ min

𝑐,𝑐′∈𝐶,𝑐≠𝑐′
𝑑(𝑐, 𝑐′)

𝑛 > 𝑘
↙



Example : A code on 𝐹5

• 𝐺 =
2
1

→ 𝐶 =
0
0

,
2
1

,
4
2

,
1
3

,
3
4

⊂ 𝐹5
2, 𝐷 𝐶 = 22 + 12 = 5

• Bob can correct 𝑒 but not 𝑒′.

2 ∈ 𝐹5

4
2

∈ 𝐹5
2

𝑒 =
0
1

∈ 𝐹5
2

𝑟 =
4
3

∈ 𝐹𝑝
𝑛

argmin
𝑥∈𝐹5

𝑑(𝑟, 𝐺𝑥)

Alice Bob

𝑒

𝐹5
2

𝑒′ =
4
4

=
−1
−1

𝑟′ =
3
1

𝑟

𝑒′

𝑟′2𝑑 𝑒 = 2 < 𝐷 𝐶 = 5 < 2𝑑 𝑒′ = 4



A lattice from a code

• We construct a lattice from a code 𝐶 ⊂ 𝐹𝑝
𝑛 by

• e.g. For 𝐶 =
0
0

,
2
1

,
4
2

,
1
3

,
3
4

⊂ 𝐹5
2, 

Λ𝑝 𝐶 =
𝑐 + 𝑝𝑚

𝑝
𝑐 ∈ 𝐶,𝑚 ∈ ℤ𝑛 ⊂ ℝ𝑛

Λ5 𝐶 =

corresponds to 𝐹5
2



Even self-duality

• The case 𝑝 = 2 was studied by Dymarsky and Shapere [1].

• Prop. For 𝑝 > 2, the lattice Λ𝑝 𝐶 is even and self-dual with the metric 

𝑔 =
0 𝐼
𝐼 0

if and only if 𝐶 is self-dual.

⚫ Self-dual

• A dual code of 𝐶 ⊂ 𝐹𝑝
𝑛 : 𝐶∗ = 𝑐′ ∈ 𝐹𝑝

𝑛 ∀𝑐 ∈ 𝐶, 𝑐 ⋅ 𝑐′ = 0

• A code 𝐶 is self-dual ∶⇔ 𝐶 = 𝐶∗

• e.g. A code on 𝐹5 generated by 𝐺 =

1
2
4
3

2
3
1
1

is self-dual.

on 𝐹𝑝
↙

∵

1
2
4
3

⋅

1
2
4
3

= 1 ∗ 4 + 2 ∗ 3 + 4 ∗ 1 + 3 ∗ 2 = 0,

1
2
4
3

⋅

2
3
1
1

= 1 ∗ 1 + 2 ∗ 1 + 4 ∗ 2 + 3 ∗ 3 = 0 etc.



Proof (self-dual)

• The dual lattice of the code is the lattice of the dual code.

• Thus, Λ𝑝 𝐶
∗
= Λ𝑝 𝐶 ⇔ 𝐶∗ = 𝐶 .

∵

𝑅 is a map : 𝐹𝑝 → ℤ



Self-dual code

• Prop. A code 𝐶 ⊂ 𝐹𝑝
𝑛 is self-dual if and only if 𝑛 is even and 𝐶 is 

generated by

where 𝑋 is an 
𝑛

2
×

𝑛

2
matrix s.t. 𝑋 + 𝑋𝑇 = 0 on 𝐹𝑝

• For the example on the previous page, 

𝐺 =
𝐼

𝑋

𝐶 =

1
2
4
3

2
3
1
1

𝑥 𝑥 ∈ 𝐹5
2 =

1
0
0
3

0
1
2
0

𝑦 𝑦 ∈ 𝐹5
2 ⊂ 𝐹5

4

(up to swapping rows)



3. Relation



Relation through lattices

• Now, we constructed even self-dual lattices from a Narain CFT and a 
self-dual code.

• The simplest relation is the case where they form the same lattice.

• Prop. If a code 𝐶 ⊂ 𝐹𝑝
2𝑛 is generated by 𝐺 = 𝐼

𝑋
where 𝑋 is an 𝑛 × 𝑛

matrix s.t. 𝑋 + 𝑋𝑇 = 0, 

Λ𝑁 𝑅 =
2

𝑝
, 𝐺 = 𝐼, 𝐵 = 𝑋 = Λ𝑝 𝐶 ⊂ ℝ2𝑛

↗
compactification radius

↑
metric

↖
antisymmetric background

∵ Both lattices can be written as
𝑝𝐼 1

𝑝
𝑋

0 1

𝑝
𝐼

𝑦 𝑦 ∈ ℤ2𝑛 .



Correspondence in both theories

• Using this relation, we can consider the spectrum and the symmetries 
of the CFT in the language of the code. 

• (rough summary in [3])



Partition function

• The partition function 𝑍 𝜏 of the CFT can be written as the extended 
enumerator polynomial of the code.

• We can relate

a symmetry of the CFT that keeps 𝑍 𝜏 invariant to

a symmetry of the code that keeps polynomial invariant,

which have been studied separately. 

𝑍 𝜏 = 𝜂 𝜏 −2𝑛

𝑐∈𝐶

ෑ

𝑥,𝑦∈𝐹𝑝

𝑡𝑥,𝑦
𝑤𝑥,𝑦(𝑐)

,

𝑡𝑥,𝑦 = 

𝑚,𝑙∈ℤ

𝑞 𝑥+𝑦+𝑝 𝑚+𝑙
2
/4𝑝 ത𝑞 𝑥−𝑦+𝑝 𝑚−𝑙

2
/4𝑝,

𝑤𝑥,𝑦 𝑐 = 𝑖 ∈ 1, … , 𝑛 𝑐𝑖 , 𝑐𝑖+𝑛 = 𝑥, 𝑦 ← code dependency

If 𝑐 = 1,2,2,3,1,1 𝑇 ⊂ 𝐹𝑝
6,

𝑤1,3 𝑐 = 1, 𝑤2,1 𝑐 = 2,
the others : 0



Proof



Spectral gap

• The spectral gap Δ of the CFT and the error correction capability 𝐷 𝐶
of the code satisfy

• → Searching for the code with high correction capability

= Searching for the Narain CFT with large spectral gap

• The largest spectral gap among all Narain CFTs with 𝑛 scalars is not 
well known for general 𝑛. 

• Is this relation helpful?

Δ =
1

2𝑝
min 𝐷 𝐶 2, 𝑝2

include CFTs not related to codes
↙

← In most cases, 𝐷 𝐶 2 < 𝑝2



Proof

𝑅 is a map : 𝐹𝑝 → ℤ



Spectral gap, 𝑛 = 2

• From numerical calculations, the largest spectral gap of Narain CFTs 
corresponding to codes on 𝐹𝑝

2 is as follows :

• The values suggest that 1/ 3 is their upper bound, which can be 
checked analytically by reducing to the sphere packing in two dim.



Spectral gap, 𝑛 = 3

• For 𝑎 ∈ ℤ s.t. 𝑝 = (𝑎4 + 1)/2 is a prime number, we consider a code 𝐶 on 
𝐹𝑝 generated by

• The error correction capability :

• The spectral gap of the corresponding CFT :

𝐺 =

1
0
0
0
𝑎
𝑎2

0
1
0
−𝑎
0
𝑎3

0
0
1

−𝑎2

−𝑎3

0

.

𝐷 𝐶 = 𝐺
𝑎 − 1 /2

𝑎 − 1 /2
0

= 3𝑎4 − 4𝑎3 + 6𝑎2 − 4𝑎 + 3 /4

Δ =
1

2𝑝
min 𝐷 𝐶 2, 𝑝2 =

3𝑎4 − 4𝑎3 + 6𝑎2 − 4𝑎 + 3

4 𝑎4 + 1 𝑎 → ∞

3

4
← The largest known 
spectral gap for 𝑛 = 3 [2] !



4. Future prospects



Code on finite field 𝐹𝑝𝑙

• We considered only finite fields with prime elements.

• For a prime power 𝑝𝑙, 𝐹𝑝𝑙 = 𝐹𝑝 𝑥 /(𝑓𝑝,𝑙 𝑥 ) = σ𝑡=0
𝑙−1 𝑎𝑡𝑥

𝑡 𝑎𝑡 ∈ 𝐹𝑝

• E.g. 𝐹32 = 𝐹3 𝑥 /(𝑥2 + 2𝑥 + 2) = 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0 𝑎2, 𝑎1, 𝑎0 ∈ 𝐹3

𝑥2 + 1 × 𝑥 + 2 = 𝑥3 + 2𝑥2 + 𝑥 + 2 = 2𝑥 + 2

• It is difficult to relate a code on 𝐹𝑝𝑙 to a self-dual lattice than on 𝐹𝑝.

→ Can it correspond to a more general CFT?

↗
polynomial ring on 𝐹𝑝

↖
Conwey polynomial



Spectral gap for large 𝑛

• Through the correspondence between quantum gravity and CFT,  the 
spectral gap corresponds to the energy difference in gravity theory.

• We do not know

the largest spectral gap and

how to construct a CFT with large spectral gap

for large 𝑛.

• Can we answer these using the relation between CFTs and codes?



Thank you for listening.



References

[1] A. Dymarsky and A. Shapere, Quantum stabilizer codes, lattices, and 
CFTs, J. High Energ. Phys. 2021, 160 (2021) [arXiv:2009.01244].

[2] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition 
functions and an averaged holographic duality, J. High Energ. Phys. 2021, 
130 (2021) [arXiv:2006.04839].

[3] Shinichiro Yahagi, Narain CFTs and error-correcting codes on finite 
fields, arXiv:2203.10848.


