Towards Background-free RENP Using a Photonic Crystal Waveguide

Minoru Tanaka
 Osaka U

in collaboration with
N. Sasao (Okayama), K.Tsumura (Kyoto), M.Yoshimura (Okayama) arXiv: I6I2.02423
FPUA20I7 @ Kyoto U, Jan. I0, 2017

Radiative Emission of Neutrino Pair (RENP)

A.Fukumi et al. PTEP (20I2) 04D002; arXiv: I 2 I .4904
D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M.Yoshimura, PLB7I9(20I3)I54; arXiv:I209.4808
$|e\rangle \rightarrow|g\rangle+\gamma+\nu_{i} \bar{\nu}_{j}$

Rate enhancement by macrocoherence

Confirmed by PSR experiments
10^{18} amplification

Macrocoherent amplification of RENP

$$
|e\rangle \rightarrow|g\rangle+\gamma+\nu_{i} \bar{\nu}_{j}
$$

Macrocoherent amplification of QED processes

$$
|e\rangle \rightarrow|g\rangle+\gamma_{0}+\gamma_{1} \gamma_{2} \quad \text { McQ3 }
$$

Ex. Xe

$$
\Gamma(\mathrm{McQ} 3) \sim 10^{20} \mathrm{~Hz}\left(\frac{n}{10^{20} / \mathrm{cm}^{3}}\right)^{3} \frac{V}{\mathrm{~cm}^{3}} \frac{\eta_{3}(t)}{10^{-3}}
$$

$$
\text { cf. } \Gamma(\text { RENP }) \sim 1 \mathrm{mHz}\left(\frac{n}{10^{20} / \mathrm{cm}^{3}}\right)^{3} \frac{V}{\mathrm{~cm}^{3}} \frac{\eta_{\omega}(t)}{10^{-3}}
$$

serious BG though reducible

Radiation in wavegulide/ cavity Purcell, Phys. Rev. 69,68I (1964)

Emission rate (of single mode)
$\Gamma \propto$ density of states \quad
depends on
environment

Purcell factor

$$
\begin{aligned}
F_{p}: & : \frac{\Gamma}{\Gamma_{\mathrm{FS}}}=\frac{\text { DoS }}{\text { DoS in Free Space }} \quad \text { (quantum) } \\
& =\frac{P}{P_{\mathrm{FS}}} \quad \text { Ratio of powers (classical) } \\
& F_{p}<1 \longrightarrow \text { Rate suppression }
\end{aligned}
$$

E.Yablonovitch, PRL58, 2059 (1987)
S. John, ibid., 2486 (I987)

Band structure of photonic crystal

Periodic dielectric structure \rightarrow band manipulating photon propagation cf. electronic band structure in solid

Field

$$
E(x) e^{i(k z-\omega t)}
$$

complete Bragg reflection
Winn et al., Opt. Lett. 23, I 573 (I998)

Bragg fiber

Yeh, Yariv, Marom, J. Opt. Soc.Am. 68, II96 (1977) Fink et al., J. Lightwave Technol. I7, 2039 (1999)
hollow core fiber

Confinement of light by Bragg reflection

Similar band structure as the slab

Purcell factor

McQ3 rate in Bragg fiber

$$
|e\rangle \rightarrow|g\rangle+\gamma_{0}\left(\omega_{0}\right)+\gamma_{1}\left(\omega_{1}\right)+\gamma_{2}\left(\omega_{2}\right)
$$

Rate suppression factor

Suppression of QED process in Bragg fiber

- Photonic crystal ~ periodic dielectric structure \rightarrow Band gap ~ vanishing DoS
\square Purcell factor $F_{p}=\mathrm{DoS} /(\mathrm{DoS}$ in free space)

$$
F_{p}<1 \longrightarrow \text { Rate suppression }
$$

Exponential rate suppression in the band gap for large index contrast
$\Gamma_{\mathrm{BF}} / \Gamma_{F S} \sim 10^{-21}$ for $n_{1}=4.8, n_{2}=1.3, N_{p}=70$

- To do

Rate of McQ4 or higher
Relaxing the requirement for indices

