

原子過程を用いた 宇宙背景ニュートリノの測定法

田中実(阪大理)

吉村太彦 (岡山大自然), 笹尾 登 (岡山大極限量子)

2015/3/21,日本物理学会第70回年次大会@早稻田

CNB at present: $f(\boldsymbol{p}) = [\exp(|\boldsymbol{p}|/T_{\nu} - \xi) + 1]^{-1}$ (not) Fermi-Dirac dist. $|\boldsymbol{p}| = \sqrt{E^2 - m_{\nu}^2}$ $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \simeq 1.945 \text{ K} \simeq 0.17 \text{ meV}$ $\boldsymbol{p}_{\nu} \simeq 6 \times 56 \text{ cm}^{-3}$ Detection?

Radiative Emission of Neutrino Pair (RENP)

A.Fukumi et al. PTEP (2012) 04D002, arXiv:1211.4904

 $|e\rangle \rightarrow |g\rangle + \gamma + \nu_i \bar{\nu}_j$

Λ-type level structure Ba, Xe, Ca+,Yb,... H2, O2, I2, ...

Atomic/molecular energy scale ~ eV or less close to the neutrino mass scale measurement of absolute neutrino mass Rate $\sim \alpha G_F^2 E^5 \sim 1/(10^{33} \text{ s})$ Enhancement mechanism?

Macroscopic target of N atoms, volume V (n=N/V)

total amp.
$$\propto \sum_{a} e^{-i(\vec{k}+\vec{p}+\vec{p'})\cdot\vec{x}_{a}} \simeq \frac{N}{V} (2\pi)^{3} \delta^{3}(\vec{k}+\vec{p}+\vec{p'})$$

$$d\Gamma \propto n^2 V(2\pi)^4 \delta^4(q-p-p') \qquad q^\mu = (\epsilon_{eg} - \omega, -\vec{k})$$

macrocoherent amplification

Neutrino emission mechanisms

RENP spectrum

Energy-momentum conservation due to the macrocoherence

familiar 3-body decay kinematics

Six (or three) thresholds of the photon energy

$$\begin{split} \omega_{ij} &= \frac{\epsilon_{eg}}{2} - \frac{(m_i + m_j)^2}{2\epsilon_{eg}} \qquad i, j = 1, 2, 3\\ \epsilon_{eg} &= \epsilon_e - \epsilon_g \quad \text{atomic energy diff.} \end{split}$$

Required energy resolution $\sim O(10^{-6}) \,\mathrm{eV}$ typical laser linewidth $\Delta \omega_{\mathrm{trig.}} \lesssim 1 \,\mathrm{GHz} \sim O(10^{-6}) \,\mathrm{eV}$

Photon spectrum (spin current)

Global shape

Threshold region

The threshold weight factors

	B_{11}	B_{22}	B_{33}	$B_{12} + B_{21}$	$B_{23} + B_{32}$	$B_{31} + B_{13}$
L	$(c_{12}^2 c_{13}^2 - 1/2)^2$	$(s_{12}^2c_{13}^2-1/2)^2$	$(s_{13}^2 - 1/2)^2$	$2c_{12}^2s_{12}^2c_{13}^4$	$2s_{12}^2c_{13}^2s_{13}^2$	$2c_{12}^2c_{13}^2s_{13}^2$
0.07	0.0311	0.0401	0.227	0.405	0.0144	0.0325
0.06						
Minor _{H0} JANAKA 8						

Photon spectrum (nuclear monopole)

Xe ${}^{3}P_{1}$ 8.4365 eV $n = 7 \times 10^{19} \text{ cm}^{-3}$ $V = 100 \text{ cm}^{3}$

RENP in CNB $|e\rangle \rightarrow |g\rangle + \gamma + \nu_i \bar{\nu}_j$ Pauli exclusion $d\Gamma \propto |\mathcal{M}|^2 \left[1 - f_i(p) \right] \left[1 - \bar{f}_j(p') \right]$

spectral distortion

Distortion factor

$$R_X(\omega) \equiv \frac{\Gamma_X(\omega, T_\nu)}{\Gamma_X(\omega, 0)}$$

 $X = \begin{cases} M & \text{nuclear monopole} \ \text{larger rate} \ i = j \\ S & \text{valence} \ e \ \text{spin current} \end{cases}$

M. Yoshimura, N. Sasao, MT, PRD91,063516 (2015); arXiv:1409.3648

level splitting $\epsilon_{eg} = 11 \text{ meV}$ smallest neutrino mass $m_0 = 5 \text{ meV}$ chemical potential $\xi_i \equiv \mu_i / T_\nu = 0$

 $\epsilon_{eg} = 10 \text{ meV}$ $m_0 = 0.1 \text{ meV}$ $\xi_i = 0$

Minoru TANAKA

Summary

- RENP spectra are sensitive to unknown neutrino parameters.
 Absolute mass, NH or IH, Dirac or Majorana, CP
 RENP spectra are sensitive to the cosmic neutrino background.
- Macrocoherent rate amplification is essential.
 Demonstrated by a QED process,
 Paired Super-Radiance (PSR). $O(10^{15})$ enhancement achieved.
 Y. Miyamoto et al.
 PTEPI 13C01(2014),
 arXiv1406.2198

A new approach to CNB detection

SPectroscopy with Atomic Neutrino

3/21 午後: DJ 田中 (CNB) 3/22 午前: DF 増田, 原 (PSR) 午後: DB 笹尾 (シンポ),AG 植竹 (PSR) 3/24 午前: BG 中島, 大饗 (FEL SR), CE 吉見 (Th)

Backup

Past Proposals

Coherent scattering on macroscopic targets Mechanical force by neutrino wind, $\lambda \sim 2 \text{ mm}$ High-energy beam scattering $p + \bar{\nu}_{\rm CNB} \rightarrow n + e^+$ ULHC High-energy cosmic ray scattering $\nu_{\rm CR} + \bar{\nu}_{\rm CNR} \rightarrow Z$ Z burst Neutrino capture on beta nuclei $(Z, A) + \nu_{\text{CNB}} \rightarrow (Z + 1, A) + e^{-}$ tritium, Re

Thermal history of cosmic neutrinos

 $T \gtrsim 3.2 \text{ MeV}$ $\nu_{e,\mu,\tau}$ in equilibrium $T \simeq 3.2 \text{ MeV}$ $\nu_{\mu,\tau}$ decoupling $T \simeq 1.9 \text{ MeV}$ ν_e decoupling $f_D(\boldsymbol{p}) = \left| \exp\left(\frac{\sqrt{\boldsymbol{p}^2 + m^2}}{T_D} - \xi\right) + 1 \right|^{-1}$ $T \leq 1.9 \text{ MeV}$ free propagation **Present** a = 1 $f(\mathbf{p}) = f_D(\mathbf{p}/a_D)$ $f(\boldsymbol{p}) = \left[\exp\left(\frac{\sqrt{\boldsymbol{p}^2 + (ma_D)^2}}{T_D a_D} - \xi\right) + 1 \right]^{-1}$

Minoru TANAKA

 $T_{\nu} = T_D a_D$

 $ma_D \ll m$