

Probing new intra-atomic force with isotope shifts

Implication of precision spectroscopy of 10⁻¹⁸ accuracy

Minoru Tanaka (Osaka U)

in collaboration with K. Mikami (Osaka U) and Y. Yamamoto (Yonsei U)

arXiv: 1710.11443

Het Camp, 2-4 Nov. 2017, Nose, Osaka, Japan

Isotope shift (IS)

Transition frequency difference between isotopes

$$h\nu_{A} = E_{A}^{i} - E_{A}^{f}$$

$$IS = \nu_{A'A} := \nu_{A'} - \nu_{A}$$

$$|i\rangle \longrightarrow \nu_{A}$$

$$|f\rangle \longrightarrow \nu_{A}$$

No IS for infinitely heavy and point-like nuclei

Mass shift: finite mass of nuclei (reduced mass) ${
m MS} \propto \mu_{A'} - \mu_A$ (dominant for small Z)

Field shift: finite size of nuclei

$$\mathrm{FS} \propto r_{A'}^2 - r_A^2$$
 (dominant for large Z)

Theoretical calculation of IS: not easy

IS
$$\sim O(\mathrm{GHz}) \sim O(10 \ \mu \mathrm{eV})$$

King, 1963

IS of two transitions: $\ell = 1, 2$

$$\nu_{A'A}^{\ell} = K_{\ell} \,\mu_{A'A} + F_{\ell} \,r_{A'A}^{2} \qquad \qquad \mu_{A'A} := \mu_{A'} - \mu_{A} \\ r_{A'A}^{2} := \langle r^{2} \rangle_{A'} - \langle r^{2} \rangle_{A}$$

Modified IS: $\tilde{\nu}_{A'A}^{\ell} := \nu_{A'A}^{\ell}/\mu_{A'A}$

$$\tilde{\nu}_{A'A}^\ell = K_\ell + F_\ell r_{A'A}^2/\mu_{A'A}$$
 nuclear factor

electronic factors

King's linearity eliminating the nuclear factor

$$\tilde{\nu}_{A'A}^2 = K_{21} + \frac{F_2}{F_1} \tilde{\nu}_{A'A}^1 \qquad K_{21} := K_2 - \frac{F_2}{F_1} K_1$$

 $(\tilde{\nu}_{A'A}^1, \tilde{\nu}_{A'A}^2)$ on a straight line, King's plot

IS data of Yb+

Line 1:369 nm

Martensson-Pendrill et al. PRA49, 3351 (1994)

$$^{2}P_{1/2}(4f)^{14}(6p) - ^{2}S_{1/2}(4f)^{14}(6s) \quad \delta\nu_{A'A}^{1} \sim O(1) \text{ MHz}$$

Line 2: 935nm

Sugiyama et al. CPEM2000

$$^{3}D[3/2]_{1/2}(4f)^{13}(5d)(6s) - ^{2}D_{3/2}(4f)^{14}(5d)$$

 $\delta \nu_{A'A}^2 \sim O(10) \text{ MHz}$

Isotope pairs: (172, 170), (174, 172), (176, 172)

King's plot

linear within errors

Yb⁺ modified IS [THz amu] 10σ error bars (172,170) 10σ 45 10σ error bars (172,170) 10σ 45 10σ error bars (172,170) 10σ 18 19 20 21 22 23 24

369 nm

Particle shift (PS)

Frequency shifts by particle exchange (Yb+ g.s.)

$$|\Delta\nu| \sim \begin{cases} 10^{-4} \text{ Hz} & \text{Higgs (SM)} \\ 400 \text{ Hz} & \text{Higgs (LHC bound)} \\ 800 \text{ Hz} & Z \\ 10 \text{ MHz} & X_{17} \text{ 17 MeV vector boson} \end{cases}$$

< theoretical uncertainties</p>

Breakdown of the linearity by PS

Delaunay et al. arXiv:1601.05087v2

$$IS = MS + FS + PS$$

PS by new neutron-electron interaction

$$\nu_{A'A}^{\ell} = K_{\ell} \,\mu_{A'A} + F_{\ell} \,r_{A'A}^2 + X_{\ell}(A' - A)$$

Generalized King's relation

$$\tilde{\nu}_{A'A}^2 = K_{21} + F_{21} \tilde{\nu}_{A'A}^1 + \varepsilon A'A$$
 nonlinearity probe into new physics

PS nonlinearity

$$\varepsilon_{\rm PS} = X_1 \left(\frac{X_2}{X_1} - \frac{F_2}{F_1} \right) \qquad X_\ell \propto \frac{g_n g_e}{m^2} \text{ as } m \to \infty$$

Field shift nonlinearity

One of the sources of nonlinearity in QED

$$FS = F_{\ell} r_{A'A}^{2} + G_{\ell} r_{A'A}^{4}$$
$$\tilde{\nu}_{A'A}^{2} = K_{21} + F_{21} \tilde{\nu}_{A'A}^{1} + \varepsilon A'A$$

$$\varepsilon = \varepsilon_{\rm PS} + \varepsilon_{\rm FS}$$

Wavefunction inside the nucleus is relevant. p state dominant: Ca+ 4p, Yb+ 6p

Present constraint and future prospect

Data fitting with $\tilde{\nu}_{A'A}^2 = K_{21} + F_{21} \tilde{\nu}_{A'A}^1 + \varepsilon A'A$

$$\varepsilon = (-2.45 \pm 4.05) \cdot 10^{-6}$$

au

future prospect $\delta \nu = 1 \; \mathrm{Hz}$ $|\varepsilon| < 4.5 \cdot 10^{-11}$

$$\varepsilon = (-1.26 \pm 1.35) \cdot 10^{-4}$$

future prospect $\delta \nu = 1 \; \mathrm{Hz}$ $|\varepsilon| < 4.2 \cdot 10^{-11}$

$O(m^4)$ due to p states

FSNL dominance:

Ca⁺
$$\delta \nu \lesssim 0.01 \; \mathrm{Hz}$$

Yb⁺
$$\delta \nu \lesssim 4.7 \; \mathrm{Hz}$$

Comparison to other constraints: vector

Summary and outlook

Isotope shift and King's linearity

IS=MS+FS,
$$\tilde{\nu}_{A'A}^2 = K_{21} + F_{21} \tilde{\nu}_{A'A}^1$$

Linear relation of modified IS of two lines

Nonlinearity $\tilde{\nu}_{A'A}^2 = K_{21} + F_{21}\tilde{\nu}_{A'A}^1 + \varepsilon A'A$ $\varepsilon = \varepsilon_{\text{PS}} + \varepsilon_{\text{FS}}$

Particle shift nonlinearity: $\varepsilon_{\rm PS} \sim O(1/m^4)$ sensitive for lighter particles, $m \ll 100~{\rm MeV}$ Other nonlinearities: more study needed

Yb⁺ ion trap project by Sugiyama et al. (Kyoto) $\delta \nu < 1~{\rm Hz} \sim 100~{\rm kHz}$ possible with proved technique

Backup

Frontiers in particle physics

Energy frontier: LHC, ILC,...

Intensity frontier: B factory, muon,...

Cosmic frontier: CMB,...

Precision / low energy frontier $0\nu\beta\beta$, DM, EDM,...

Temporal variation of fundamental constants α , m_e/m_p using atomic clock

Yb⁺: $\delta \nu / \nu \sim 10^{-18}$, $\delta \nu \sim \mathrm{sub~Hz}$ Hunteman et al. (PTB) 2016

Isotope shift new neutron-electron interaction

IS data of Ca+

Gebert et al. PRL115, 053003 (2015)

Line I:397 nm ${}^{2}P_{1/2}(4p) - {}^{2}S_{1/2}(4s)$

Line 2:866 nm ${}^{2}P_{1/2}(4p) - {}^{2}D_{3/2}(3d)$

Isotope pairs: (42, 40), (44,40), (48,40)

IS precision $\sim O(100)$ kHz

King's plot

linear within errors

Heavy particle limit

 $ma_B \gg Z$, $a_B = \text{Bohr radius} \sim (4 \text{ keV})^{-1}$

$$F_{\ell}, X_{\ell} \propto |\psi_{i_{\ell}}(0)|^2 - |\psi_{f_{\ell}}(0)|^2 \lim_{m \to \infty} \left(\frac{X_2}{X_1} - \frac{F_2}{F_1}\right) = 0$$

Asymptotic behavior of PS

$$\int d^3r |\psi(r)|^2 \frac{e^{-mr}}{r} = \frac{1}{m^2} \sum_{k=0}^{\infty} (2 + 2l + k)! \frac{\xi_k^l}{m^{2l+k}} + \cdots$$

$$l = \text{angular momentum}$$

 $\xi_1^0 = 0$ for nucl. charge distribution without cusp

$$\frac{X_2}{X_1} - \frac{F_2}{F_1} \sim O\left(\frac{1}{m^2}\right) \longrightarrow \varepsilon_{PS} \sim O\left(\frac{1}{m^4}\right)$$

less sensitive to heavier particles

cf. Berengut et al. arXiv:1704.05068 $\ensuremath{arepsilon_{\mathrm{PS}}} \propto 1/m^3$

Comparison to other constraints: scalar

⁸Be anomaly and 17 MeV vector boson

Krasznahorkay et al. PRL116, 042501 (2016)

$${}^{8}\text{Be}^{*}(18.15 \text{ MeV}) \rightarrow {}^{8}\text{Be} + e^{+}e^{-}$$

Bump in the e^+e^- inv. mass

$$^{8}\text{Be}^{*} \rightarrow ^{8}\text{Be} + X(\rightarrow e^{+}e^{-})$$
 $m_{X} \sim 17 \text{ MeV}$

vector $U(1)_B$, $U(1)_{B-L}$ Constraint from dark photon search

Feng et al. PRL117, 071803 (2016)

NA48/2
$$\pi^0 \to \gamma + A'(\to e^+ e^-)$$

Evaluation of PS nonlinearity

Single electron approximation

$$X_{\ell} = \frac{g_n g_e}{4\pi} \int r^2 dr \frac{e^{-mr}}{r} \left[R_{i_{\ell}}^2(r) - R_{f_{\ell}}^2(r) \right]$$

Wavefunction

non relativistic (not bad for m<<100 MeV)

Thomas-Fermi model

semiclassical, statistical, selfconsistent field

exact in large Z limit