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Introduction

2

B̄ ! D(⇤)⌧ ⌫̄ Br ~ 0.7+1.3 % in the SM
Not rare, but two or more missing neutrinos

Data available since 2007 (Belle, BABAR, LHCb)

Theoretical motivation
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c Type-II 2HDM  (SUSY)

/ mbm⌧ tan2 �

SM: gauge coupling
lepton universality

Yukawa coupling

W.S. Hou and B. Grzadkowski (1992)
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Experiments
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LHCb

~3.9σ

R(D) = 0.391± 0.041± 0.028

R(D⇤) = 0.322± 0.018± 0.012

HFAG

~3.5σ

R(D) = 0.421± 0.058
R(D⇤) = 0.337± 0.025

Y. Sakaki, MT, A. Tayduganov, R. Watanabe

R(D⇤)
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Theoretical uncertainty: form factors

+ HQET or pQCD
data from B̄ ! D(⇤)`⌫̄ (` = e, µ)

+ lattice QCD

Standard model predictions

R(D�) = 0.252± 0.003 (Fajfer, Kamenik, Nisandzic)
0.252± 0.004 (Sakaki, MT, Tayduganov,Watanabe)
0.269+0.021

�0.020 (Fan, Xiao, Wang, Li)
(Exp. HFAG)0.322± 0.018± 0.012

(Bailey et al.)

(Fajfer, Kamenik, Nisandzic)
0.302± 0.015 (Sakaki, MT, Tayduganov,Watanabe)

(Fan, Xiao, Wang, Li)
0.299± 0.011
0.337+0.038

�0.037

R(D) = 0.296± 0.016

(Exp. HFAG)0.391± 0.041± 0.028
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Charged Higgs excluded at 99.8% CL

6

tistical and systematic uncertainties on the signal PDFs
and background distributions.

We extract the branching fraction ratios as R(D(∗)) =
(Nsig/Nnorm)/(εsig/εnorm), where Nsig and Nnorm refer
to the number of signal and normalization events and
εsig/εnorm is the ratio of their efficiencies derived from
simulations. Table I shows the results of the fits for the
four individual samples as well as an additional fit in
which we impose the isospin relationsR(D0) = R(D+) ≡
R(D) and R(D∗0) = R(D∗+) ≡ R(D∗). The statistical
correlations are −0.59 for R(D0) and R(D∗0), −0.23 for
R(D+) and R(D∗+), and −0.45 for R(D) and R(D∗).
We have verified that the values of R(D(∗)) from fits to
samples corresponding to different run periods are con-
sistent. We repeated the analysis varying the selection
criteria over a wide range, corresponding to changes in
the signal-to-background ratios between 0.3 and 1.3, and
also arrive at consistent values of R(D(∗)).

The systematic uncertainties on R(D) and R(D∗) af-
fecting the fit are dominated by the limited understand-
ing of the D∗∗(ℓ/τ)ν backgrounds [31] (5.8% and 3.7%),
the continuum and BB backgrounds (4.9% and 2.7%),
and the PDFs for the signal and normalization decays
(4.3% and 2.1%). The uncertainties in the efficiency
ratios εsig/εnorm are 2.6% and 1.6%; they do not af-
fect the significance of the signal and are dominated by
the limited size of the MC samples. Uncertainties due
to the FFs, particle identification, final-state radiation,
soft-pion reconstruction, and others related to the detec-
tor performance largely cancel in the ratio, contributing
only about 1%. The individual systematic uncertainties
are added in quadrature to define the total systematic
uncertainty, reported in Table I.

There is a positive correlation between some of the
systematic uncertainties on R(D) and R(D∗), and, as a
result the correlation of the total uncertainties is reduced
to −0.48 forR(D0) andR(D∗0), to −0.15 forR(D+) and
R(D∗+), and to −0.27 for R(D) and R(D∗).

The statistical significance of the signal is determined
as Σstat =

√

2∆(lnL), where ∆(lnL) is the change in
the log-likelihood between the nominal fit and the no-
signal hypothesis. The statistical and dominant system-
atic uncertainties are Gaussian. The overall significance
is determined by scaling the statistical significance with

the total uncertainty, Σtot = Σstat×σstat/
√

σ2
stat + σ∗2

syst.

Here, σstat is the statistical uncertainty and σ∗
syst is the

total systematic uncertainty affecting the fit. The signif-
icance of the B → Dτ−ντ signal is 6.8σ, the first such
measurement exceeding 5σ.

To compare the measured R(D(∗)) with the SM pre-
dictions we have updated the calculations in Refs. [8, 32]
taking into account recent FF measurements. Averaged
over electrons and muons, we find R(D)SM = 0.297 ±
0.017 and R(D∗)SM = 0.252±0.003. At this level of pre-
cision, additional uncertainties could contribute [8], but
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FIG. 2. (Color online) Comparison of the results of this anal-
ysis (light grey, blue) with predictions that include a charged
Higgs boson of type II 2HDM (dark grey, red). The SM cor-
responds to tanβ/mH+ = 0.

the experimental uncertainties are expected to dominate.

Our measurements exceed the SM predictions for
R(D) and R(D∗) by 2.0σ and 2.7σ, respectively. The
combination of these results, including their −0.27 cor-
relation, yields χ2 = 14.6 for two degrees of freedom,
corresponding to a p-value of 6.9× 10−4. Thus, the pos-
sibility of both the measured R(D) and R(D∗) agreeing
with the SM predictions is excluded at the 3.4σ level.

Figure 2 shows the effect that a charged Higgs boson
of the type II 2HDM [7, 33] would have on R(D) and
R(D∗) in terms of the ratio of the vacuum expectation
values tanβ ≡ v2/v1, and the mass of the charged Higgs
mH+ . We estimate the effect of the 2HDM on our mea-
surements by re-weighting the simulated events at the
matrix element level for 20 values of tanβ/mH+ over the
[0.05, 1]GeV−1 range. We then repeat the fit with up-
dated PDF shapes and εsig/εnorm values. The increase
in the uncertainty on the efficiency ratio is estimated for
each value of tanβ/mH+ . The other sources of systematic
uncertainty are kept constant in relative terms.

The measured values of R(D) and R(D∗) match
the predictions of this particular Higgs model for
tanβ/mH+ = 0.44 ± 0.02 and tanβ/mH+ = 0.75± 0.04,
respectively. However, the combination of R(D) and
R(D∗) excludes the type II 2HDM charged Higgs boson
with a 99.8% confidence level for any value of tanβ/mH+ .
This calculation is only valid for values of mH+ greater
than about 10GeV [4, 7]. The region for mH+ ≤ 10GeV
has already been excluded by B → Xsγ measurements
[34], and, therefore, the type II 2HDM is excluded in the
full tanβ–mH+ parameter space.

In summary, we have measured the B → Dτ−ντ and
B → D∗τ−ντ decays relative to the decays to light lep-

predictions of 2HDM II

BABAR
arXiv: 1205.5442, PRL.109.101802(2012)

Charged Higgs boson
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Model-independent approach
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Effective Lagrangian for
all possible 4f operators with LH neutrinos

b� c⇥ �̄

SM

The e�ective Lagrangian that contains all conceivable four-Fermi operators is written as

�Le� = 2
⌥
2GFVcb

⇧

l=e,µ,⌅

�
(⇥l⌅ + C l

V1
)Ol

V1
+ C l

V2
Ol

V2
+ C l

S1
Ol

S1
+ C l

S2
Ol

S2
+ C l

TOl
T

⇥
, (4)

where the four-Fermi operators are defined by

Ol
V1

= c̄L�
µbL �̄L�µ⌃Ll , (5)

Ol
V2

= c̄R�
µbR �̄L�µ⌃Ll , (6)

Ol
S1

= c̄LbR �̄R⌃Ll , (7)

Ol
S2

= c̄RbL �̄R⌃Ll , (8)

Ol
T = c̄R⌥

µ⇤bL �̄R⌥µ⇤⌃Ll , (9)

and C l
X denotes the Wilson coe⌅cient of Ol

X . Here we assume that the neutrinos are left-

handed. The neutrino flavor is specified by l, and we take all cases of l = e, µ and �

into account in the contributions of new physics. Since the neutrino flavor is not observed

in the experiments of bottom decays, the neutrino mixing does not a�ect the following

argument provided that the Pontecorvo-Maki-Nakagawa-Sakata matrix is unitary. The SM

contribution is expressed by the term of ⇥l⌅ in Eq. (4). We note that the tensor operator

with the opposite set of quark chiralities identically vanishes; c̄L⌥µ⇤bR �̄R⌥µ⇤⌃Ll = 0.

B. Helicity Amplitudes

The helicity amplitudes of B̄ ⇤ D� ⌃̄ and B̄ ⇤ D�� ⌃̄ for all the cases are summarized as

⇧

l=e,µ,⌅

M�� ,�M
l =

⇧

l=e,µ,⌅

⇤
⇥l⌅ M�� ,�M

SM +M�� ,�M
V1,l

+M�� ,�M
V2,l

+M�� ,�M
S1,l

+M�� ,�M
S2,l

+M�� ,�M
T,l

⌅
,

(10)

where ⌅⌅ is the helicity of the tau lepton, ⌅M = s indicates the amplitude of B̄ ⇤ D� ⌃̄,

that of B̄ ⇤ D�� ⌃̄ is defined with its helicity ⌅M = ±1, 0. M�� ,�M
SM represents the SM

contribution, and other terms in the right-hand side stand for new physics contributions.

The SM amplitude is given by [41, 42]

M�� ,�M
SM =

GF⌥
2
Vcb

⇧

�

⇤�H
�M
� L��

�,⌅ , (11)
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4

SM-like, RPV, LQ,W’

RH current

charged Higgs II, RPV, LQ

charged Higgs III, LQ

LQ

MT, R.Watanabe,arXiv1212.1878, PRD87.034028(2013).
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Allowed regions
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Leptoquark models
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Y. Sakaki, MT, A. Tayduganov, R. Watanabe

arXiv:1309.0301; PRD88, 094012(2013)

Six types of LQ possible Buchmueller, Ruckl, Wyler (1987)lepton number conservation, introduced by Buchmüller
et al. [27]. The interaction Lagrangian that induces
contributions to the b ! c‘ !! process is given as follows:

LLQ ¼ LLQ
F¼0 þLLQ

F¼#2;

LLQ
F¼0 ¼ ðhij1L !QiL"

#LjL þ hij1R
!diR"

#‘jRÞU1#

þ hij3L !QiL!"#LjLU3#

þ ðhij2L !uiRLjL þ hij2R !QiLi$2‘jRÞR2;

LLQ
F¼#2 ¼ ðgij1L !Qc

iLi$2LjL þ gij1R !u
c
iR‘jRÞS1

þ gij3L !Qc
iLi$2!LjLS3

þ ðgij2L !dciR"#LjL þ gij2R
!Qc
iL"

#‘jRÞV2#; (13)

where Qi and Lj are the left-handed quark and lepton
SUð2ÞL doublets, respectively, while uiR, diR, and ‘jR are
the right-handed up, down quark and charged lepton
SUð2ÞL singlets; indices i and j denote the generations of
quarks and leptons; and c c ¼ C !c T ¼ C"0c & is a charge-
conjugated fermion field. For simplicity, the color indices

are suppressed. The quantum numbers of the leptoquarks
are summarized in Table I.
We note that the fermion fields in Eq. (13) are given in

the gauge eigenstate basis in which Yukawa couplings of
the up-type quarks and the charged leptons are diagonal.
Rotating the down-type quark fields into the mass eigen-
state basis and performing the Fierz transformations, one
finds the general Wilson coefficients at the leptoquark
mass scale for all possible types of leptoquarks contribut-
ing to the b ! c% !!l process:

Cl
V1

¼ 1

2
ffiffiffi
2

p
GFVcb

X3

k¼1

Vk3

"
gkl1Lg

23&
1L

2M2
S1=31

# gkl3Lg
23&
3L

2M2
S1=33

þ h2l1Lh
k3&
1L

M2
U2=3

1

# h2l3Lh
k3&
3L

M2
U2=3

3

#
; (14a)

Cl
V2

¼ 0; (14b)

Cl
S1

¼ 1

2
ffiffiffi
2

p
GFVcb

X3

k¼1

Vk3

"
# 2gkl2Lg

23&
2R

M2
V1=3
2

# 2h2l1Lh
k3&
1R

M2
U2=3

1

#
; (14c)

Cl
S2

¼ 1

2
ffiffiffi
2

p
GFVcb

X3

k¼1

Vk3

"
#gkl1Lg

23&
1R

2M2
S1=31

# h2l2Lh
k3&
2R

2M2
R2=3
2

#
; (14d)

Cl
T ¼ 1

2
ffiffiffi
2

p
GFVcb

X3

k¼1

Vk3

"
gkl1Lg

23&
1R

8M2
S1=31

# h2l2Lh
k3&
2R

8M2
R2=3
2

#
; (14e)

where Vk3 denotes the Cabibbo-Kobayashi-Maskawa ma-
trix elements and the upper index of the leptoquark denotes
its electric charge. In the following we will neglect double
Cabibbo suppressedOð&2Þ terms and keep only the leading
terms proportional to V33 ' Vtb.

The vector and axial vector currents are not renormal-
ized and their anomalous dimensions vanish. The scale
dependence of the scalar and tensor currents at leading
logarithm approximation is given by

CSð#bÞ ¼
"
'sðmtÞ
'sð#bÞ

# "S

2(
ð5Þ
0

"
'sðmLQÞ
'sðmtÞ

# "S

2(
ð6Þ
0 CSðmLQÞ;

CTð#bÞ ¼
"
'sðmtÞ
'sð#bÞ

# "T

2(
ð5Þ
0

"
'sðmLQÞ
'sðmtÞ

# "T

2(
ð6Þ
0 CTðmLQÞ;

(15)

where the anomalous dimensions of the scalar and tensor
operators are"S ¼ #6CF ¼ #8,"T ¼ 2CF ¼ 8=3, respec-

tively, and (ðfÞ
0 ¼ 11# 2nf=3 [26]. Taking into account the

most recent constraints on the scalar and vector leptoquark
masses by theATLAS andCMScollaborations [30,31], in our
numerical analysis we assume that all scalar and vector lep-
toquarks are of the same mass mLQ ¼ 1 TeV. The b-quark
scale is chosen to be#b ¼ !mb ¼ 4:2 GeV.
One can easily notice from Eq. (14) that in the simplified

scenario with a presence of only one type of leptoquark,

namely, R2=3
2 or S1=31 , the scalar Cl

S2
and tensor Cl

T Wilson

coefficients are no longer independent: one finds that at the
scale of leptoquark mass Cl

S2
ðmLQÞ¼(4Cl

TðmLQÞ. Then,
using Eq. (15), one obtains the relation at the bottom mass
scale,

Cl
S2
ð !mbÞ ’ (7:8Cl

Tð !mbÞ: (16)

B. Constraints from !B ! Xs" !"

Recent progress in experiment and theory has made
FCNCs in B decays good tests of the SM and powerful

TABLE I. Quantum numbers of scalar and vector leptoquarks
with SUð3Þc ) SUð2ÞL )Uð1ÞY invariant couplings.

S1 S3 V2 R2 U1 U3

spin 0 0 1 0 1 1
F ¼ 3Bþ L #2 #2 #2 0 0 0
SUð3Þc 3& 3& 3& 3 3 3
SUð2ÞL 1 3 2 2 1 3
Uð1ÞY¼Q#T3

1=3 1=3 5=6 7=6 2=3 2=3

SAKAKI et al. PHYSICAL REVIEW D 88, 094012 (2013)
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scale of leptoquark mass Cl

S2
ðmLQÞ¼(4Cl

TðmLQÞ. Then,
using Eq. (15), one obtains the relation at the bottom mass
scale,

Cl
S2
ð !mbÞ ’ (7:8Cl

Tð !mbÞ: (16)

B. Constraints from !B ! Xs" !"

Recent progress in experiment and theory has made
FCNCs in B decays good tests of the SM and powerful

TABLE I. Quantum numbers of scalar and vector leptoquarks
with SUð3Þc ) SUð2ÞL )Uð1ÞY invariant couplings.

S1 S3 V2 R2 U1 U3

spin 0 0 1 0 1 1
F ¼ 3Bþ L #2 #2 #2 0 0 0
SUð3Þc 3& 3& 3& 3 3 3
SUð2ÞL 1 3 2 2 1 3
Uð1ÞY¼Q#T3

1=3 1=3 5=6 7=6 2=3 2=3
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disfavored

constrained by

probes of NP beyond the SM. Along with the b ! s! and
b ! s‘þ‘" processes, the b ! s" !" decay is also sensitive
to extensions of the SM. From a theoretical point of view,
the inclusive decay !B ! Xs" !" is a very clean process since
both perturbative #s and nonperturbative 1=m

2
b corrections

are known to be small, what makes it to be well suited to
search for NP.

The b ! s"j !"i process can be described by the follow-
ing effective Hamiltonian:

H eff ¼
4GFffiffiffi
2

p VtbV
$
ts½ð$ijC

ðSMÞ
L þ Cij

L ÞOij
L þ Cij

RO
ij
R (; (17)

where the left- and right-handed operators are defined as

Oij
L ¼ ð !sL!%bLÞð !"jL!%"iLÞ;

Oij
R ¼ ð !sR!%bRÞð !"jL!%"iLÞ:

(18)

In the SM, the Wilson coefficient is determined by box and
Z-penguin loop diagrams computation which gives

CðSMÞ
L ¼ #

2&sin 2'W
Xðm2

t =M
2
WÞ; (19)

where the loop function XðxtÞ can be found e.g. in
Ref. [32].

As one can notice from Eq. (13), the scalar leptoquarks

S1=31;3 and vector leptoquarks V1=3
2 and U"1=3

3 give the

following contribution to b ! s"j !"i:

Cij
R ¼ " 1

2
ffiffiffi
2

p
GFVtbV

$
ts

X3

m;n¼1

Vm3V
$
n2

gmi
2Lg

nj$
2L

M2
V1=3
2

; (20a)

Cij
L ¼ " 1

2
ffiffiffi
2

p
GFVtbV

$
ts

X3

m;n¼1

Vm3V
$
n2

)
2
4gmi

1Lg
nj$
1L

2M2
S1=31

þ gmi
3Lg

nj$
3L

2M2
S1=33

" 2hni3Lh
mj$
3L

M2
U"1=3

3

3
5: (20b)

In the following, for simplicity we neglect the subleading
Oð(Þ terms in Eq. (20) and keep only the VtbV

$
cs ’ 1 term.

One has to note that theU"1=3
3 leptoquark does not affect

b ! c‘ !". In this way, as can be seen from Eq. (14), only

the g3l1ð3ÞLg
23$
1ð3ÞL couplings of the S1=31ð3Þ leptoquarks can be

constrained using both b ! c) !"l and b ! s") !"l pro-
cesses. Nevertheless, assuming that the leptoquarks from

the same SUð2Þ triplet, namely, U"1=3
3 and U2=3

3 , have
masses of the same order, one can combine the constraints
on h2l3Lh

33$
3L .

Summing over all neutrino flavors and taking into ac-
count that the amplitudes with i ! j do not interfere with
the SM contribution, the branching ratio can be written as

dBð !B ! Xs" !"Þ
dx

¼ )B
G2

F

12&3 jVtbV
$
tsj2m5

bSðxÞ

)
"
3CðSMÞ2

L þ
X3

i;j¼1

ðjCij
L j2 þ jCij

R j2Þ

þ 2CðSMÞ
L

X3

i¼1

Re½Cii$
L (

#
; (21)

where x ¼ Emiss=mb and the SðxÞ function describes the
shape of the missing energy spectrum [33]. In our estima-
tion we set ms ¼ 0 (therefore 1=2 * x * 1) and neglect
the #s and 1=m2

b corrections.
Using the experimental limit on the inclusive branching

ratio, determined by the ALEPH Collaboration [34],

BexpðB ! Xs" !"Þ< 6:4) 10"4 at the 90%C:L:; (22)

and assuming for simplicity that only one specific ij
combination of one type of leptoquarks contributes, we
obtain constraints on the leptoquark couplings depicted
in Fig. 1. In the case that the couplings are real, the
obtained numbers are consistent with the result of
Grossman et al. [33].
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FIG. 1 (color online). Constraints on the leptoquark couplings contributing to the b ! s"j !"i process using the experimental upper
limit on BðB ! Xs" !"Þ.
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How to discriminate: other observables
AFB , P⌧ , PD⇤ rather hard to measure

easierq2 = (pB � pD(⇤))2

Several possible NP scenarios
V1 : CV1 = 0.16 (0.12)

S2 : CS2 = �1.75 (�1.67)

V2 : CV2 = 0.01± 0.60i (0.01± 0.51i)

T : CT = 0.33 (0.34)
LQ1 : CS2 = 7.8CT = �0.17± 0.80i (�0.12± 0.69i)

LQ2 : CS2 = �7.8CT = 0.34 (0.25)

(. . . )current best fits 
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Figure 2: The measured background subtracted q2 distributions for B ! D⌧⌫ and B ! D⇤⌧⌫ events,

extracted from the BABAR data [2].
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� C⇤
S2
)]

m⌧p
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� 12Re[(1 + CV1)C
⇤
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m⌧p
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+ 12Re[CV2C
⇤
T ]

m⌧p
q2

(HT,0HV,0 +HT,+HV,� �HT,�HV,+)

�
,

(7)

where �D(⇤)(q2) = ((mB � mD(⇤))2 � q2)((mB + mD(⇤))2 � q2). The SM distributions for67

the light lepton modes can be easily obtained by setting CX = 0 and m⌧ = 0.68

The helicity amplitudes H’s are expressed in terms of hadronic B ! D(⇤) form factors.69

In this work we use the Heavy Quark E↵ective Theory (HQET) form factors [10] with70

parameters extracted from experiments by the BABAR and Belle collaborations [11]. A71

detailed description of the matrix elements and form factor parametrization can be found72

in Ref. [6].73

To estimate the (dis)agreement between the measured and expected q2 spectra, we74

extract the experimental numbers of signal events from Fig. 23 in Ref. [2] and compare75

them with the expectations of di↵erent scenarios listed in the previous section. We present76

the extracted experimental data points in Fig. 2. In our study, we merge two last bins in77

Fig. 2 in order to satisfy the physical condition q2  (mB�mD(⇤))2 and add corresponding78

errors in quadratures. The corresponding theoretical predictions for dB/dq2 distributions79
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2

dB(B ! D`⌫)/dq2
�D(q2)

(m2

B �m2

D)
2

✓
1� m2

⌧

q2

◆�2

,

RD⇤(q2) ⌘dB(B ! D⇤⌧⌫)/dq2

dB(B ! D⇤`⌫)/dq2

✓
1� m2

⌧

q2

◆�2

.

(8)

Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs

V )
2 / �D(q2) ! 0 for q2 ! q2

max

.

6
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2

dB(B ! D`⌫)/dq2
�D(q2)

(m2

B �m2

D)
2

✓
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(8)

Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs

V )
2 / �D(q2) ! 0 for q2 ! q2

max

.
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2

dB(B ! D`⌫)/dq2
�D(q2)
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Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs

V )
2 / �D(q2) ! 0 for q2 ! q2
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Figure 2: The measured background subtracted q2 distributions for B ! D⌧⌫ and B ! D⇤⌧⌫ events,

extracted from the BABAR data [2].
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where �D(⇤)(q2) = ((mB � mD(⇤))2 � q2)((mB + mD(⇤))2 � q2). The SM distributions for67

the light lepton modes can be easily obtained by setting CX = 0 and m⌧ = 0.68

The helicity amplitudes H’s are expressed in terms of hadronic B ! D(⇤) form factors.69

In this work we use the Heavy Quark E↵ective Theory (HQET) form factors [10] with70

parameters extracted from experiments by the BABAR and Belle collaborations [11]. A71

detailed description of the matrix elements and form factor parametrization can be found72

in Ref. [6].73

To estimate the (dis)agreement between the measured and expected q2 spectra, we74

extract the experimental numbers of signal events from Fig. 23 in Ref. [2] and compare75

them with the expectations of di↵erent scenarios listed in the previous section. We present76

the extracted experimental data points in Fig. 2. In our study, we merge two last bins in77

Fig. 2 in order to satisfy the physical condition q2  (mB�mD(⇤))2 and add corresponding78

errors in quadratures. The corresponding theoretical predictions for dB/dq2 distributions79
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Figure 4: The RD(⇤)(q2) distributions, predicted in the SM (black) and various NP scenarios listed in

Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to the

theoretical errors in the hadronic form factor parameters

In Fig. 4, for illustration, we show the RD(⇤)(q2) distributions, predicted for the five94

scenarios described in Section 2. The width of each curve is due to the theoretical errors95

in the hadronic form factor parameters, which are varied within ±1� ranges. The dis-96

tributions for the vector V
1,2 NP scenarios (with best fitted values of Wilson coe�cients97

CV1 = 0.16 and CV2 = 0.01 ± 0.60i respectively) have small theoretical uncertainties as98

in the SM, but are practically indistinguishable from the distribution of the tensor (LQ
1

)99

NP scenario for the D(D⇤) mode. Therefore we omit plotting them in Fig. 4.100

We find that RD(q2) is very sensitive to the scalar contribution and RD⇤(q2) is more101

sensitive to the tensor operator. Moreover, one can easily see from Figs. 3 and 4 that the102

theoretical uncertainties in RD(⇤)(q2) are significantly smaller than those of the di↵erential103

branching fractions. Hence, the RD(⇤)(q2) distributions provide a good test of NP in104

addition to R(D(⇤)).105

4 Discriminative potential at Belle II106

In order to demonstrate the discriminating power of RD(⇤)(q2), we simulate “experimental107

data” for the binned RD(⇤)(q2) distributions, assuming one of the scenarios, listed in108

Section 2, that can explain the observed deviation in R(D) and R(D⇤), and compare109

them with other various model predictions by calculating �2 defined in the following way:110

111

�2 =
NbinsX

i,j=1

(Rexp

i �Rmodel

i )(V exp + V model)�1

ij (R
exp

j �Rmodel

j ) , (9)

where i and j denote the q2-bin indices, V exp and V model are the experimental and the-112

oretical covariance matrices of the simulated “experimental data” and the tested model113

respectively. Here the binned Ri is defined as Ri = (N ⌧
i /N

`
i )f(q

2

i ) with f(q2i ) for shortness114

denoting purely kinematic factors introduced in Eq. (8), where N ⌧,`
i are the numbers of115

signal events in the ith bin for a given luminosity. We evaluate N ⌧,`
i for each benchmark116

scenario using the central values of the hadronic parameters.117

For model predictions, the uncertainties of the HQET hadronic form factors and the118

7
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Required luminosity to exclude the tested model
L [fb

�1
]

model

SM V1 V2 S2 T LQ1 LQ2

V1
1170

(270)

10

6

(5)

500

(5)

900

(5)

4140

(5)

2860

(1390)

V2
1140

(270)

10

6

(5)

510

(5)

910

(5)

4210

(5)

3370

(1960)

“
d
a
t
a
” S2

560

(290)

560

(13750)

540

(36450)

380

(5)

1310

(35720)

730

(4720)

T
600

(270)

680

(5)

700

(5)

320

(5)

620

(5)

550

(1980)

LQ1
1010

(270)

4820

(5)

4650

(5)

1510

(5)

800

(5)

5920

(1940)

LQ2
1020

(250)

3420

(1320)

3990

(1820)

1040

(20560)

650

(4110)

5930

(1860)

Table 2: Luminosity required to discriminate various simulated “data” and tested model sets at

99.9% C.L. using RD(⇤)(q2) or R(D(⇤)) (in parentheses).

model

SM V1 V2 S2 T LQ1 LQ2

V1 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅
V2 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅

“
d
a
t
a
” S2 ⌅⌅⌅ � � }}} � �

T ⌅⌅⌅ }}} }}} }}} }}} �
LQ1 ⌅⌅⌅ }}} }}} }}} }}} ⌅⌅⌅
LQ2 ⌅⌅⌅ ⌅⌅⌅ ⌅⌅⌅ � � ⌅⌅⌅

Table 3: Comparison of two discrimination methods, using RD(⇤)(q2) (circle) or R(D(⇤)) (square): the

method requiring a smaller luminosity to distinguish “data” and theoretical model at 99.9% C.L. is more

advantageous. Double circle corresponds to the case when only RD(⇤)(q2) is e↵ective and can distinguish

scenarios. Cross marks denote the impossibility of discrimination by either of the two methods.

experimental data of R(D(⇤)) have already shown the significant deviation from the SM153

as explained in Section 1.154

As can been seen from Table 3, for the “data”-model cases LQ
2

(V
1,2)-V1,2(LQ2

) and155

LQ
2(1)

-LQ
1(2)

, R(D(⇤)) turn out to be more advantageous quantities to be studied. On156

the other hand, if we assume “data” to be e.g. S
2

or T , the binned q2 distributions157

become more profitable for discrimination of other NP models. Moreover, only RD(⇤)(q2)158

can clearly distinguish the S
2

-T and T -S
2

cases. To summarise, among the 36 cases listed159

in Table 3, in 22 cases the study of q2 distributions turns out to be more advantageous160

and has a lower luminosity cost, and in 15 cases only RD(⇤)(q2) can discriminate “data”161

and models at 99.9% C.L.162

To clarify the sensitivity to NP Wilson coe�cients in the Belle II experiment, in Fig. 5163

we present constraints on the Wilson coe�cients, obtained from the �2 fit of binned RD(q2)164

and RD⇤(q2) for the integrated luminosity of 40 ab�1, assuming the “data” to be perfectly165

consistent with the SM predictions. The dark (light) blue regions represent the expected166

68% (99.9%) C.L. constraints from RD(q2) and RD⇤(q2). For comparison, we show the167

68% (99.9%) C.L. allowed regions, represented by red solid (dashed) lines, from R(D) and168

R(D⇤). Due to the large statistics of the B ! D(⇤)`⌫` events at the Belle II experiment, it169

9

�2 of the binned

(...): integrated quantities

A good target at an earlier stage of Belle II 
in most casesL . 6 ab�1

RD(⇤)(q2)

99.9 % CL
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R(D), R(D⇤)Assuming
L=40 ab-1
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Figure 5: Constraints on the Wilson coe�cients at the mb scale. The constraints are obtained from the

�2 fit of binned RD(q2) and RD⇤(q2) assuming the future experimental measurements at Belle II for the

integrated luminosity 40 ab�1 to be perfectly consistent with the SM predictions. The red solid(dashed)

lines correspond to the constraints at 68% (99.9%) C.L. coming from the q2-integrated R(D(⇤)).
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Figure 5: Constraints on the Wilson coe�cients at the mb scale. The constraints are obtained from the

�2 fit of binned RD(q2) and RD⇤(q2) assuming the future experimental measurements at Belle II for the

integrated luminosity 40 ab�1 to be perfectly consistent with the SM predictions. The red solid(dashed)

lines correspond to the constraints at 68% (99.9%) C.L. coming from the q2-integrated R(D(⇤)).
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blue RD(⇤)(q2)

red R(D(⇤))

exp. = SM for

V1,2 S1,2 T LQ1 LQ2

MNP & 5(7), 5(6), 7(10), 5(7), 5(6) TeV
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The earlier stage of Belle II

◼︎	 Testing NP with the q2 distribution

~ 5-10 /ab

~ 4σ
◼︎ Excess of semitauonic B decays

R(D), R(D⇤)

Belle II, LHCb prospect?

◼	 ︎Other observables AFB , P⌧ , PD⇤ , R(Xc)

◼	 ︎Flavor structure of possible NP

MFV? (ūb)(⌧̄ ⌫) ?
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Related talks and a session

Y. Sato, WG9, Thu.

K. Adamczyk, WG1, Wed.
J. Hansenbusch, WG1, Wed.

Z. Ligeti, WG1, Wed.
R. Watanabe, Mon.
M. Rotondo, Mon.

F. Bernlochner, WG1, Wed.

Discussion on R(D) and R(D*), WG1,Wed.


