$\overline{B} \rightarrow D^{(*)} \tau \overline{\nu} \text{ anomaly}$

Physics

Minoru Tanaka

Osaka U

Mar 31 2018, HQL2018@Yamagata

$\bar{B} \to D^{(*)} \tau \bar{\nu}$

Br ~ 0.7+1.3 % in the SM

Not rare, but two or more missing neutrinos Data available since 2007 (Belle, BABAR, LHCb)

Lepton Flavor (Non-)Universality Ratio of branching fractions $R(D^{(*)}) := \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell\bar{\nu}_{\ell})} \qquad \ell = e, \mu$

Predictable in the SM: Source of LFNU = mass

Smaller theoretical errors in the SM (and beyond) NoVcb in the ratio MT, Z. Phys. C67, 321 (1995)

Form factor uncertainty tends to cancel. Controlled by

 $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ experimental data, lattice QCD, Heavy Quark Effective Theory, QCD sum rule

Standard model predictions

$$\begin{split} R(D) &= 0.302 \pm 0.015 \, (\text{MT, Watanabe, 2010, HQET}) \\ & 0.296 \pm 0.016 \, (\text{Fajfer, Kamenik, Nisandzic, 2012, HQET}) \\ & 0.299 \pm 0.011 \, (\text{Bailey et al., 2015, lattice}) \\ & 0.300 \pm 0.008 \, (\text{Na et al., 2015, lattice}) \\ & 0.299 \pm 0.003 \, (\text{Bigi, Gambino, 2016, combined}) \\ & 0.299 \pm 0.003 \, (\text{Bernlochner et al., 2017, combined}) \\ & 0.407 \pm 0.039 \pm 0.024 \, (\text{Exp. HFLAV, 2017}) \quad 2.3 \, \sigma \end{split}$$

$$\begin{split} R(D^*) &= 0.252 \pm 0.003 \text{ (Fajfer, Kamenik, Nisandzic, 2012, HQET)} \\ &\quad 0.252 \pm 0.004 \text{ (MT, Watanabe, 2013, HQET)} \\ &\quad 0.257 \pm 0.003 \text{ (Bernlochner et al., 2017, combined)} \\ &\quad 0.260 \pm 0.008 \text{ (Bigi, Gambino, Schacht, 2017, combined)} \\ &\quad 0.259 \pm 0.006 \text{ (Jaiswal, Nandi, Patra, 2017, CLN)} \\ &\quad 0.257 \pm 0.005 \text{ (Jaiswal, Nandi, Patra, 2017, BGL)} \\ &\quad 0.304 \pm 0.013 \pm 0.007 \text{ (Exp. HFLAV, 2017)} \quad 3.4 \ \sigma \end{split}$$

 $R(D^{(*)}) := \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell\bar{\nu}_{\ell})}$

 $R(D) = 0.421 \pm 0.058$ $R(D^*) = 0.337 \pm 0.025$

> ~3.5 σ Y. Sakaki, MT, A. Tayduganov, R. Watanabe, PRD88, 094012 (2013)

 $R(D) = 0.407 \pm 0.039 \pm 0.024$ $R(D^*) = 0.304 \pm 0.013 \pm 0.007$

~4. σ HFLAV

$B_c \to J/\psi \, \tau \bar{\nu}_{\tau}$

The same quark-level process

$$R(J/\psi) := \frac{\mathcal{B}(B_c \to J/\psi \,\tau \bar{\nu}_{\tau})}{\mathcal{B}(B_c \to J/\psi \,\ell \bar{\nu}_{\ell})}$$

Experiment: $R(J/\psi) = 0.71 \pm 0.17 \pm 0.18$ **LHCb** PRLI20, 121801 (2018)

SM prediction Form factors similar to $\bar{B} \to D^*$, but less accurate

 $R(J/\psi)_{\rm SM} = [0.279, 0.301]$ R. Dutta, A. Bhol PRD96, 076001 (2017)

 $= 0.283 \pm 0.048$ R.Watanabe, PLB776 (2018) 5 ~1.7 σ

Model-independent approach MT, R.Watanabe, arXiv1212.1878, PRD87.034028(2013). Effective Lagrangian for $b \to c \tau \bar{\nu}$ all possible 4f operators with LH neutrinos $-\mathcal{L}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \sum \left[(\delta_{l\tau} + C_{V_1}^l)\mathcal{O}_{V_1}^l + C_{V_2}^l \mathcal{O}_{V_2}^l + C_{S_1}^l \mathcal{O}_{S_1}^l + C_{S_2}^l \mathcal{O}_{S_2}^l + C_T^l \mathcal{O}_T^l \right]$ $l=e,\mu,\tau$ $\mathcal{O}_{V_1}^l = \bar{c}_L \gamma^\mu b_L \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ SM-like, RPV, LQ, W' $\mathcal{O}_{V_2}^l = \bar{c}_R \gamma^\mu b_R \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ **RH** current charged Higgs II, RPV, LQ $\mathcal{O}_{S_1}^l = \bar{c}_L b_R \bar{\tau}_R \nu_{Ll} \,,$ $\mathcal{O}_{S_2}^l = \bar{c}_R b_L \, \bar{\tau}_R \nu_{Ll} \,,$ charged Higgs III, LQ $\mathcal{O}_{T}^{l} = \bar{c}_{R} \sigma^{\mu\nu} b_{L} \bar{\tau}_{R} \sigma_{\mu\nu} \nu_{Ll}$ LO

Minoru TANAKA

10

R.Watanabe, PLB776 (2018) 5

Leptoquark models Six of ten types of LQ contribute. S_1 S_3 R_2 V_2 U_1 U_3 spin 0 0 0 1 1

Y. Sakaki, MT, A. Tayduganov, R. Watanabe arXiv:1309.0301; PRD88, 094012 (2013)

> Buchmüller, Rückl, Wyler PLB191 (1987) 442

Tau longitudinal polarizationMT, Z. Phys. C67, 321 (1995) $P_{\tau} := \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$ $\lambda_{\tau} = \pm$
 τ helicity defined in the τv rest frame

Experiment

 $P_{\tau}(D^*) = -0.44 \pm 0.47^{+0.20}_{-0.17}$ Belle arXiv:1608.06391

SM prediction

 $P_{\tau}(D^{*}) = -0.497 \pm 0.013 \qquad \text{MT, R. Watanabe 2013} \\ P_{\tau}(D^{*}) = -0.47 \pm 0.04 \qquad \begin{array}{l} \text{D. Bigi, P. Gambino, S. Schacht} \\ \text{JHEPII(2017)061} \end{array}$

Implication of the BABAR q² data

Y. Sakaki, MT, A. Tayduganov, R. Watanabe, arXiv:1412.3761; PRD91, 14028 (2015)

p value

model	$\overline{B} \to D\tau\overline{\nu}$	$\overline{B} \to D^* \tau \overline{\nu}$	$\overline{B} \to (D+D^*)\tau\overline{\nu}$
SM	54%	65%	67%
V_1	54%	65%	67%
V_2	54%	65%	67%
S_2	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ_1	13%	58%	25%
LQ_2	21%	72%	42%

S_2, T disfavored

 $LQ_{1,2}$ (combinations of S_2, T) allowed

Ratio of the q² distributions

$$R_D(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D\ell\overline{\nu})/dq^2} \frac{\lambda_D(q^2)}{(m_B^2 - m_D^2)^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$$
$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D^*\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D^*\ell\overline{\nu})/dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}.$$
$$\lambda_{D^{(*)}}(q^2) = ((m_B - m_{D^{(*)}})^2 - q^2)((m_B + m_{D^{(*)}})^2 - q^2)$$

No Vcb dependence, less form factor uncertainties

 $q^{2})$

Simulated data vs benchmark models χ^2 of the binned $R_{D^{(\ast)}}(q^2)$

Required luminosity to exclude the model

$\mathcal{L} [\mathrm{fb}^{-1}]$		model							
		SM	V_1	V_2	S_2	Т	LQ_1	LQ_2	
"data"	V_1	1170		10^{6}	500	900	4140	2860	
		(270)		(X)	(X)	(X)	(X)	(1390)	
	V_2	1140	10^{6}		510	910	4210	3370	
		(270)	(X)		(X)	(X)	(X)	(1960)	
	S_2	560	560	540		380	1310	730	
		(290)	(13750)	(36450)		(X)	(35720)	(4720)	
	Т	600	680	700	320		620	550	
		(270)	(X)	(X)	(X)		(X)	(1980)	
	LQ1	1010	4820	4650	1510	800		5920	
		(270)	(X)	(X)	(X)	(X)		(1940)	
	LQ_2	1020	3420	3990	1040	650	5930		
		(250)	(1320)	(1820)	(20560)	(4110)	(1860)		

(...): integrated quantities

99.9 % CL

 $L \lesssim 6 \ {\rm ab}^{-1}$ in most cases

A good target at an earlier stage of Belle II

Summary

- Excess of $\bar{B} \to D^{(*)} \tau \bar{\nu} : R(D), R(D^*) \sim 4.1 \sigma$
- Favored NP scenarios
 - V_1 (left-handed), V_2 (right-handed), T, LQ's
- Other modes and observables $R(J/\psi), R(\eta_c), R(D_s), R(\Lambda_c), R(X_c)$ $q^2, P_{\tau}, P_{D^*}, A_{FB}$
- Belle II: Factor 2(5) improvement with 5(50) /ab
- Flavor structure of possible NP $(\bar{u}b)(\bar{\tau}\nu) B^- \rightarrow \tau\bar{\nu}, B \rightarrow \pi\tau\bar{\nu}$ MT, R. Watanabe, PTEP 013B05 (2017)

Other flavor anomalies, NP search at LHC

Freytsis, Ligeti, Ruderman PRD92, 054018 (2015); Fajfer, Kosnik PLB755, 270 (2016) Bauer, Neubert PRL116,141802 (2016); Dumont, Nishiwaki, Watanabe PRD94, 034001(2016)