New Physics in $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$

Minoru Tanaka Osaka U

in collaboration with Y.Sakaki, A. Tayduganov and R. Watanabe

KEK-FF 2015 Tokyo, Oct. 26 2015

Introduction $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ Br ~ 0.7+1.3 % in the SM Not rare, but two or more missing neutrinos Data available since 2007 (Belle, BABAR, LHCb)

Theoretical motivation

W.S. Hou and B. Grzadkowski (1992)

SM: gauge coupling lepton universality

Type-II 2HDM (SUSY) Yukawa coupling $\propto m_b m_{\tau} \tan^2 \beta$

 $R(D) = 0.421 \pm 0.058$ $R(D^*) = 0.337 \pm 0.025$ ~3.5 σ Y. Sakaki, MT, A. Tayduganov, R. Watanabe

 $R(D) = 0.391 \pm 0.041 \pm 0.028$ $R(D^*) = 0.322 \pm 0.018 \pm 0.012$ $\sim 3.9\sigma \text{ HFAG}$

Standard model predictions Theoretical uncertainty: form factors data from $\bar{B} \to D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu)$ + HQET or pQCD + lattice OCD $R(D) = 0.296 \pm 0.016$ (Fajfer, Kamenik, Nisandzic) 0.302 ± 0.015 (Sakaki, MT, Tayduganov, Watanabe) 0.299 ± 0.011 (Bailey et al.) $0.337^{+0.038}_{-0.037}$ (Fan, Xiao, Wang, Li) $0.391 \pm 0.041 \pm 0.028$ (Exp. HFAG) $R(D^*) = 0.252 \pm 0.003$ (Fajfer, Kamenik, Nisandzic) 0.252 ± 0.004 (Sakaki, MT, Tayduganov, Watanabe) $0.269^{+0.021}_{-0.020}$ (Fan, Xiao, Wang, Li) $0.322 \pm 0.018 \pm 0.012$ (Exp. HFAG)

Model-independent approach MT, R.Watanabe, arXiv1212.1878, PRD87.034028(2013). Effective Lagrangian for $b \rightarrow c \tau \bar{\nu}$ all possible 4f operators with LH neutrinos $-\mathcal{L}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \sum \left[(\delta_{l\tau} + C_{V_1}^l)\mathcal{O}_{V_1}^l + C_{V_2}^l \mathcal{O}_{V_2}^l + C_{S_1}^l \mathcal{O}_{S_1}^l + C_{S_2}^l \mathcal{O}_{S_2}^l + C_T^l \mathcal{O}_T^l \right]$ $l=e,\mu,\tau$ $\mathcal{O}_{V_1}^l = \bar{c}_L \gamma^\mu b_L \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ SM-like, RPV, LQ, W' $\mathcal{O}_{V_2}^l = \bar{c}_R \gamma^\mu b_R \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ **RH** current $\mathcal{O}_{S_1}^l = \bar{c}_L b_R \bar{\tau}_R \nu_{Ll} \,,$ charged Higgs II, RPV, LQ $\mathcal{O}_{S_2}^l = \bar{c}_R b_L \, \bar{\tau}_R \nu_{Ll} \,,$ charged Higgs III, LQ $\mathcal{O}_T^l = \bar{c}_R \sigma^{\mu\nu} b_L \bar{\tau}_R \sigma_{\mu\nu} \nu_{Ll}$ LO

Minoru TANAKA

Leptoquark models

Y. Sakaki, MT, A. Tayduganov, R. Watanabe arXiv: 1309.0301; PRD88, 094012(2013)

Six types of LQ possible Buchmueller, Ruckl, Wyler (1987)

	S_1	<i>S</i> ₃	V_2	R_2	U_1	U_3
spin	0	0	1	0	1	1
$\hat{F} = 3B + L$	-2	-2	-2	0	0	0
$SU(3)_c$	3*	3*	3*	3	3	3
$SU(2)_L$	1	3	2	2	1	3
$U(1)_{Y=Q-T_3}$	1/3	1/3	5/6	7/6	2/3	2/3

$$C_{V_{1}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl}g_{1L}^{23*}}{2M_{S_{1}^{1/3}}^{2}} - \frac{g_{3L}^{sl}g_{3L}^{23*}}{2M_{S_{3}^{1/3}}^{2}} + \frac{h_{1L}^{2l}h_{1L}^{k3*}}{M_{U_{1}^{2/3}}^{2}} - \frac{h_{3L}^{2l}h_{3L}^{k3*}}{M_{U_{3}^{2/3}}^{2}} \right], \quad \text{constrained by}$$

$$C_{V_{2}}^{l} = 0,$$

$$C_{V_{2}}^{l} = 0,$$

$$C_{S_{1}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[-\frac{2g_{2L}^{sl}g_{2R}^{23*}}{M_{V_{2}^{1/3}}^{2}} - \frac{2h_{1L}^{2l}h_{1R}^{k3*}}{M_{U_{1}^{2}}^{2}} \right], \quad \text{disfavored}$$

$$C_{S_{2}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[-\frac{g_{1L}^{kl}g_{1R}^{23*}}{2M_{S_{1}^{1/3}}^{2}} - \frac{h_{2L}^{2l}h_{2R}^{k3*}}{2M_{S_{1}^{2}}^{2}} \right], \quad C_{S_{2}}(m_{LQ}) = \pm 4C_{T}(m_{LQ})$$

$$C_{T}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl}g_{1R}^{2*}}{2M_{S_{1}^{1/3}}^{2}} - \frac{h_{2L}^{2l}h_{2R}^{k3*}}{8M_{S_{1}^{2}}^{2}} \right], \quad C_{S_{2}}(m_{LQ}) = \pm 4C_{T}(m_{LQ})$$

q2 distribution

Several possible NP scenarios

$$V_1 : C_{V_1} = 0.16 \ (0.12) \qquad (\dots) \text{ current best fits}$$

$$V_2 : C_{V_2} = 0.01 \pm 0.60i \ (0.01 \pm 0.51i)$$

$$S_2 : C_{S_2} = -1.75 \ (-1.67)$$

$$T : C_T = 0.33 \ (0.34)$$

$$LQ_1 : C_{S_2} = 7.8C_T = -0.17 \pm 0.80i \ (-0.12 \pm 0.69i)$$

$$LQ_2 : C_{S_2} = -7.8C_T = 0.34 \ (0.25)$$

How to discriminate: other observables $A_{FB}, P_{\tau}, P_{D^*}$ rather hard to measure $q^2 = (p_B - p_{D^{(*)}})^2$ easier

Implication of the BABAR q2 data

p value

model	$\overline{B} \to D\tau\overline{\nu}$	$\overline{B} \to D^* \tau \overline{\nu}$	$\overline{B} \to (D+D^*)\tau\overline{\nu}$
SM	54%	65%	67%
V_1	54%	65%	67%
V_2	54%	65%	67%
S_2	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ_1	13%	58%	25%
LQ_2	21%	72%	42%

S_2, T disfavored

 $LQ_{1,2}$ (combinations of S_2, T) allowed

Ratio of the q2 distributions

$$R_D(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D\ell\overline{\nu})/dq^2} \frac{\lambda_D(q^2)}{(m_B^2 - m_D^2)^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$$
$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D^*\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D^*\ell\overline{\nu})/dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}.$$
$$\lambda_{D^{(*)}}(q^2) = ((m_B - m_{D^{(*)}})^2 - q^2)((m_B + m_{D^{(*)}})^2 - q^2)$$

No Vcb dependence, less form factor uncertainties

 (q^2)

Simulated data vs tested models χ^2 of the binned $R_{D^{(*)}}(q^2)$

Required luminosity to exclude the tested model

$\mathcal{L} [\mathrm{fb}^{-1}]$		model							
		SM	V_1	V_2	S_2	T	LQ_1	LQ_2	
"data"	V_1	1170		10^{6}	500	900	4140	2860	
		(270)		(X)	(X)	(X)	(X)	(1390)	
	V_2	1140	10^{6}		510	910	4210	3370	
		(270)	(X)		(X)	(X)	(X)	(1960)	
	S_2	560	560	540		380	1310	730	
		(290)	(13750)	(36450)		(X)	(35720)	(4720)	
	Т	600	680	700	320		620	550	
		(270)	(X)	(X)	(X)		(X)	(1980)	
	LQ1	1010	4820	4650	1510	800		5920	
		(270)	(X)	(X)	(X)	(X)		(1940)	
	LQ ₂	1020	3420	3990	1040	650	5930		
		(250)	(1320)	(1820)	(20560)	(4110)	(1860)		

(...): integrated quantities

99.9 % CL

 $L \lesssim 6 \ {\rm ab}^{-1}$ in most cases

A good target at an earlier stage of Belle II

99.9 /0 CL

Outlook

Excess of semitauonic B decays $R(D), R(D^*) \sim 4\sigma$

Testing NP with the q2 distribution
 The earlier stage of Belle II ~ 5-10 /ab

Other observables A_{FB}, P_{\u03c0}, P_{D*}, R(X_c)
 Belle II, LHCb prospect?
 Flavor structure of possible NP

MFV? $(\bar{u}b)(\bar{\tau}\nu)$?

Related talks and a session M. Rotondo, Mon. R.Watanabe, Mon. Z. Ligeti, WGI, Wed. K.Adamczyk,WGI,Wed. J. Hansenbusch, WGI, Wed. F. Bernlochner, WGI, Wed. Y. Sato, WG9, Thu.

Discussion on R(D) and $R(D^*)$, WGI, Wed.