Probing new intra－atomic force with isotope shifts

－Implication of precision spectroscopy of 10－18 accuracy－

Minoru Tanaka（Osaka U）

in collaboration with
K．Mikami（Osaka U）and Y．Yamamoto（Yonsei U） arXiv：I7IO．II443

Het Camp，2－4 Nov．20I7，Nose，Osaka，Japan

Isotope shift (IS)

Transition frequency difference between isotopes

$$
\begin{array}{ll}
h \nu_{A}=E_{A}^{i}-E_{A}^{f} & |i\rangle-\downarrow \sim \nu_{A^{\prime} A}:=\nu_{A^{\prime}}-\nu_{A} \\
\mathrm{IS}=\nu_{\nu} & |f\rangle
\end{array}
$$

No IS for infinitely heavy and point-like nuclei

$$
\mathrm{IS}=\mathrm{MS}+\mathrm{FS}
$$

Mass shift: finite mass of nuclei (reduced mass) $\mathrm{MS} \propto \mu_{A^{\prime}}-\mu_{A}$ (dominant for small Z)
Field shift: finite size of nuclei
$\mathrm{FS} \propto r_{A^{\prime}}^{2}-r_{A}^{2} \quad$ (dominant for large $\left.\mathbf{Z}\right)$
Theoretical calculation of IS: not easy

$$
\mathrm{IS} \sim O(\mathrm{GHz}) \sim O(10 \mu \mathrm{eV})
$$

King's linearity

IS of two transitions: $\ell=1,2$

$$
\nu_{A^{\prime} A}^{\ell}=K_{\ell} \mu_{A^{\prime} A}+F_{\ell} r_{A^{\prime} A}^{2}
$$

$$
\begin{aligned}
\mu_{A^{\prime} A} & :=\mu_{A^{\prime}}-\mu_{A} \\
r_{A^{\prime} A}^{2} & :=\left\langle r^{2}\right\rangle_{A^{\prime}}-\left\langle r^{2}\right\rangle_{A}
\end{aligned}
$$

Modified IS: $\tilde{\nu}_{A^{\prime} A}^{\ell}:=\nu_{A^{\prime} A}^{\ell} / \mu_{A^{\prime} A}$

$$
\begin{aligned}
\tilde{\nu}_{A^{\prime} A}^{\ell}= & K_{\ell}+F_{\ell} r_{A^{\prime} A}^{2} / \mu_{A^{\prime} A} \\
& \text { electronic factors }
\end{aligned}
$$

King's linearity eliminating the nuclear factor

$$
\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+\frac{F_{2}}{F_{1}} \tilde{\nu}_{A^{\prime} A}^{1} \quad K_{21}:=K_{2}-\frac{F_{2}}{F_{1}} K_{1}
$$

$\rightarrow\left(\tilde{\nu}_{A^{\prime} A}^{1}, \tilde{\nu}_{A^{\prime} A}^{2}\right)$ on a straight line, King's plot

IS data of Yb^{+}

Line I: 369 nm
Martensson-Pendrill et al. PRA49, 335I (1994)

$$
{ }^{2} \mathrm{P}_{1 / 2}(4 \mathrm{f})^{14}(6 \mathrm{p})-{ }^{2} \mathrm{~S}_{1 / 2}(4 \mathrm{f})^{14}(6 \mathrm{~s}) \quad \delta \nu_{A^{\prime} A}^{1} \sim O(1) \mathrm{MHz}
$$

Line 2: $935 \mathrm{~nm} \quad$ Sugivama et al. CPEM2000

$$
{ }^{3} \mathrm{D}[3 / 2]_{1 / 2}(4 \mathrm{f})^{13}(5 \mathrm{~d})(6 \mathrm{~s})-{ }^{2} \mathrm{D}_{3 / 2}(4 \mathrm{f})^{14}(5 \mathrm{~d})
$$

$$
\delta \nu_{A^{\prime} A}^{2} \sim O(10) \mathrm{MHz}
$$

Isotope pairs: (I72, I70), (I74, I72), (I76, I72)
King's plot
linear within errors

Particle shift (PS)

Frequency shifts by particle exchange (Yb^{+}g.s.)

$$
|\Delta \nu| \sim \begin{cases}10^{-4} \mathrm{~Hz} & \text { Higgs (SM) } \\ 400 \mathrm{~Hz} & \text { Higgs (LHC bound) } \\ 800 \mathrm{~Hz} & Z \\ 10 \mathrm{MHz} & X_{17} 17 \mathrm{MeV} \text { vector boson }\end{cases}
$$

<< theoretical uncertainties

Breakdown of the linearity by PS

$\mathrm{IS}=\mathrm{MS}+\mathrm{FS}+\mathrm{PS}$
PS by new neutron-electron interaction

$$
\nu_{A^{\prime} A}^{\ell}=K_{\ell} \mu_{A^{\prime} A}+F_{\ell} r_{A^{\prime} A}^{2}+X_{\ell}\left(A^{\prime}-A\right)
$$

Generalized King's relation

$$
\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}+\varepsilon A^{\prime} A \quad \text { nonlinearity }
$$ probe into new physics

PS nonlinearity

$$
\varepsilon_{\mathrm{PS}}=X_{1}\left(\frac{X_{2}}{X_{1}}-\frac{F_{2}}{F_{1}}\right) \quad X_{\ell} \propto \frac{g_{n} g_{e}}{m^{2}} \text { as } m \rightarrow \infty
$$

Field shift nonlinearity

One of the sources of nonlinearity in QED

$$
\begin{aligned}
& \mathrm{FS}=F_{\ell} r_{A^{\prime} A}^{2}+G_{\ell} r_{A^{\prime} A}^{4} \\
& \tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}+\varepsilon A^{\prime} A \\
& \quad \varepsilon=\varepsilon_{\mathrm{PS}}+\varepsilon_{\mathrm{FS}}
\end{aligned}
$$

Wavefunction inside the nucleus is relevant.
p state dominant: $\mathrm{Ca}^{+} 4 \mathrm{p}, \mathrm{Yb}^{+} 6 p$

$$
\varepsilon_{\mathrm{FS}}=Z\left|\psi_{n p}^{\prime}(0)\right|^{2} \frac{d}{d A}\left\langle r^{4}\right\rangle_{A}+\cdots
$$

nuclear Helm distribution

Present constraint and future prospect

Data fitting with $\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}+\varepsilon A^{\prime} A$

Comparison to other constraints: vector

Summary and outlook

- Isotope shift and King's linearity

$$
\mathrm{IS}=\mathrm{MS}+\mathrm{FS}, \quad \tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}
$$

Linear relation of modified IS of two lines
\square Nonlinearity $\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}+\varepsilon A^{\prime} A$
$\varepsilon=\varepsilon_{\mathrm{PS}}+\varepsilon_{\mathrm{FS}}$
Particle shift nonlinearity: $\varepsilon_{\mathrm{PS}} \sim O\left(1 / m^{4}\right)$ sensitive for lighter particles, $m \ll 100 \mathrm{MeV}$
Other nonlinearities: more study needed
$\square \mathrm{Yb}^{+}$ion trap project by Sugiyama et al. (Kyoto)
$\delta \nu<1 \mathrm{~Hz} \sim 100 \mathrm{kHz}$
possible with proved technique

Backup

Frontiers in particle physics

Energy frontier: LHC, ILC,...
Intensity frontier: B factory, muon,...
Cosmic frontier: CMB,...
Precision / low energy frontier $0 \nu \beta \beta$, DM, EDM, ...

Temporal variation of fundamental constants $\alpha, \mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}$ using atomic clock

$$
\mathrm{Yb}^{+}: \delta \nu / \nu \sim 10^{-18}, \delta \nu \sim \operatorname{sub~Hz}
$$

Isotope shift new neutron-electron interaction

IS data of Ca^{+}

Line I: $397 \mathrm{~nm}{ }^{2} \mathrm{P}_{1 / 2}(4 \mathrm{p})-{ }^{2} \mathrm{~S}_{1 / 2}(4 \mathrm{~s})$ Line 2: $866 \mathrm{~nm}{ }^{2} \mathrm{P}_{1 / 2}(4 \mathrm{p})-{ }^{2} \mathrm{D}_{3 / 2}(3 \mathrm{~d})$

IS precision ~ O (I00) kHz
King's plot
linear within errors

397 nm

Heavy particle limit

$$
\begin{aligned}
& m a_{B} \gg Z, a_{B}=\text { Bohr radius } \sim(4 \mathrm{keV})^{-1} \\
& F_{\ell}, X_{\ell} \propto\left|\psi_{i_{\ell}}(0)\right|^{2}-\left|\psi_{f_{\ell}}(0)\right|^{2} \rightarrow \lim _{m \rightarrow \infty}\left(\frac{X_{2}}{X_{1}}-\frac{F_{2}}{F_{1}}\right)=0
\end{aligned}
$$

Asymptotic behavior of PS

$$
\int d^{3} r|\psi(r)|^{2} \frac{e^{-m r}}{r}=\frac{1}{m^{2}} \sum_{k=0}(2+2 l+k)!\frac{\xi_{k}^{l}}{m^{2 l+k}}+\cdots
$$

$\xi_{1}^{0}=0$ for nucl. charge distribution without cusp

$$
\frac{X_{2}}{X_{1}}-\frac{F_{2}}{F_{1}} \sim O\left(\frac{1}{m^{2}}\right) \rightarrow \varepsilon_{\mathrm{PS}} \sim O\left(\frac{1}{m^{4}}\right)
$$

less sensitive to heavier particles cf. Berengut et al. arXiv: $1704.05068 \quad \varepsilon_{\mathrm{PS}} \propto 1 / m^{3}$

Comparison to other constraints: scalar

${ }^{8}$ Be anomaly and $I 7 \mathrm{MeV}$ vector boson

Krasznahorkay et al. PRLII6, 04250I (2016) ${ }^{8} \mathrm{Be}^{*}(18.15 \mathrm{MeV}) \rightarrow{ }^{8} \mathrm{Be}+e^{+} e^{-}$ Bump in the $e^{+} e^{-}$inv. mass
 $m_{X} \sim 17 \mathrm{MeV}$
vector $U(1)_{B}, U(1)_{B-L}$

Constraint from

 dark photon searchFeng et al. PRLII 7, 071803 (2016)
NA48/2 $\pi^{0} \rightarrow \gamma+A^{\prime}\left(\rightarrow e^{+} e^{-}\right)$ \rightarrow protophobic

Evaluation of PS nonlinearity

Single electron approximation

$$
X_{\ell}=\frac{g_{n} g_{e}}{4 \pi} \int r^{2} d r \frac{e^{-m r}}{r}\left[R_{i_{\ell}}^{2}(r)-R_{f_{\ell}}^{2}(r)\right]
$$

Wavefunction non relativistic (not bad for $\mathrm{m} \ll 100 \mathrm{MeV}$)
Thomas-Fermi model
semiclassical, statistical, selfconsistent field exact in large Z limit

