Muon g-2

Motoi Endo (KEK)

Osaka seminar, 2022.6.17

What is magnetic moment (g-factor)?

Magnetic interaction with spin

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B}$$

Magnetic moment \propto spin

$$\vec{\mu} = -g \frac{e}{2m} \vec{S}$$

Tree-level prediction

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - \frac{1}{4}(F_{\mu\nu})^2 - \frac{e\bar{\psi}\gamma^{\mu}\psi A_{\mu}}{\rightarrow} g = 2$$

Radiative correction — "anomalous" magnetic moment, g-2

$$g \neq 2 \quad \Rightarrow \quad a_{\ell} = \frac{g_{\ell} - 2}{2}$$

flavor, CP conserved super-precise

History of measurement (after 60's)

Authors	Lab	Muon Anomaly	
Garwin et al. '60	CERN	0.001 13(14)	
Charpak et al. '61	CERN	0.001 145(22)	
Charpak et al. '62	CERN	$0.001\ 162(5)$	
Farley et al. '66	CERN	0.001 165(3)	
Bailey et al. '68	CERN	0.001 166 16(31)	
Bailey et al. '79	CERN	0.001 165 923 0(84)	
Brown et al. '00	BNL	0.001 165 919 1(59)	(μ^+)
Brown et al. '01	BNL	0.001 165 920 2(14)(6)	(μ^+)
Bennett et al. '02	BNL	$0.001 \ 165 \ 920 \ 4(7)(5)$	(μ^+)
Bennett et al. '04	BNL	$0.001 \ 165 \ 921 \ 4(8)(3)$	(μ^{-})

Long-standing target for >50 years!

$$a_{\mu}^{\text{BNL}} - a_{\mu}^{\text{SM}} = 26.8(7.3) \times 10^{-10}$$
 — 3.50 deviation

2021 News

Fermilab (Run-I, ~ BNL E821) [2104.03281]

$$a_{\mu}^{\text{FNAL}} = (11\,659\,204.0\pm5.1_{\text{stat}}\pm1.9_{\text{sys}})\times10^{-10}$$

Confirmed BNL result: $a_{\mu}^{\text{BNL}} = (11659208.9 \pm 5.4_{\text{stat}} \pm 3.3_{\text{sys}}) \times 10^{-10}$

$$a_{\mu}^{\text{BNL+FNAL}} = (11\,659\,206.1\pm4.1) \times 10^{-10}$$

 $a_{\mu}^{\text{BNL+FNAL}} - a_{\mu}^{\text{SM}} = (25.1 \pm 5.9) \times 10^{-10}$ 4.20 deviation

Today's talk

- Overview of measurement
- Recent progress and issue on SM prediction
- New physics interpretation

Experiment: principle

Lamor (spin) precession

Polarized muon from pion decay

Muons in storage ring with well-calibrated magnet

Energetic electron/positron emission parallel to muon spin

of e^{+/-} events increases when muon spin points to detector

Measurement

Spin precession is faster than cyclotron precession for g>2

$$\vec{\omega}_a = \vec{\omega}_S - \vec{\omega}_C = -\frac{e}{m} \left[a_\mu \vec{B} - \left(\frac{mc}{p} \right)^2 \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

drop at p=3.094GeV

Precise measurement of ω_a and B (NMR)

Result

$$a_{\mu}^{\text{FNAL}} = (11\,659\,204.0\pm5.1_{\text{stat}}\pm1.9_{\text{sys}})\times10^{-10}$$

Latest result

Fermilab (Run-I, ~ BNL E821) [2104.03281]

$$a_{\mu}^{\text{FNAL}} = (11\,659\,204.0\pm5.1_{\text{stat}}\pm1.9_{\text{sys}})\times10^{-10}$$

Confirmed BNL result: $a_{\mu}^{\text{BNL}} = (11659208.9 \pm 5.4_{\text{stat}} \pm 3.3_{\text{sys}}) \times 10^{-10}$

$$a_{\mu}^{\text{BNL+FNAL}} = (11\,659\,206.1\pm4.1) \times 10^{-10}$$

 $a_{\mu}^{\text{BNL+FNAL}} - a_{\mu}^{\text{SM}} = (25.1 \pm 5.9) \times 10^{-10}$ 4.20 deviation

Experimental prospect

Fermilab E989 on going: same storage ring as BNL E821 Goal: 1/4 x BNL uncertainty

Statistics ~ 21.5 x BNL, Improve systematics

Run-4 finished: ~I3 x BNL \rightarrow Run-5 on-going

Run-2+3: expected stat. uncertainty ~ 200ppb (still > syst.)

- \rightarrow this year (?)
- J-PARC in progress Independent method start in 2027 (?)

Today's talk

- Overview of measurement
- Recent progress and issue on SM prediction
- New physics interpretation

SM prediction

White paper (WP): current consensus of SM value [2006.04822]

Contribution	Value $\times 10^{10}$			
QED	11658471.893	1 ± 0.0104		
EW	15.36	± 0.10		
HVP	684.5	± 4.0		
HLbL	9.2	± 1.8		
Total	11659181.0	± 4.3		

Recent issue:

discrepancy between WP and new lattice result of HVP

Hadronic vacuum polarization

White paper: traditionally determined by hadronic cross section

Status

 $\pi^+\pi$ channel (around ρ/ω region)

~70% of total HVP

Dominant source of uncertainty

→ long-standing issue

R-ratio: hadronic cross section

Old issue: KLOE/BaBar discrepancy

DHMZ19

 $694.0 \pm 1.0 \pm 2.5 \pm 2.8$ QCD KLOE/BaBar discrepancy

exp

w/o KLOE (\rightarrow BaBar) 696.8 ± 3.1

 691.2 ± 3.1 w/o BaBar (\rightarrow KLOE)

Precision is degraded by $\sim 30\%$ [\rightarrow WP]

Check by Belle-II, BES-III, CMD-3

Independent test: MUonE differential cross section of $\mu^+e^- \rightarrow \mu^+e^$ space-like approach

New issue: BMW lattice result

Lattice evaluation of HVP ($J_{\mu} = i \sum_{f} Q_{f} \bar{\psi}_{f} \gamma_{\mu} \psi_{f}$: quark current)

$$a_{\mu}^{\text{HVP LO}} = \sum_{t=0}^{\infty} w_t C(t) \quad \text{w/.} \quad C(t) = \frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2} \langle J_j(\vec{x},t) J_j(0) \rangle \quad \leftarrow \text{ lattice}$$

BMW collaboration [2002.12347]

No tension w/. experimental result However, ~2.1 σ away from WP (e+e-)

HVP tension has not been resolved

Independent lattice computations w/. comparable precisions are crucial

cf.A calculation of "window" observable is consistent w/ BMW, and deviated by 3.8σ from data-driven value [2206.06582]

Consistency with EW precision test

EW observables are also sensitive to R-ratio data (via $\Delta \alpha_{had}^{(5)}$)

Hypothetical cross section:

$$\sigma_{\rm had}(s) = (1+\varepsilon)\sigma_0$$

 $\varepsilon > 0 \ \ {\rm in} \ \sqrt{s} \in \sqrt{s_0} \pm \delta/2$

chosen to account for Δa_{μ}

Shift above ~IGeV is excluded.

Shift below ~IGeV is allowed,

but larger than $\sigma(e+e-\rightarrow had)$ accuracy

→ Tested in near future, e.g., Belle-II, etc

Hadronic light-by-light

Main issue in ~10 years ago

Based on hadronic model before 2014

Dispersive (data-driven) approach relation with exp. data (cf. e+e- for HVP)

 $a_{\mu}^{\mathrm{HLbL}} = 9.2(1.8) \times 10^{-10}$

Lattice calculation [Mainz'21]

 $a_{\mu}^{\text{HLbL}} = 10.48(1.47) \times 10^{-10}$

... good agreement with above

Today's talk

- Overview of measurement
- Recent progress and issue on SM prediction
- New physics interpretation

New physics interpretation

SM based on white paper

$$a_{\mu}^{\rm BNL+FNAL} - a_{\mu}^{\rm SM} = (25.1 \pm 5.9) \times 10^{-10}$$

4.20 deviation

Deviation is larger than electroweak contribution

 $a_{\mu}^{\rm EW} \simeq 15.4 \times 10^{-10}$

No new particles have been discovered in EW scale Need mechanism to enhance contribution to muon g-2

Light particle or enhancement

Many models have been proposed

Light particle = tiny interactions

scalar extension, vector extension, axion-like particle, ...

Heavy particle = enhancement mechanism SUSY, Leptoquark, vectorlike fermion, ...

Relation with B-anomalies, dark matter, M_W , etc, ...

Supersymmetry

Essence

Smuon (SUSY partner of muon)
Neutralino, Chargino
(SUSY partner of B,W, H bosons)

cf. $\tan \beta \equiv \langle H_u \rangle / \langle H_d \rangle \sim 10$

 $Y_{\mu}^{(\text{SUSY})} \simeq Y_{\mu}^{(\text{SM})} \tan \beta$ enhancement of chirality flip

Three SUSY scenarios

At least 3 light particles smuon ("L" and "R") neutralino, chargino (B,W, H)

 \rightarrow 3 scenarios

2. Light Bino/Higgsino

3. Pure Bino

Light Wino/Higgsino scenario

Light left-handed smuon,Wino, Higgsino + Bino (LSP) Large tanβ

g-2 favors ~100-1000GeV → LHC experiment $\tilde{\nu}_{\mu}$, $\tilde{\mu}_{L}$

ME, Hamaguchi, Iwamoto, Kitahara

Three SUSY scenarios

At least 3 light particles smuon ("L" and "R")

neutralino, chargino (B,W,H)

 \rightarrow 3 scenarios

Pure Bino scenario

Light Bino (neutralino), light left- and right-handed smuons Enhanced by smuon "chirality" flip — large μ tan β

Status

μ is maximized under constraints
Smaller tanβ (~5-10) is favored
* larger tanβ predicts smaller μ,
enhancing "light Bino/Higgsino"
(destructive) contribution to muon g-2

Still allowed by LHC constraints:

SLSL (-soft) : lepton pair

ME, Hamaguchi, Iwamoto, Kitahara

Is mass degeneracy accidental?

SUSY motivations

- naturalness
- dark matter candidate
- grand unified theory
- muon g-2, ...

(snapshot observed by CMB)

DM thermal relic abundance

Bino is a well-known WIMP DM candidate

Thermal relic abundance : $\Omega_{\rm DM} \propto \langle \sigma_{\rm ann} v \rangle^{-1}$

Muon g-2 and dark matter

 $\boldsymbol{\mu}$ is determined by DM relic abundance

Wide g-2 regions can be covered by DM direct detection exp. e.g., XENONnT, PandaX-4T, ...

ME, Hamaguchi, Iwamoto, Kitahara

ILC test

Direct test of NP contribution to muon g-2 by reconstructing it Precise measurement of mass and determination of LR mixing

$$m_{\tilde{\mu}_1}, \ m_{\tilde{\mu}_2}, \ m_{\tilde{\chi}_1^0}, \ m_{\tilde{\mu}_{LR}}^2$$

cf. Bino coupling can also be determined by measuring cross section

ME, Hamaguchi, Iwamoto, Kawada, Kitahara, Moroi, Suehara

Smuon, neutralino mass determination

Endpoint method

Lepton energy distribution for $\tilde{\ell}^{\pm} \rightarrow \ell^{\pm} \tilde{\chi}_1^0$

$$E_{+/-} = \frac{\sqrt{s}}{4} \left(\frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}}^2}{m_{\tilde{\ell}}^2} \right) \left(1 \pm \sqrt{1 - 4 m_{\tilde{\ell}}^2/s} \right)$$
$$m_{\tilde{\ell}} = \sqrt{s} \frac{\sqrt{E_- E_+}}{E_- + E_+} ,$$
$$m_{\tilde{\chi}} = m_{\tilde{\ell}} \sqrt{1 - \frac{E_- + E_+}{\sqrt{s/2}}} .$$

→ δm ~ 0.1GeV

Smuon LR mixing determination

Smuon LR mixing is proportional to muon mass and thus small

$$m_{\tilde{\mu}LR}^2 \simeq -m_{\mu}\mu \tan\beta$$

(Much) easier to determine stau LR mixing because $m_{\tau} > m_{\mu}$

$$m_{\tilde{\mu}LR}^2 = \frac{m_{\mu}}{m_{\tau}} m_{\tilde{\tau}LR}^2$$

Stau LR mixing

$$m_{\tilde{\tau}LR}^2 = \frac{1}{2} \left(m_{\tilde{\tau}_1}^2 - m_{\tilde{\tau}_2}^2 \right) \sin 2\theta_{\tilde{\tau}}$$

→ Measure <u>stau mass</u> and <u>mixing angle</u>

$$\mathcal{M}_{\tilde{\tau}}^2 = \begin{pmatrix} m_{\tilde{\tau}LL}^2 & m_{\tilde{\tau}LR}^2 \\ m_{\tilde{\tau}LR}^2 & m_{\tilde{\tau}RR}^2 \end{pmatrix}$$
$$\begin{pmatrix} \tilde{\tau}_1 \\ \tilde{\tau}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta_{\tilde{\tau}} & \sin\theta_{\tilde{\tau}} \\ -\sin\theta_{\tilde{\tau}} & \cos\theta_{\tilde{\tau}} \end{pmatrix} \begin{pmatrix} \tilde{\tau}_L \\ \tilde{\tau}_R \end{pmatrix}$$

Stau endpoint and cross section

$m_{ ilde{e}_1}$	$m_{\tilde{e}_2}$	$m_{ ilde{\mu}_1}$	$m_{ ilde{\mu}_2}$	$m_{ ilde{ au}_1}$	$m_{ ilde{ au}_2}$	$m_{ ilde{\chi}_1^0}$	$\cos heta_{ ilde{\mu}}$	$\cos heta_{ ilde{ au}}$
155.8	156.7	154.0	158.5	113.2	189.8	99.3	0.631	0.703
$m_{ m L}$	$m_{ m R}$	M_1	μ	aneta	$\Omega_{ m DM} h^2$	$a_{\mu}^{ m SUSY}$	7	$a_{\mu}^{(ilde{B})}$
150.0	150.0	100.0	1323	4.94	0.120	27.1×10	-10	27.5×10^{-10}

ILC at $\sqrt{s} = 500$ GeV, $\int L = 1.6$ ab⁻¹ for each polarization

 $(P_{e^-}, P_{e^+}) = (-80\%, +30\%) [eLpR]$ (+80%, -30%) [eRpL]

Global fit of endpoints and xsecs: $m_{\tilde{\tau}_1} = 112.8 \pm 0.2 \,\text{GeV} \quad [113.2]$ $m_{\tilde{\tau}_2} = 189.9^{+0.8}_{-0.7} \,\text{GeV} \quad [189.8]$ $\cos \theta_{\tilde{\tau}} = 0.703 \pm 0.010 \quad [0.703]$

Stau LR mixing

$$-m_{\tilde{\tau}LR}^2 = (1.17 \pm 0.01) \times 10^4 \,\mathrm{GeV}^2$$

Muon g-2 reconstruction

Smuon mixing angle

$$\sin 2\theta_{\tilde{\mu}} = \frac{2m_{\tilde{\mu}LR}^2}{m_{\tilde{\mu}_1}^2 - m_{\tilde{\mu}_2}^2} = \frac{m_{\mu}}{m_{\tau}} \frac{2m_{\tilde{\tau}LR}^2}{m_{\tilde{\mu}_2}^2 - m_{\tilde{\mu}_1}^2}$$

Muon g-2

Result: reconstruction at 1% accuracy

$$a_{\mu}^{(\tilde{B})}\Big|_{m_{\tilde{\mu}LR}^2} = (27.6 \pm 0.3) \times 10^{-10}$$
 [Error: LR mixing]
 $a_{\mu}^{(\tilde{B})} = (27.5 \pm 0.4) \times 10^{-10}$ [Error: All]

Summary

Fermilab confirmed muon g-2 result.

Current discrepancy is 4.2σ , which will be checked soon.

White paper has been published, but there are issues on HVP.

Many new physics models have been proposed. SUSY is a major target and expected to be checked in near future. In particular, ILC will be able to reconstruct a_{μ} at 1% accuracy.

Backup slide

🛟 Fermilab

12 15/03/22 Kevin Labe I Muon g – 2

Slide by K. Labe, Moriond EW 2022

Fig. 13. The $\pi^+\pi^-$ cross section from the KLOE combination compared to the BABAR, CMD-2, SND, and BESIII data points in the 0.6–0.9 GeV range [82]. The KLOE combination is represented by the yellow band. The uncertainties shown are the diagonal statistical and systematic uncertainties summed in quadrature.