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Radiative Emission of Neutrino Pair (RENP)

enhancement by macrocoherence 
Rate � �G2

F E5 � 1/(1033 s)

Atomic/molecular energy scale ~ eV or less
close to the neutrino mass scale

 A.Fukumi et al.  PTEP (2012) 04D002; arXiv:1211.4904 
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Macrocoherence
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Yoshimura et al. (2008)
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QED backgrounds
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|ei ! |gi+ � + ⌫i⌫̄j
Macrocoherent amplification of RENP

Macrocoherent amplification of QED processes
McQ3|ei ! |gi+ �0 + �1�2

Ex. Xe

1 Introduction

With the advent of successful macro-coherent amplification (more than 1015) of QED rare processes [2],

namely the macro-coherent paired super-radiance (PSR) [3], the atomic project of neutrino mass spec-

troscopy [4] has gained a new stage of potentiality to explore important neutrino properties yet to be

measured and to ultimately detect the relic neutrino of temperature 1.9 K [5].

In the present work we address the problem of quantum electrodynamic (QED) backgrounds and propose

a scheme of QED background-free RENP (Radiative Emission of Neutrino Pair). Usual higher order QED

processes, when they occur spontaneously, are not at all serious backgrounds to macro-coherently amplified

atomic neutrino pair emission (RENP) if experiments of the neutrino mass spectroscopy are designed with a

repetition cycle sufficiently faster than the decay lifetime. (Even a repetition scheme slower than the decay

rate is conceivable if the dead time is not too large.) The macro-coherently amplified QED process may

however become a serious source of backgrounds, since their rates are much larger, as is made evident below.

We shall term macro-coherently amplified QED process of order n as McQn for brevity. The case of n = 2

corresponds to PSR. Since RENP process occurs with parity change, the main backgrounds are odd McQn.

Our proposal for the QED background rejection is to use either wave guides [6] or some type of pho-

tonic crystals [7] to host a target. A promising host is Bragg fiber consisting a hollow surrounded by two

periodically arranged dielectrics of a cylindrical shape [8], [9]. For brevity we call these hosts as host guides

in the present work. After we show below how QED backgrounds are rejected, we shall calculate spec-

tral rates of RENP (stimulated single photon emission) |e⟩ → |g⟩ + γ0 + νν̄ in which no background of

McQ3 |e⟩ → |g⟩ + γ0 + γ1γ2 exists. Rejection of McQ5 and so on is then automatically guaranteed. The

background-free RENP rate is, to a good approximation, found to be a shifted (to the higher energy side)

spectrum in free space.

Parities of two states, |e⟩, |g⟩, for RENP are different. A good example of candidate de-excitation is from

the Xe excited state of JP = 1− of configuration 5p56s(8.437 eV) (the decay rate being ∼ 300 MHz) to the

ground state of 0+ of 5p6.

We show a part of Feynman diagrams (despite of the use of the non-relativistic perturbation theory

based on bound state electrons) in Fig(1). RENP diagrams are based on the nuclear monopole contribution

of [10]. Relevant Xe energy levels are shown in Fig(2).
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Figure 1: A part of Feynman diagrams for Xe 3P1(8.437eV) RENP in the left and for McQ3 in the right.

Dashed red line in the left is for Coulomb excitation between nucleus A and a valence electron.
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M. Yoshimura, N. Sasao, MT
PTEP (2015) 053B06; arXiv:15010571
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McQn vs. RENP in a waveguide
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Threshold
McQn !  ✏eg/2� n(n� 2)M2/2✏eg

RENP !  ✏eg/2� [(mi +mj)
2 �M2]/2✏eg

BG-free RENP(n� 1)M > mi +mj

McQ3
M > (mi +mj)/2 � m0 (the smallest neutrino mass)
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Ex. Xe ✏eg = 8.3153 eV

!
max

(McQ3) = 4.1570 eV
!
max

(RENP) = 4.1579 eV

m0 = 1 meV, a = 10 µm

Photonic crystals may be realistic.
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Band structure of photonic crystal
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Slab layers = 1D photonic crystal

periodicity band
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Winn et al., Opt. Lett. 23, 1573 (1998)
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Yeh,Yariv, Hong,  J. Opt. Soc. Am. 67, 423 (1977)
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Bragg fiber
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Similar band structure
as the slab

2015年 11月 16日, ”note.tex”, Koji TSUMURA 34

図 11 nc = 1のブラッグファイバについて, 式 (198)を図示したもの.

図 12 図 11(右)と図 10を並べて書いた.

n1 = 4.6, n2 = 1.6, a2/a1 = 2
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More localized modes
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Yeh,Yariv, Marom,  J. Opt. Soc. Am. 68, 1196 (1977)
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Neutrino Physics with Atoms/Molecules

A new frontier of neutrino physics

RENP spectra are sensitive to unknown
neutrino parameters.

Absolute mass, Dirac or Majorana, 
NH or IH,  CP

Macrocoherent rate amplification is essential.
Demonstrated by a QED process, PSR.

Background-free RENP
Waveguide, photonic crystals


