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Fig. 3 Photograph of the Raman sidebands (projected onto a fluorescent sheet and taken
by a CCD camera). The wavelengths calculated with eq.(1) are also shown. The third and
fourth Stokes sidebands shown in parentheses are observed only by the pyroelectric energy
and/or MCT detector. The photograph contrast and light level from q = 2 to q = 8 are
enhanced for clear view. Apparent variation in the spot sizes is due to over exposure while
distortion from the straight line (around q =6–8) is caused by bent of the fluorescent sheet.
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Fig. 4 Comparison of the Raman sideband pulse energy measurements (from q = −3
to q = +4 at δ = 0) with the simulation results. The vertical axis represents energies (the
simulation results are normalized at q = 1) while the horizontal axis is the Raman order q.
The 4.96 µm signal is plotted at q = −5 for convenience. The circles in blue (squares in red)
indicate the experimental (simulation) results.

4.2. Two-photon emission process

Figure 5 shows the result of spectrum measurements at the detuning of δ = 0. The black
line is the spectrum without the long-pass filter (LPF, Spectrogon LP-4700nm) while the
blue (red) line is the one with two (four) LPFs inserted in front of the monochromator. The
transmittance of the LPF is indicated by the white portion excluded by the gray hatch.
Two peaks were unambiguously observed corresponding to the fourth Stokes sideband (4.66
µm) and its two-photon partner (4.96 µm). The 4.66 µm signal saturated the detector
without LPF, but was mostly filtered out with LPFs. On the other hand, the 4.96 µm signal
remained unaffected with and without LPFs (the peak heights reduced by LPF transmittance
of ∼ 0.85 per a filter): This fact eliminates the possibility of spurious higher order lights
in the monochromator grating system. It was found that these signals had a sharp forward
distribution (half angular divergence of ∼20 mrad for 4.66 µm and ∼10 mrad for 4.96 µm)
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ABSTRACT

New full-sky temperature and polarization maps based on seven years of data from WMAP are presented. The
new results are consistent with previous results, but have improved due to reduced noise from the additional
integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The
improvements are described in detail. The seven-year data set is well fit by a minimal six-parameter flat ΛCDM
model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data
from the Sloan Digital Sky Survey and priors on H0 from Hubble Space Telescope observations, are Ωbh

2 =
0.02260 ± 0.00053, Ωch

2 = 0.1123 ± 0.0035, ΩΛ = 0.728+0.015
−0.016, ns = 0.963 ± 0.012, τ = 0.087 ± 0.014, and

σ8 = 0.809 ± 0.024 (68% CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole
is greater that unity for multipoles ℓ ! 919, allowing a robust measurement of the third acoustic peak. This
measurement results in improved constraints on the matter density, Ωmh2 = 0.1334+0.0056

−0.0055, and the epoch of
matter–radiation equality, zeq = 3196+134

−133, using WMAP data alone. The new WMAP data, when combined with
smaller angular scale microwave background anisotropy data, result in a 3σ detection of the abundance of primordial
helium, YHe = 0.326 ± 0.075. When combined with additional external data sets, the WMAP data also yield better
determinations of the total mass of neutrinos,

∑
mν " 0.58 eV (95% CL), and the effective number of neutrino

species, Neff = 4.34+0.86
−0.88. The power-law index of the primordial power spectrum is now determined to be ns =

0.963 ± 0.012, excluding the Harrison–Zel’dovich–Peebles spectrum by >3σ . These new WMAP measurements
provide important tests of big bang cosmology.

Key words: cosmic background radiation – space vehicles: instruments

1. INTRODUCTION

The Wilkinson Microwave Anisotropy Probe (WMAP) is a
NASA sponsored satellite designed to map the cosmic mi-
crowave background (CMB) radiation over the entire sky in five
frequency bands. It was launched in 2001 June from Kennedy
Space Flight Center and began surveying the sky from its orbit
around the Earth–Sun L2 point in 2001 August. This work and
the accompanying papers comprise the fourth in a series of bien-
nial data releases and incorporates seven years of observational
data.

Results from the one-year, three-year, and five-year observa-
tions are summarized in Bennett et al. (2003a), Jarosik et al.
(2007), and Hinshaw et al. (2009), respectively, and references
therein. An overall description of the mission including instru-
ment nomenclature is contained in Bennett et al. (2003b) and

∗ WMAP is the result of a partnership between Princeton University and
NASA’s Goddard Space Flight Center. Scientific guidance is provided by the
WMAP Science Team.

Limon et al. (2010), while details of the optical system and ra-
diometers can be found in Page et al. (2003b) and Jarosik et al.
(2003).

The primary data product of WMAP are sets of calibrated sky
maps at five frequency bands centered at 23 GHz (K band),
33 GHz (Ka band), 41 GHz (Q band), 61 GHz (V band),
and 94 GHz (W band), including measured noise levels and
beam transfer functions that describe the smoothing of the
sky signal resulting from the beam geometries. These maps
are provided for Stokes I, Q, and U parameters on a year-by-
year basis and in a year co-added format, and at several pixel
resolutions appropriate for various analyses. Changes relative to
the previous data release include the inclusion of seven years of
observational data, a new masking procedure that simplifies the
map-making process, and improvements of the beam maps and
window functions. Details of the processing used to generate
these products are described in the remainder of this work.

In an accompanying paper, Gold et al. (2011) utilize the
maps in the five frequency bands and some external data sets to

1

1 Introduction

Determining the absolute scale of neutrino masses, the type of neutrino mass pattern, which can be
either the normal or the inverted ordering 2 (NO or IO), the nature (Dirac or Majorana) of massive
neutrinos, and getting information about the Dirac and Majorana CP violation phases in the neutrino
mixing matrix, are the most pressing and challenging problems of the future research in the field of
neutrino physics (see, e.g., [1]). At present we have compelling evidence for existence of mixing of
three massive neutrinos νi, i = 1, 2, 3, in the weak charged lepton current (see, e.g., [2]). The masses
mi ≥ 0 of the three light neutrinos νi do not exceed a value approximately 1 eV, mi ∼< 1 eV. The three
neutrino mixing scheme is described (to a good approximation) by the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) 3 × 3 unitary mixing matrix, UPMNS. In the widely used standard parametrisation
[1], UPMNS is expressed in terms of the solar, atmospheric and reactor neutrino mixing angles θ12,
θ23 and θ13, respectively, and one Dirac (δ), and two Majorana [3, 4] (α and β) CP violation (CPV)
phases. In this parametrisation, the elements of the first row of the PMNS matrix, Uei, i = 1, 2, 3,
which play important role in our further discussion, are given by

Ue1 = c12 c13 , Ue2 = s12 c13 e
iα , Ue3 = s13 e

i(β−δ) , (1)

where we have used the standard notation cij = cos θij, sij = sin θij with 0 ≤ θij ≤ π/2, 0 ≤ δ ≤ 2π
and, in the case of interest for our analysis 3, 0 ≤ α, β ≤ π, (see, however, [5]). If CP invariance
holds, we have δ = 0, π, and [6] α, β = 0, π/2, π.

The neutrino oscillation data, accumulated over many years, allowed to determine the parame-
ters which drive the solar and atmospheric neutrino oscillations, ∆m2

⊙ ≡ ∆m2
21, θ12 and |∆m2

A| ≡
|∆m2

31| ∼= |∆m2
32|, θ23, with a high precision (see, e.g., [2]). Furthermore, there were spectacular

developments in the last year in what concerns the angle θ13 (see, e.g., [1]). They culminated in a
high precision determination of sin2 2θ13 in the Daya Bay experiment using the reactor ν̄e [7]:

sin2 2θ13 = 0.089± 0.010± 0.005 . (2)

Similarly, the RENO, Double Chooz, and T2K experiments reported, respectively, 4.9σ, 3.1σ and
3.2σ evidences for a non-zero value of θ13 [8], compatible with the Daya Bay result.

A global analysis of the latest neutrino oscillation data presented at the Neutrino 2012 Inter-
national Conference [2] was performed in [9]. We give below the best fit values of ∆m2

21, sin
2 θ12,

|∆m2
31(32)| and sin2 θ13, obtained in [9], which will be relevant for our further discussion:

∆m2
21 = 7.54× 10−5 eV2 , |∆m2

31(32)| = 2.47 (2.46)× 10−3 eV2 , (3)

sin2 θ12 = 0.307, sin2 θ13 = 0.0241 (0.0244) , (4)

where the values (the values in brackets) correspond to NO (IO) neutrino mass spectrum. We will
neglect the small differences between the NO and IO values of |∆m2

31(32)| and sin2 θ13 and will use

|∆m2
31(32)| = 2.47× 10−3 eV2, sin2 θ13 = 0.024 in our numerical analysis.
After the successful measurement of θ13, the determination of the absolute neutrino mass scale,

of the type of the neutrino mass spectrum, of the nature of massive neutrinos, as well as getting
information about the status of CP violation in the lepton sector, remain the highest priority goals
of the research in neutrino physics. Establishing whether CP is conserved or not in the lepton sector

2We use the convention adopted in [1].
3Note that the two Majorana phases α21 and α31 defined in [1] are twice the phases α and β: α21 = 2α, α31 = 2β.
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Fogli et al. (2012)
Jarosik et al. (2011)

Mixing: U = VPMNS P
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c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ c12c23 − s12s23s13eiδ c23c13

⎤
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W Z
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µ(1 − γ5)νj ēγµ(vij − aijγ5)e,

vij = U∗
eiUej −

(
1
2
− 2 sin2 θW

)
δij , aij = U∗

eiUej −
1
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δij .

ν†σ⃗ν · φ†
eσ⃗φe .

|a⟩ |b⟩
ϕa(r⃗),ϕb(r⃗)

∫
d3rϕ∗

a(r⃗)S⃗eϕb(r⃗) .

Majorana phases
Bilenky, Hosek, Petcov; Doi, Kotani, Nishiura,Okuda,Takasugi; Schechter, Valle

s2
12 � 0.31, s2

23 � 0.39, s2
13 � 0.024 Fogli et al. (2012)
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Mass type
Dirac or Majorana

Unknown properties of neutrinos

Absolute mass
0.050 eV < m3(2) < 0.58 eVm1(3) < 0.19 eV ,

Hierarchy pattern
normal or inverted

m1

m2

m3
m1

m2

m3

NH IH

CP violation
one Dirac phase, two Majorana phases

� ↵, �
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big science

tabletop experimentOur approach E . O(eV)

Atomic/molecular processes
absolute mass, NH or IH, D or M, �, ↵, �

Neutrino oscillation: SK, T2K, reactors,...

Neutrinoless double beta decays

Beta decay endpoint: KATRIN

Conventional approach

NH or IH,�m2, ✓ij , �

Dirac or Majorana, effective mass

PTEP 2012, 04D002 A. Fukumi et al.

the spectral shape I (ω). If one uses a target of available energy of a fraction of 1 eV, the most
experimentally challenging observable, the Majorana CP phases may be determined, comparing
the detected rate with differences of theoretical expectations which exist at the level of several
percent. The Majorana CP-violating phase is expected to be crucial to the understanding of the
matter–antimatter imbalance in our universe. Our master equation, when applied to E1 × E1
transitions such as pH2 vibrational Xv = 1 → 0, can describe explosive paired superradiance
events in which most of the energy stored in |e⟩ is released in the order of a few nanoseconds.
The present paper is intended to be self-contained, explaining some details of related theoretical
works in the past, and reports on new simulations and the ongoing experimental efforts of the
project to realize neutrino mass spectroscopy using atoms/molecules.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction and overview
1.1. Remaining important problems in neutrino physics and our objective
The present status of the neutrino mass matrix is summarized by the following central values
measured by oscillation experiments [1,2]:

s2
12 = 0.31, s2

23 = 0.42, s2
13 = 0.024, (1)

"m2
21 = 7.5 × 10−5 eV2, |"m2

31| = 2.47 × 10−3 eV2. (2)

The usual notation of angle factors is used; si j = sin θi j and ci j = cos θi j . The definitions of the
neutrino mixing (given by U ) and mass (Mν) matrices are given by [1]:

U =

⎛

⎜⎝
1 0 0
0 c23 s23

0 −s23 c23

⎞

⎟⎠

⎛

⎜⎝
c13 0 s13e−iδ

0 1 0
−s13e−iδ 0 c13

⎞

⎟⎠

⎛

⎜⎝
c12 s12 0

−s12 c12 0
0 0 1

⎞

⎟⎠ P, (3)

P =

⎛

⎜⎝
1 0 0
0 eiα 0
0 0 eiβ

⎞

⎟⎠ for Majorana neutrinos, = 1 for Dirac neutrinos, (4)

Mν = UMDU †, (5)

where MD is the diagonalized mass matrix. Neutrino masses are ordered by m3 > m2 > m1 for
the normal hierarchical mass pattern (NH) and m2 > m1 > m3 for the inverted hierarchy (IH). For
convenience we define the smallest mass by m0, which is = m1 for NH and = m3 for IH.

The ongoing and planned experiments to measure neutrino masses using nuclei as targets are in
two directions: (1) measurement of the beta spectrum near the end point sensitive to both Dirac
and Majorana masses, (2) neutrinoless double beta decay near the end point of the two-electron
energy sum, sensitive to Majorana masses alone. In the neutrinoless double beta decay one attempts
to measure the following parameter combination, called the effective neutrino mass [3]:

∣∣∣∣∣
∑

i

miU 2
ei

∣∣∣∣∣

2

= m2
3s4

13 + m2
2s4

12c4
13 + m2

1c4
12c4

13 + 2m1m2s2
12c2

12c4
13 cos(2α)

+ 2m1m3s2
13c2

12c2
13 cos 2(β − δ) + 2m2m3s2

13s2
12c2

13 cos 2(α − β + δ), (6)

using our convention of Majorana phases. The best upper limit of the neutrino mass scale is derived
from cosmological arguments, and is ∼0.58 eV (95% confidence) [4].

2/79

absolute mass

E & O(10keV)
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Radiative Emission of Neutrino Pair (RENP)

Enhancement mechanism? 
Rate � �G2

F E5 � 1/(1033 s)

Λ-type level structure
Ba, Xe, Ca+, Yb,...
H2, O2, I2, ...

Atomic/molecular energy scale ~ eV or less

cf. nuclear processes ~ MeV
close to the neutrino mass scale

 A.Fukumi et al.  PTEP (2012) 04D002, arXiv:1211.4904 

Λ− |e⟩ → |g⟩ + γ + νiνj νi

|e⟩ → |g⟩ + γ + γ ×
|p⟩

|e⟩ → |g⟩ + γ + νiνj

|e⟩ →
|g⟩ + νiνj

|e⟩
> 1

γ νi , i = 1, 2, 3

ωij =
ϵeg

2
− (mi + mj)2

2ϵeg
.

ϵab = ϵa − ϵb |a⟩ , |b⟩
mi

(mi + mj)2/(2ϵeg) ∼ 5 mi + mj = 0.1 ϵeg = 1

ω ≤ ω11

metastable

|ei ! |gi+ � + ⌫i⌫̄j
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Yoshimura et al. (2008)

|e�

|g�

�p

�k �p�
�

�i

�̄j

Macroscopic target of N atoms, volume V (n=N/V)

d� � n2V (2�)4�4(q � p� p�)

e- e-

!i
!
_

j

A A
+ +

!

e− A+

|p⟩ |g⟩
x⃗a

∑
a exp [−i(k⃗ + p⃗ + p⃗′) · x⃗a]

N V (N/V )(2π)3δ3(k⃗ + p⃗ + p⃗′)

δ

ϵeg

dΓij = n2V
|MdMij

W |2

(ϵpg − ω)2
dΦ2 ,

n dΦ2

dΦ2

dΦ2 = (2π)4δ4(q − p − p′)
d3p

(2π)32Ep

d3p′

(2π)32Ep′
,

Ep(′) =
√

m2
i(j) + p⃗(′)2 mi(j) qµ = (ϵeg − ω,−k⃗)

Md = −⟨g|d⃗|p⟩ · E⃗ E⃗

total amp. �
�

a

e�i(�k+�p+�p�)·�xa � N

V
(2�)3�3(�k + �p + �p�)

� e�i(�k+�p+�p�)·�xa(2�)�(�eg � � � Ep � Ep�)

position of atom

(�eg = �e � �g, � = |�k|)

macrocoherent amplification
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Neutrino emission from valence electron
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|ei |ei|pi |pi
|gi

|gi

Atomic matrix element in the NR approximation
hg|ē�µe|pi ' (hg|e†e|pi,0) = 0

hg|ē�µ�5e|pi ' (0, 2hg|s|pi) spin current

CV
ji = U⇤

ejUei + (�1/2 + 2 sin2 ✓W )�ji, CA
ji = U⇤

ejUei � �ji/2

HW =
GFp
2

X

i,j

⌫̄j�µ(1� �5)⌫i ē�
µ(CV

ji � CA
ji�5)e

D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M. Yoshimura
                    PLB719(2013)154, arXiv:1209.4808
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Neutrino emission from nucleus
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RENP from 
quarks (nucleus)�

!  Atomic Parity Violation: 
!  Neutral boson Z interacts with 

nucleus as a whole (coherently)   
!  Weak charge Qw 

 

!  RENP from nucleus 
!  Rate enhancement larger than 10^6 

is  expected  for heavy atoms. 

2014/10/TU� Kyoto�

M.Yoshimura and N.Sasao, arXiv:1310.6472v1 [hep-ph] 
24 Oct 2013, PRD 89, 053013 (2014) �

2(1 4sin )wQw N Zθ= − −

$#�

Qw ~ # of  neutrons�

 M. Yoshimura and N. Sasao,  PRD89, 053013(2014), arXiv:1310.6472 

flavor diagonal
no PMNS

HW = 4
GFp
2

X

i,q

⌫̄i�µ(1� �5)⌫i q̄�µ(vq � aq�5)q

Nuclear matrix element in the NR limit 
hN |

X

q

4vq q̄�
µq|Ni ' (QW ,0)

weak charge:QW ' �(# of neutrons)

cf. atomic parity violation

nuclear monopole / Q2
WZ8/3 enhancement
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RENP spectrum
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Six (or three) thresholds of the photon energy

Λ− |e⟩ → |g⟩ + γ + νiνj νi

|e⟩ → |g⟩ + γ + γ ×
|p⟩

|e⟩ → |g⟩ + γ + νiνj

|e⟩ →
|g⟩ + νiνj

|e⟩
> 1

γ νi , i = 1, 2, 3

ωij =
ϵeg

2
− (mi + mj)2

2ϵeg
.

ϵab = ϵa − ϵb |a⟩ , |b⟩
mi

(mi + mj)2/(2ϵeg) ∼ 5 mi + mj = 0.1 ϵeg = 1

ω ≤ ω11

�eg = �e � �g atomic energy diff.

i, j = 1, 2, 3

Energy-momentum conservation
due to the macro-coherence

familiar 3-body decay kinematics

Required energy resolution � O(10�6) eV

��trig.
<� 1 GHz � O(10�6) eV

typical laser linewidth
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|p⟩ 2

Γγ2ν(ω, t) = Γ0I(ω)ηω(t) ,

Γ0 =
3n2V G2

F γpgϵegn

2ϵ3pg
(2Jp + 1)Cep ,

I(ω) = F (ω)/(ϵpg − ω)2 γpg |p⟩ |g⟩
Cep

1
2Je + 1

∑

Me

⟨pMp|S⃗|eMe⟩ · ⟨eMe|S⃗|pM ′
p⟩ = δMpM ′

p
Cep ,

Cep = 2/3 ηω(t)

ηω(t) = ηR
ω (t) + ηL

ω (t) ,

ηR
ω (t) =

t∗
4L

∫ L/t∗

0
dξ|eR(ξ, t/t∗ − L/t∗ + ξ)|2

[
r2
1(ω, ξ, t/t∗ − L/t∗ + ξ) + r2

2(ω, ξ, t/t∗ − L/t∗ + ξ)
]

,

ηL
ω (t) =

t∗
4L

∫ L/t∗

0
dξ|eL(ξ, t/t∗ − ξ)|2

[
r2
1(ω, ξ, t/t∗ − ξ) + r2

2(,ωξ, t/t∗ − ξ)
]

.

Γ0 I(ω) ηω(t)

I(ω) Γ0

ηω(t) ηω(t)
|e⟩ |g⟩

ηω(t)

I(ω; mi = 0) =
ω2 − 6ϵegω + 3ϵ2eg

12(ϵpg − ω)2
,

∑
ij Bij = 3/4

∆ij(ω)
∝ √

ωij − ω

I(ω) 2

2

×

2 Γ0 ∝ n3 n
∝ n2V

ϵegn
ηω(t) ηω(t)

∝ 1/n Γ0 ∝ n3

overall rate
spectral function

dynamical factor

macro-coherence
~ field energy density

Overall rate

RENP rate formula

�M
0 ⇠ Q2

WZ8/3 ⇥ �S
0 ⇠ 100 kHz

rate�pg : |p⇥ � |g⇥
�SC
0 ⇠ 3n2V G2

F �pg✏egn

2✏3pg
⇠ 1 mHz (n/1021cm�3)3(V/102cm3)
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|p⟩ 2

Γγ2ν(ω, t) = Γ0I(ω)ηω(t) ,

Γ0 =
3n2V G2

F γpgϵegn

2ϵ3pg
(2Jp + 1)Cep ,

I(ω) = F (ω)/(ϵpg − ω)2 γpg |p⟩ |g⟩
Cep

1
2Je + 1

∑

Me

⟨pMp|S⃗|eMe⟩ · ⟨eMe|S⃗|pM ′
p⟩ = δMpM ′

p
Cep ,

Cep = 2/3 ηω(t)

ηω(t) = ηR
ω (t) + ηL

ω (t) ,

ηR
ω (t) =

t∗
4L

∫ L/t∗

0
dξ|eR(ξ, t/t∗ − L/t∗ + ξ)|2

[
r2
1(ω, ξ, t/t∗ − L/t∗ + ξ) + r2

2(ω, ξ, t/t∗ − L/t∗ + ξ)
]

,

ηL
ω (t) =

t∗
4L

∫ L/t∗

0
dξ|eL(ξ, t/t∗ − ξ)|2

[
r2
1(ω, ξ, t/t∗ − ξ) + r2

2(,ωξ, t/t∗ − ξ)
]

.

Γ0 I(ω) ηω(t)

I(ω) Γ0

ηω(t) ηω(t)
|e⟩ |g⟩

ηω(t)

I(ω; mi = 0) =
ω2 − 6ϵegω + 3ϵ2eg

12(ϵpg − ω)2
,

∑
ij Bij = 3/4

∆ij(ω)
∝ √

ωij − ω

I(ω) 2

2

×

2 Γ0 ∝ n3 n
∝ n2V

ϵegn
ηω(t) ηω(t)

∝ 1/n Γ0 ∝ n3

�M = 0(1) for Dirac(Majorana)

Spectral function (spin current)

Bij = |U�
eiUej � �ij/2|2, BM

ij = ⇥[(U�
eiUej � �ij/2)2]

Dynamical factor

⇥ |coherence� field|2

ω x

dΓγ2ν(ω, x, t) = [dΓR(ω, x, t) + dΓL(ω, x, t)]Ceg(ω)F (ω)

dΓi(ω, x, t) =
G2

F |E⃗i(ω, x, t)|2n2V dx

6πL

r2
1(x, t) + r2

2(x, t)
4

(i = R,L) ,

Ceg(ω) =
∑

p

⟨g|d⃗|p⟩ · ⟨p|d⃗|g⟩⟨e|S⃗|p⟩ · ⟨p|S⃗|e⟩
(ϵpg − ω)2

F (ω) =
∑

ij

∆ij(BijIij(ω) − δMBM
ij mimj)θ(ωij − ω) , Bij = |aij |2 , BM

ij = ℜ(a2
ij) ,

Iij(ω) =
q2

6

[
2 −

m2
i + m2

j

q2
−

(m2
i − m2

j )
2

q4

]
+

ω2

9

[
1 +

m2
i + m2

j

q2
− 2

(m2
i − m2

j )
2

q4

]
,

|E⃗i(ω, x, t)|2 (i = R,L)
ω < ϵeg/2

|E⃗i|2 ≤ ϵegn

ω,ω′ ω + ω′ = ϵeg

∝ δM mimj ∆ij(ω)
ω = ωij

dΓR,L

r2
1 + r2

2

4
|E⃗R,L|2 ,

|E⃗|2

|E⃗|2 ∝ ω

ω

x

Γγ2ν(ω, t) =
[∫

dΓR(ω, x, t − L + x) +
∫

dΓL(ω, x, t − x)
]

Ceg(ω)F (ω) ,

ω x

dΓγ2ν(ω, x, t) = [dΓR(ω, x, t) + dΓL(ω, x, t)]Ceg(ω)F (ω)

dΓi(ω, x, t) =
G2

F |E⃗i(ω, x, t)|2n2V dx

6πL

r2
1(x, t) + r2

2(x, t)
4

(i = R,L) ,

Ceg(ω) =
∑

p

⟨g|d⃗|p⟩ · ⟨p|d⃗|g⟩⟨e|S⃗|p⟩ · ⟨p|S⃗|e⟩
(ϵpg − ω)2

F (ω) =
∑

ij

∆ij(BijIij(ω) − δMBM
ij mimj)θ(ωij − ω) , Bij = |aij |2 , BM

ij = ℜ(a2
ij) ,

Iij(ω) =
q2

6

[
2 −

m2
i + m2

j

q2
−

(m2
i − m2

j )
2

q4

]
+

ω2

9

[
1 +

m2
i + m2

j

q2
− 2

(m2
i − m2

j )
2

q4

]
,

|E⃗i(ω, x, t)|2 (i = R,L)
ω < ϵeg/2

|E⃗i|2 ≤ ϵegn

ω,ω′ ω + ω′ = ϵeg

∝ δM mimj ∆ij(ω)
ω = ωij

dΓR,L

r2
1 + r2

2

4
|E⃗R,L|2 ,

|E⃗|2

|E⃗|2 ∝ ω

ω

x

Γγ2ν(ω, t) =
[∫

dΓR(ω, x, t − L + x) +
∫

dΓL(ω, x, t − x)
]

Ceg(ω)F (ω) ,

Mij
W =

GF√
2
⟨νi(p,λ)ν̄j(p′,λ′)|

∑

a,b

ν̄aγµ(1 − γ5)νb|0⟩(vabJ
µ
V − aabJ

µ
A) ,

Jµ
V (Jµ

A) Jµ
V = ⟨g|ēγµe|p⟩ Jµ

A =
⟨g|ēγµγ5e|p⟩ vab aab

Jµ
V ≃ 0 Jµ

A ≃ (0, 2⟨p|S⃗|e⟩)
Jµ

V

Mij
W = −GF√

2

(
aijL

µ
ij − δMajiR

µ
ij

)
JAµ ,

Lµ
ij(R

µ
ij) = ūi(p,λ)γµ(1 ∓ γ5)vj(p′,λ′) ,

δM = 0(1) Lµ
ij

(a, b) = (i, j)
Rµ

ij (a, b) = (j, i)
CūT = v

Lµ
ijL

†ν
ij Rµ

ijR
†ν
ij Lµ

ijR
†ν
ij

Rµ
ijL

†ν
ij

∫
dΦ2

∑

λ,λ′

Lµ
ijL

†ν
ij =

∫
dΦ2

∑

λ,λ′

Rµ
ijR

†ν
ij

=
∆ij

6π

[{
∆2

ij − 3

(
1 −

m2
i + m2

j

q2

)}
q2gµν + 2

{
1 +

m2
i + m2

j

q2
− 2

(m2
i − m2

j )
2

q4

}
qµqν

]
,

∫
dΦ2

∑

λ,λ′

Lµ
ijR

†ν
ij =

∫
dΦ2

∑

λ,λ′

Rµ
ijL

†ν
ij = −∆ij

π
mimjg

µν ,

∆2
ij = 1 − 2

m2
i + m2

j

q2
+

(m2
i − m2

j )
2

q4
,

q2 = ϵeg(ϵeg − ω)

Lµ
ij Rµ

ij

q2 = (pi + pj)2
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|e� � |p� M1
|p� � |g� E1

Xe
E
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0

1

8

9

10
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6  1
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5 2 2
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3/2 1
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1/2 0
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(1, 1)
(1,2)

     








(m
i
+

m
j
)2

/(
2ϵ

e
g
)

(m
eV

)

ϵeg/2

J = 2 5p5(2P3/2)6s 2[3/2]J=2

m0

�eg = 8.3153 eV

J = 0

J = 2
J = 1

(gas target)
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1 2 3 4
eV

0.05

0.10

0.15

0.20

0.25

Xe NH and IH,m0!20meV

I(ω)

4.1570 4.1571 4.1572 4.1573 4.1574 4.1575 4.1576
eV

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Xe, Dirac NH vs IH: m0!2,20meV

I(ω)

Global shape

The threshold weight factorsBij = |aij |2 = |U∗
eiUej − δij/2|2

B11 B22 B33 B12 + B21 B23 + B32 B31 + B13

(c2
12c

2
13 − 1/2)2 (s2

12c
2
13 − 1/2)2 (s2

13 − 1/2)2 2c2
12s

2
12c

4
13 2s2

12c
2
13s

2
13 2c2

12c
2
13s

2
13

∼ 0.1

θ13

2

∆m2
21 = 7.5 × 10−5 eV2 , |∆m2

31(32)| = 2.32 × 10−3 eV2 ,

sin2 θ12 = 0.31 , sin2 θ13 = 0.025 , sin2 θ23 = 0.42 ,

ωij , i ̸= j

BM
ij

cos 2α , cos 2(β − δ) , cos 2(α − β + δ) ,

ϵeg/2 − ωij =
(mi + mj)2/2ϵeg ϵeg

Γ0 ∼ 1Hz (n/1022cm−3)3(V/102 cm3)

O(10−6) eV

2

Photon spectrum (spin current)

Threshold region

4.1560 4.1565 4.1570 4.1575
0.00

0.02

0.04

0.06

Ω !eV"
Sp

ec
tru

m
I#Ω$

Threshold behavior #Dirac case$

m0

132 136

2.5 × 1019 /cm3

1.1 × 1020 /cm3

> 1019 /cm3

∼ 102 s−1

1 × 104 s−1

O(0.1) µs

5p5(2P3/2)6p 6p

5p5(2P3/2)6p 2[3/2]2 5p5(2P3/2)6p 2[5/2]2

Λ
6s [3/2]2 6s [3/2]1

6s [3/2]1

λtp λ6sJ−6p

A6sJ←6p

5p5(2P3/2)6p 2[3/2]2

Xe, Dirac, NH, IH

m0 = 2, 20, 50meV
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Photon spectrum (nuclear monopole)

Global shape Threshold region

Xe 3P1 8.4365 eV
n = 7⇥ 1019 cm�3 V = 100 cm3
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Homonuclear diatomic molecule
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Potential curves
R

|g>

|e>

|p>

2.0 2.5 3.0 3.5 4.0 4.5 5.0
!1.5

!1.0

!0.5

0.0

0.5

R !A"

E
!eV"

I2 Molecule Potential Curve

2

|e⟩ = A′ , |g⟩ = X , |p⟩ = A

|
∑

i

miU
2
ei|2 = 5.8 × 10−4 m2

3 + 9.2 × 10−2 m2
2 + 4.5 × 10−1 m2

1 + 4.1 × 10−1 m1m2 cos(2α)

+3.2 × 10−2 m1m3 cos 2(β − δ) + 1.5 × 10−2 m2m3 cos 2(α − β + δ) ,

2

(α,β)

2

2 m0 = 5

ω ηω(t)
Γγ2ν(ω, t) = Γ0I(ω)ηω(t)

ω

∼ ω ηω(t)
ω αab(ω)

γ− = (αee − αgg)/2αge αge

ω

|p⟩ ϵeg |e⟩ |g⟩ αab(ω)
ω ηω(t)

ωij I(ω)

|g� |e�

|p�

R

|g⇤ �⇥ |e⇤
forbidden
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0.432 0.434 0.436 0.438 0.440
eV

0.0002

0.0004

0.0006

0.0008

0.0010

I2 A'v!1"#Xv!15: m0!5meV

2

(π/2, 0)

ηω(t) ≫ T2, T3

Γ0

Γ0

1Hz (n/1022cm−3)3 (V/102cm3) ηω(t)

2

×

2

αge ×
γ− ∼ −7300 2 ∼ 0.6

ηω(t)

T1

∼

D vs M

D-M diff. < 10%

NH

IH

I2 molecule

�eg � 1 eV

potential curves

|g�|g>

|e>

|p>

2.0 2.5 3.0 3.5 4.0 4.5 5.0
!1.5

!1.0

!0.5

0.0

0.5

R !A"

E
!eV"

I2 Molecule Potential Curve

2

|e⟩ = A′ , |g⟩ = X , |p⟩ = A

|
∑

i

miU
2
ei|2 = 5.8 × 10−4 m2

3 + 9.2 × 10−2 m2
2 + 4.5 × 10−1 m2

1 + 4.1 × 10−1 m1m2 cos(2α)

+3.2 × 10−2 m1m3 cos 2(β − δ) + 1.5 × 10−2 m2m3 cos 2(α − β + δ) ,

2

(α,β)

2

2 m0 = 5

ω ηω(t)
Γγ2ν(ω, t) = Γ0I(ω)ηω(t)

ω

∼ ω ηω(t)
ω αab(ω)

γ− = (αee − αgg)/2αge αge

ω

|p⟩ ϵeg |e⟩ |g⟩ αab(ω)
ω ηω(t)

ωij I(ω)

|e�

|p�

4.1565 4.1570 4.1575
eV

0.02

0.04

0.06

0.08

Xe, Dirac NH vs IH: m0!1,10,50meV

I(ω)
5p5(2P3/2)6s2[3/2]2

0.432 0.434 0.436 0.438 0.440
eV

0.0002

0.0004

0.0006

0.0008

0.0010

I2 A'v!1"#Xv!15: m0!20meV

2

(α,β − δ) = (0, 0)
(π/2, 0) (0,π/2)

|e⟩ |g⟩
|e⟩

2

O[1021]

CP phases
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CNB
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Cosmic Neutrino Background (CNB)
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Big bang cosmology

Standard model 
of particle physics

CNB

CNB at present:

(not) Fermi-Dirac dist. |p| =
p

E2 �m2
⌫

f(p) = [exp(|p|/T⌫ � ⇠) + 1]

�1

Detection?

T⌫ =

✓
4

11

◆1/3

T� ' 1.945 K ' 0.17 meV

n⌫ ' 6⇥ 56 cm�3
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RENP in CNB
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Pauli exclusion

spectral distortion

d� / |M|2 [1� fi(p)]
⇥
1� f̄j(p

0)
⇤

|ei ! |gi+ � + ⌫i⌫̄j

Distortion factor

RX(!) ⌘ �X(!, T⌫)

�X(!, 0)

X =

(
M nuclear monopole

S valence e spin current

larger rate i = j
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PSR
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Paired Super-Radiance (PSR)
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|e� � |g�+ � + �

|p�

|e�

|g�
�

�

metastable

Prototype for RENP
proof-of-concept for the macrocoherence

M. Yoshimura, N. Sasao, MT, PRA86, 013812 (2012)

Theoretical description to be tested
Maxwell-Bloch equation

Preparation of initial state for RENP
coherence generation ⇢eg
dynamical factor ��(t)
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PSR equation
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Effective two-level interaction Hamiltonian
|g�, |e�, |p� HI =

�
�ee �geei�egt

� �gg

�
E2

ϵp > ϵe > ϵg

|e⟩ |g⟩
|e⟩ |e⟩ → |g⟩ + γγ

2 × 2

HI = −
(

αeeE+E− eiϵegtαge(E+)2

e−iϵegtαge(E−)2 αggE+E−

)
,

αge =
2dpedpg

ϵpg + ϵpe
, αaa =

2d2
paϵpa

ϵ2pa − ω2
, (a = g , e) .

ϵab = ϵa − ϵb ,ω = ϵeg/2 .

|p⟩ |e⟩ |g⟩
|p⟩ HI

dpa µpa O(1/100)
ω αab , a, b = e, g

E⃗± E±

∝ αaa

∝ αge

|p⟩ |e⟩, |g⟩, |p⟩
E

ER , EL

E = ER + EL

αab

ai a†i
E+

i = ai

√
ω/2V ,E−

i = a†i
√

ω/2V V

dipole matrix elementdpa :

Field (1+1 dim.)
E = ER e�i(�t�kx) + EL e�i(�t+kx) + c.c.

⇥ = �eg/2

k = �
|e�

|g�

R-moverL-mover
ei�(t+x) ei�(t�x)

macrocoherence
� e2i⇥t = ei�egt
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Slowly varying envelope approximation (SVEA)

, |⇥x,tR
(0,±)
i |� �|R(0,±)

i ||⇥x,tER,L|� �|ER,L|

Rotating wave approximation (RWA)
omitting fast oscillation terms

Bloch equation @t⇢ = i[⇢,HI ] + relaxation terms

density matrix
⇢ = | ih | = ⇢gg|gihg|+ ⇢ee|eihe|+ ⇢eg|eihg|+ ⇢ge|gihe|

|⇢eg|  1/2coherence (of an atom)

P = � �

�E
tr(⇢HI)macroscopic polarization

Maxwell equation (@2
t

� @2
x

)E = �@2
t

P
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PSR with spatial gratings
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pump
Stokes

x

spatial grating

Unidirectional PSR
momentum conservation
in the macrocoherence

How to populate |e�
|e�

|g�

pump

e�i!0(t�x)

Stokes

ei!�1(t�x)

Raman scattering
!0 � !�1 = ✏eg

Generated coherence

⇢
eg

= ⇢(0)
eg

+ ⇢(+)
eg

ei✏egx + ⇢(�)
eg

e�i✏egx

PSR

ei!p(t�x)ei!p̄(t�x) = ei✏eg(t�x)

!p
!p̄

!p + !p̄ = ✏eg
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Para-hydrogen gas PSR experiment
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Y. Miyamoto et al., arXiv:1406.2198,
                 to be published in PTEP

@ Okayama U

p-H2: nuclear spin=singlet

PTEP 2012, 04D002 A. Fukumi et al.

Fig. 30. Linewidth of Q1(0) Raman transition of gaseous pH2 at 81 K, with ortho-para ratios of 1:7.7 and 3:1,
as a function of density of pH2.

Solid hydrogen. Solid pH2 is an attractive target for coherent experiments because it fulfills high
density and long coherence simultaneously. The number density of saturated solid pH2 is about
2.6 × 1022 cm−3 at 4 K, which corresponds to that of a gaseous sample at 1000 atm, 300 K. Due to
weak interaction, not only vibrational motion but also rotational motion of hydrogen are quantized
and coherence time is much longer than classical solids. The long coherence time of the excited
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of 2000 ppm, while this becomes 60 MHz at 20000 ppm [41]. Therefore, a highly purified pH2 is
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at the same pH2 density is probably smaller for the pure pH2 sample, as seen in Fig. 30, although
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excitation supplemented by the paired super-radiance[14]. The basic equation (Maxwell-
Bloch) presented below is derived from this view point[15].
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Fig. 1 Schematic diagram showing the relevant hydrogen molecule energy levels and the
Raman excitation and two-photon emission processes.

The rest of the paper is organized as follows. In the next section, we briefly describe
theoretical aspects of the paired super-radiance and adiabatic Raman process, and present
a simulation method based on an effective Hamiltonian combined for both. They are non-
linear processes and thus demand numerical simulations to obtain various observables which
can be compared directly with actual experimental data. Following these, we describe our
experimental setup in Sec.3. The results and conclusions are given in Sec.4 and 5, respectively.

2. Theory and Simulation

We begin our discussion by constructing an effective Hamiltonian which describes both two-
photon emission and Raman excitation processes. The basic QED interaction is the electric
dipole interaction (E1) represented by −d⃗ · E⃗ with d⃗ being the dipole moment and E⃗ electric
fields. (We will omit the vector notation below since all the fields treated in this paper are
linearly polarized in the same direction.) In the present system, the E1 dipole interaction
connects |g⟩ and |e⟩ through an intermediate state |j⟩, which is taken as an electronically-
excited state. Many intermediate levels may contribute, as shown in Fig. 1, but in the
following we consider only one for simplicity. Extension to the case of multi levels is trivial,
and our actual simulation includes several tens of intermediate states [4]. The present system
can be regarded as a two level system once the intermediate state |j⟩ is integrated out from
the Schrödinger equation with the aid of the Markov approximation. The electromagnetic
fields to be considered are the two driving lasers and the associated Raman sidebands with
frequencies of

ωq = ω0 + q∆ω, ∆ω = ω0 − ω−1, (1)

where the Raman order q is a positive (anti-Stokes) or negative (Stokes) integer satisfying
ωq > 0. In the present experimental conditions, the smallest q (the lowest Stokes sideband)
is q = −4. The frequency difference of the two driving lasers ∆ω should be chosen to be
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fields with a power density of 1011 W/cm2 can produce a
train of pulses with a pulse length of 0.21 fs. The calcula-
tions have been performed for the case where all of the mol-
ecules are adiabatically prepared in one eigenstate of the ef-
fective distance-dependent Hamiltonian. The Bessel-function
nature of the spectrum has been established in the analyti-
cally solvable case of negligible dispersion and limited
modulation bandwidth.
In the present paper we explore the Harris-Sokolov tech-

nique !13" for producing broadband Raman spectra and sub-
femtosecond pulses in a more general case where the adia-
batic following may not be perfect. Analyzing the solvable
case of negligible dispersion and limited modulation band-
width, we confirm the observation of Harris and Sokolov that
the antiphased state temporally advances the higher frequen-
cies with respect to the lower frequencies during a beating
cycle. We show that the pulse compression may occur for
both negative and positive sides of the Raman detuning, and
that the magnitude of the molecular coherence generated on
the negative side is large as compared to the coherence gen-
erated on the positive side. We perform numerical calcula-
tions for high-density molecular hydrogen, as a model of
solid hydrogen, in which a new type of stimulated Raman
scattering has been observed !14". We find that two
Gaussian-shape driving fields with a power density of
109 W/cm2 can produce a train of pulses with a pulse length
of 0.3 fs.
The paper is organized as follows. In Sec. II we review

the model and present the basic equations for the molecular
state. In Sec. III we study the wave propagation aspect. In
Sec. IV we perform a numerical analysis. Finally, Sec. V
contains conclusions.

II. FAR-OFF-RESONANCE
MULTIPLE-!-CONFIGURATION SYSTEM

In this section we review the model !13" for a far-off-
resonance multiple-#-configuration system and present the
basic equations for the quantum state of the medium.
We drive a multilevel #-configuration system shown

schematically in Fig. 1 by two laser beams of frequencies $0
and $!1. Levels j with energies $ j are coupled to level a
with energy $a and level b with energy $b by electric dipole
transitions. The transition between levels a and b is electric
dipole forbidden. We allow an arbitrary number of virtual
states j and analyze the system with including all possible
sidebands of the Raman spectrum. The transitions j↔a and
j↔b are assumed to be far off resonance with the fields.
In the dipole approximation, the Hamiltonian of the sys-

tem is given by

H"H0#H int , %1&

where
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Here (+,"!+-.,! are the operators for level populations
and transition amplitudes, E is the electric field, and * ja and
* jb are the dipole moments of the transitions j↔a and
j↔b , respectively. We assume that the driving and gener-
ated fields propagate in the z direction. We use the local-time
coordinates /"t!z/c and 0"z . The total electric field is
expanded in the form
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Here q is an integer number. The modulation frequency $m
"$b!$a!1 or, equivalently, the frequency difference be-
tween adjacent sidebands, is the difference of the two applied
frequencies $0 and $!1. The detuning 1 is the difference
between the Raman transition frequency $b!$a and the
modulation frequency $m .
When the detunings of the fields from the upper states j

are large as compared to the derivatives of the probability
amplitudes of these states, the system can be described by an
effective, distance-dependent, two-by-two Hamiltonian !13"

Heff"!'"2aa 2ab

2ba 2bb!1# , %6&

where the Stark shifts 2aa and 2bb and the two-photon Rabi
frequency 2ab are given by
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FIG. 1. Diagram of energy levels and transitions for the analy-
sis. Levels a and b are coupled with levels j by the laser fields $0
and $!1. The transition between levels a and b is electric dipole
forbidden. The transitions j↔a and j↔b are far off one-photon
resonance, and the transition a↔b may be off two-photon reso-
nance by a detuning 1 .
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between the Raman transition frequency $b!$a and the
modulation frequency $m .
When the detunings of the fields from the upper states j

are large as compared to the derivatives of the probability
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FIG. 1. Diagram of energy levels and transitions for the analy-
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and $!1. The transition between levels a and b is electric dipole
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Sec. IV we perform a numerical analysis. Finally, Sec. V
contains conclusions.

II. FAR-OFF-RESONANCE
MULTIPLE-!-CONFIGURATION SYSTEM

In this section we review the model !13" for a far-off-
resonance multiple-#-configuration system and present the
basic equations for the quantum state of the medium.
We drive a multilevel #-configuration system shown

schematically in Fig. 1 by two laser beams of frequencies $0
and $!1. Levels j with energies $ j are coupled to level a
with energy $a and level b with energy $b by electric dipole
transitions. The transition between levels a and b is electric
dipole forbidden. We allow an arbitrary number of virtual
states j and analyze the system with including all possible
sidebands of the Raman spectrum. The transitions j↔a and
j↔b are assumed to be far off resonance with the fields.
In the dipole approximation, the Hamiltonian of the sys-

tem is given by

H"H0#H int , %1&

where

H0"'$a(aa#'$b(bb#)
j

'$ j( j j %2&

and

H int"!)
j
E%* ja( ja#*a j(a j#* jb( jb#*b j(b j&. %3&

Here (+,"!+-.,! are the operators for level populations
and transition amplitudes, E is the electric field, and * ja and
* jb are the dipole moments of the transitions j↔a and
j↔b , respectively. We assume that the driving and gener-
ated fields propagate in the z direction. We use the local-time
coordinates /"t!z/c and 0"z . The total electric field is
expanded in the form
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Here q is an integer number. The modulation frequency $m
"$b!$a!1 or, equivalently, the frequency difference be-
tween adjacent sidebands, is the difference of the two applied
frequencies $0 and $!1. The detuning 1 is the difference
between the Raman transition frequency $b!$a and the
modulation frequency $m .
When the detunings of the fields from the upper states j

are large as compared to the derivatives of the probability
amplitudes of these states, the system can be described by an
effective, distance-dependent, two-by-two Hamiltonian !13"
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FIG. 1. Diagram of energy levels and transitions for the analy-
sis. Levels a and b are coupled with levels j by the laser fields $0
and $!1. The transition between levels a and b is electric dipole
forbidden. The transitions j↔a and j↔b are far off one-photon
resonance, and the transition a↔b may be off two-photon reso-
nance by a detuning 1 .
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fields with a power density of 1011 W/cm2 can produce a
train of pulses with a pulse length of 0.21 fs. The calcula-
tions have been performed for the case where all of the mol-
ecules are adiabatically prepared in one eigenstate of the ef-
fective distance-dependent Hamiltonian. The Bessel-function
nature of the spectrum has been established in the analyti-
cally solvable case of negligible dispersion and limited
modulation bandwidth.
In the present paper we explore the Harris-Sokolov tech-

nique !13" for producing broadband Raman spectra and sub-
femtosecond pulses in a more general case where the adia-
batic following may not be perfect. Analyzing the solvable
case of negligible dispersion and limited modulation band-
width, we confirm the observation of Harris and Sokolov that
the antiphased state temporally advances the higher frequen-
cies with respect to the lower frequencies during a beating
cycle. We show that the pulse compression may occur for
both negative and positive sides of the Raman detuning, and
that the magnitude of the molecular coherence generated on
the negative side is large as compared to the coherence gen-
erated on the positive side. We perform numerical calcula-
tions for high-density molecular hydrogen, as a model of
solid hydrogen, in which a new type of stimulated Raman
scattering has been observed !14". We find that two
Gaussian-shape driving fields with a power density of
109 W/cm2 can produce a train of pulses with a pulse length
of 0.3 fs.
The paper is organized as follows. In Sec. II we review
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amplitudes of these states, the system can be described by an
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FIG. 1. Diagram of energy levels and transitions for the analy-
sis. Levels a and b are coupled with levels j by the laser fields $0
and $!1. The transition between levels a and b is electric dipole
forbidden. The transitions j↔a and j↔b are far off one-photon
resonance, and the transition a↔b may be off two-photon reso-
nance by a detuning 1 .
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fields with a power density of 1011 W/cm2 can produce a
train of pulses with a pulse length of 0.21 fs. The calcula-
tions have been performed for the case where all of the mol-
ecules are adiabatically prepared in one eigenstate of the ef-
fective distance-dependent Hamiltonian. The Bessel-function
nature of the spectrum has been established in the analyti-
cally solvable case of negligible dispersion and limited
modulation bandwidth.
In the present paper we explore the Harris-Sokolov tech-

nique !13" for producing broadband Raman spectra and sub-
femtosecond pulses in a more general case where the adia-
batic following may not be perfect. Analyzing the solvable
case of negligible dispersion and limited modulation band-
width, we confirm the observation of Harris and Sokolov that
the antiphased state temporally advances the higher frequen-
cies with respect to the lower frequencies during a beating
cycle. We show that the pulse compression may occur for
both negative and positive sides of the Raman detuning, and
that the magnitude of the molecular coherence generated on
the negative side is large as compared to the coherence gen-
erated on the positive side. We perform numerical calcula-
tions for high-density molecular hydrogen, as a model of
solid hydrogen, in which a new type of stimulated Raman
scattering has been observed !14". We find that two
Gaussian-shape driving fields with a power density of
109 W/cm2 can produce a train of pulses with a pulse length
of 0.3 fs.
The paper is organized as follows. In Sec. II we review

the model and present the basic equations for the molecular
state. In Sec. III we study the wave propagation aspect. In
Sec. IV we perform a numerical analysis. Finally, Sec. V
contains conclusions.
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basic equations for the quantum state of the medium.
We drive a multilevel #-configuration system shown

schematically in Fig. 1 by two laser beams of frequencies $0
and $!1. Levels j with energies $ j are coupled to level a
with energy $a and level b with energy $b by electric dipole
transitions. The transition between levels a and b is electric
dipole forbidden. We allow an arbitrary number of virtual
states j and analyze the system with including all possible
sidebands of the Raman spectrum. The transitions j↔a and
j↔b are assumed to be far off resonance with the fields.
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tem is given by

H"H0#H int , %1&

where

H0"'$a(aa#'$b(bb#)
j

'$ j( j j %2&

and

H int"!)
j
E%* ja( ja#*a j(a j#* jb( jb#*b j(b j&. %3&

Here (+,"!+-.,! are the operators for level populations
and transition amplitudes, E is the electric field, and * ja and
* jb are the dipole moments of the transitions j↔a and
j↔b , respectively. We assume that the driving and gener-
ated fields propagate in the z direction. We use the local-time
coordinates /"t!z/c and 0"z . The total electric field is
expanded in the form
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where
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Here q is an integer number. The modulation frequency $m
"$b!$a!1 or, equivalently, the frequency difference be-
tween adjacent sidebands, is the difference of the two applied
frequencies $0 and $!1. The detuning 1 is the difference
between the Raman transition frequency $b!$a and the
modulation frequency $m .
When the detunings of the fields from the upper states j

are large as compared to the derivatives of the probability
amplitudes of these states, the system can be described by an
effective, distance-dependent, two-by-two Hamiltonian !13"

Heff"!'"2aa 2ab

2ba 2bb!1# , %6&

where the Stark shifts 2aa and 2bb and the two-photon Rabi
frequency 2ab are given by
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FIG. 1. Diagram of energy levels and transitions for the analy-
sis. Levels a and b are coupled with levels j by the laser fields $0
and $!1. The transition between levels a and b is electric dipole
forbidden. The transitions j↔a and j↔b are far off one-photon
resonance, and the transition a↔b may be off two-photon reso-
nance by a detuning 1 .
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The constants aq , bq , and dq determine the dispersion and
coupling and are
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The eigenvalues of the effective Hamiltonian Heff are
Eeff
($)!##( ($) with

( ($)!
1
2 &!aa"!bb#)'$

1
2
!&!aa#!bb")'2"4"!ab"2.

&9'

Writing !ab!"!ab"ei*, the eigenvectors are as follows:

"$+!cos, ($)"a+"sin, ($)e#i*"b+ , &10'

where
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The coherence of the superposition of levels a and b in the
dressed eigenstates "$+ is
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.
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Note that #-/2/, (#)/0/, (")/-/2. Hence we have
sin,(")00 and sin,(#)/0 while cos,($)00. Since the ampli-
tudes sin,(") and cos,(") of levels a and b in the state ""+
have the same sign, and the phases of the coherence .ab

(") and
the two-photon Rabi frequency !ab are the same, the state
""+ is called a phased state. Since the amplitudes sin,(#) and
cos,(#) in the state "#+ have opposite signs, and the phases
of the coherence .ab

(#) and the two-photon Rabi frequency
!ab are opposite, the state "#+ is called an antiphased state.
We now assume that at the initial time 1!#2 the system

is in the ground state "a+ and the field is zero. In the case
where )!0, the adiabatic eigenstates ""+ and "#+ are ini-
tially degenerate, and, at the initial time, the ground state "a+
is a superposition of the states ""+ and "#+ . In the case
where )!” 0, the adiabatic eigenstates ""+ and "#+ are non-
degenerate, and, at the initial time, the ground state "a+ co-
incides with one of the states ""+ and "#+ . The sign of the

Raman detuning ) selects the phased state ""+ or the an-
tiphased state "#+. Namely, when )%0 or )&0, we have
""+1!#2!"a+ or "#+1!#2!"a+, respectively.
We analyze the case where there is no decay in the system

and the Raman detuning is nonzero. The probability ampli-
tudes ca and cb of the wave function "3+!ca"a+"cb"b+ are
governed by the equations 4135

6

61 $ cacb%!i$!aa !ab

!ba !bb#)%$ cacb% . &13'

We call "e+ the eigenstate which may evolve smoothly from
the initial ground state "a+ in the adiabatic limit. Clearly, "e+
is ""+ for positive ) and "#+ for negative ) , that is,

"e+!cos,"a+"sin,e#i*"b+ &14'

with ,!, (") or , (#) for positive or negative ) , respectively.
The conjugate eigenstate is given by

" f +!sin,"a+#cos,e#i*"b+ . &15'

The instantaneous eigenstates "e+ and " f + are called adiabatic
states. The corresponding eigenvalues are (e!( (") or ( (#)

and ( f!( (#) or ( (") for positive or negative ) , respectively.
We introduce the transformations

$ cacb%!$ cos, sin,
e#i*sin, #e#i*cos,%$ cec f % &16'

and

$ cec f %!ei7$ c̃ e
c̃ f

% &17'

with

7!&
#2

1
dt!4(e& t!'"*̇& t!'sin2,& t!'5 . &18'

The variables ce and c f are the amplitudes of the state "3+ in
the basis from "e+ and " f +. The variables c̃ e and c̃ f are the
phase-shifted amplitudes of this state. By using the transfor-
mation &16' and &17', the two-level equation &13' is trans-
formed into the adiabatic equation

6

61 $ c̃ e
c̃ f

%!$ 0 # ,̇#
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2 i*̇ sin 2,
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% ,
&19'

where an overdot means a local-time derivative and

(e f!(e#( f!sgn&)'!&!aa#!bb")'2"4"!ab"2
&20'

is the frequency separation between the two adiabatic eigen-
states. The initial condition reads c̃ e(#2)!1 and c̃ f(#2)
!0. Under this initial condition, we find from Eq. &19' the
expression
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(") and
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""+ is called a phased state. Since the amplitudes sin,(#) and
cos,(#) in the state "#+ have opposite signs, and the phases
of the coherence .ab

(#) and the two-photon Rabi frequency
!ab are opposite, the state "#+ is called an antiphased state.
We now assume that at the initial time 1!#2 the system

is in the ground state "a+ and the field is zero. In the case
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tially degenerate, and, at the initial time, the ground state "a+
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is ""+ for positive ) and "#+ for negative ) , that is,

"e+!cos,"a+"sin,e#i*"b+ &14'

with ,!, (") or , (#) for positive or negative ) , respectively.
The conjugate eigenstate is given by

" f +!sin,"a+#cos,e#i*"b+ . &15'

The instantaneous eigenstates "e+ and " f + are called adiabatic
states. The corresponding eigenvalues are (e!( (") or ( (#)

and ( f!( (#) or ( (") for positive or negative ) , respectively.
We introduce the transformations

$ cacb%!$ cos, sin,
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and
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with
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The variables ce and c f are the amplitudes of the state "3+ in
the basis from "e+ and " f +. The variables c̃ e and c̃ f are the
phase-shifted amplitudes of this state. By using the transfor-
mation &16' and &17', the two-level equation &13' is trans-
formed into the adiabatic equation
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where an overdot means a local-time derivative and
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is the frequency separation between the two adiabatic eigen-
states. The initial condition reads c̃ e(#2)!1 and c̃ f(#2)
!0. Under this initial condition, we find from Eq. &19' the
expression
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Note that #-/2/, (#)/0/, (")/-/2. Hence we have
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The variables ce and c f are the amplitudes of the state "3+ in
the basis from "e+ and " f +. The variables c̃ e and c̃ f are the
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where an overdot means a local-time derivative and
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is the frequency separation between the two adiabatic eigen-
states. The initial condition reads c̃ e(#2)!1 and c̃ f(#2)
!0. Under this initial condition, we find from Eq. &19' the
expression
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The constants aq , bq , and dq determine the dispersion and
coupling and are
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The eigenvalues of the effective Hamiltonian Heff are
Eeff
($)!##( ($) with

( ($)!
1
2 &!aa"!bb#)'$

1
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!&!aa#!bb")'2"4"!ab"2.

&9'

Writing !ab!"!ab"ei*, the eigenvectors are as follows:

"$+!cos, ($)"a+"sin, ($)e#i*"b+ , &10'

where

, ($)!arctan
2"!ab"

!aa#!bb")$!&!aa#!bb")'2"4"!ab"2

!
1
2arctan

2"!ab"
!aa#!bb")

$
-

4 #
-
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The coherence of the superposition of levels a and b in the
dressed eigenstates "$+ is

.ab
($)!

1
2sin 2,

($)ei*!$
!ab

!&!aa#!bb")'2"4"!ab"2
.

&12'

Note that #-/2/, (#)/0/, (")/-/2. Hence we have
sin,(")00 and sin,(#)/0 while cos,($)00. Since the ampli-
tudes sin,(") and cos,(") of levels a and b in the state ""+
have the same sign, and the phases of the coherence .ab

(") and
the two-photon Rabi frequency !ab are the same, the state
""+ is called a phased state. Since the amplitudes sin,(#) and
cos,(#) in the state "#+ have opposite signs, and the phases
of the coherence .ab

(#) and the two-photon Rabi frequency
!ab are opposite, the state "#+ is called an antiphased state.
We now assume that at the initial time 1!#2 the system

is in the ground state "a+ and the field is zero. In the case
where )!0, the adiabatic eigenstates ""+ and "#+ are ini-
tially degenerate, and, at the initial time, the ground state "a+
is a superposition of the states ""+ and "#+ . In the case
where )!” 0, the adiabatic eigenstates ""+ and "#+ are non-
degenerate, and, at the initial time, the ground state "a+ co-
incides with one of the states ""+ and "#+ . The sign of the

Raman detuning ) selects the phased state ""+ or the an-
tiphased state "#+. Namely, when )%0 or )&0, we have
""+1!#2!"a+ or "#+1!#2!"a+, respectively.
We analyze the case where there is no decay in the system

and the Raman detuning is nonzero. The probability ampli-
tudes ca and cb of the wave function "3+!ca"a+"cb"b+ are
governed by the equations 4135

6

61 $ cacb%!i$!aa !ab

!ba !bb#)%$ cacb% . &13'

We call "e+ the eigenstate which may evolve smoothly from
the initial ground state "a+ in the adiabatic limit. Clearly, "e+
is ""+ for positive ) and "#+ for negative ) , that is,

"e+!cos,"a+"sin,e#i*"b+ &14'

with ,!, (") or , (#) for positive or negative ) , respectively.
The conjugate eigenstate is given by

" f +!sin,"a+#cos,e#i*"b+ . &15'

The instantaneous eigenstates "e+ and " f + are called adiabatic
states. The corresponding eigenvalues are (e!( (") or ( (#)

and ( f!( (#) or ( (") for positive or negative ) , respectively.
We introduce the transformations

$ cacb%!$ cos, sin,
e#i*sin, #e#i*cos,%$ cec f % &16'

and

$ cec f %!ei7$ c̃ e
c̃ f

% &17'

with

7!&
#2

1
dt!4(e& t!'"*̇& t!'sin2,& t!'5 . &18'

The variables ce and c f are the amplitudes of the state "3+ in
the basis from "e+ and " f +. The variables c̃ e and c̃ f are the
phase-shifted amplitudes of this state. By using the transfor-
mation &16' and &17', the two-level equation &13' is trans-
formed into the adiabatic equation

6

61 $ c̃ e
c̃ f

%!$ 0 # ,̇#
1
2 i*̇ sin 2,

,̇#
1
2 i*̇ sin 2, i& *̇ cos 2,#(e f '

% $ c̃ e
c̃ f

% ,
&19'

where an overdot means a local-time derivative and

(e f!(e#( f!sgn&)'!&!aa#!bb")'2"4"!ab"2
&20'

is the frequency separation between the two adiabatic eigen-
states. The initial condition reads c̃ e(#2)!1 and c̃ f(#2)
!0. Under this initial condition, we find from Eq. &19' the
expression
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Coherence ⇥ab =
1
2

sin �ei�

phased state

antiphased state
� < 0 , sin ⇥ < 0

� > 0 , sin ⇥ > 0

!"#$!!"# l$"%0"#"# l$#
1
2 &'%m

2 "#"# l$
2. "44$

When the system is in the antiphased state, the coupling
parameter & is negative. In this case, the oscillations of E are
faster or slower when #$# l or #%# l , respectively. There-
fore, for the modulation period from # l to # l#1!# l
#2(/%m , the higher frequencies are temporally advanced
with regard to the lower frequencies. However, in the case of
the phased state, the lower frequencies are advanced as com-
pared to higher frequencies. On the other hand, in a normally
dispersive medium, a higher frequency propagating alone
corresponds to a lower group velocity. Therefore, in the
broadband spectrum case considered here, the group-velocity
dispersion reduces or enhances the relative delay of the dif-
ferent frequency components in the antiphased state or the
phased state, respectively. Meanwhile, to attain pulse com-
pression, the main problem is to overcome the delay. Conse-
quently, when !E0

(input)!"!E"1
(input)!, only the signal generated

by the antiphased state allows pulse compression in a nor-

mally dispersive medium )13*. Furthermore, we should note
that when the propagation path is long enough, the two-
photon Rabi frequency !+ab!, which is a sum of the products
EqEq#1* of the adjacent frequency components, and, hence,
the coherence magnitude !,ab!, which is generated by this
two-photon coupling, are larger in the antiphased case as
compared to the phased case. Such asymmetry of the tuning
characteristics is also due to the reduction of the relative
delay in the antiphased state and the enhancement of the
delay in the phased state with the normal group-velocity dis-
persion.

IV. NUMERICAL RESULTS

In this section, we present and discuss the numerical re-
sults. We solve the wave propagation equation "35$ and the
density-matrix equations "34$ for molecular hydrogen with a
solid-state density of 2.6&1022 cm"3. We use this high-
density molecular hydrogen as a model of solid hydrogen.
We consider the fundamental vibrational transition (-!1,J
!0)↔(-!0,J!0) in molecular hydrogen with %b"%a
!4149.7 cm"1 and take all molecules in the ground state
(-!0,J!0). The Raman transition linewidth is .b!2.!

!107 s"1 )16*. The internal decay rate . # is negligible. The
dispersion constants aq and bq and the coupling constants dq
include the contributions of the 0 – 36th vibrational transi-
tions of the Lyman band and the 0 – 13th transitions of the
Werner band. The magnitudes of the transition dipole mo-
ments are obtained from Allison and Dalgarno )17* and the
level energies are obtained from Herzberg )18*. It should be
noted )15* that coupling constants dq involve terms propor-
tional to cross products /a j/ jb , which can be positive or
negative and can partially cancel each other during summa-
tion in Eq. "8$. Therefore, it is important to keep track of
relative signs of vibrational wave-function overlap integrals.
However, such relative signs have not been published, to our
knowledge, in the literature. In order to get the signs, we
have recalculated the transition dipole matrix elements using
the vibrational wave functions which are the eigenfunctions
in the adiabatic potential obtained by the full configuration
interaction calculation )19*. In addition to the relative signs
of the dipole moments, our results for the oscillator strengths
are in good agreement with the results of Ref. )17*. Our

FIG. 2. "a$ Probability for the system to be in the antiphased
state, "b$ two-photon Rabi frequency, and "c$ molecular coherence
magnitude as functions of the Raman detuning, at the time corre-
sponding to the peaks of the applied pulses (#!0). The peak in-
tensity of each of the driving fields is 109 W/cm2, the pulse length
is 10 ns, and the propagation path is 20 and 40 /m for the solid
and dashed curves, respectively.

FIG. 3. Magnitude of coherence as a function of the Raman
detuning and the propagation path, at the time corresponding to the
peaks of the applied pulses (#!0). The peak intensity of each of
the driving fields and the pulse length are the same as for Fig. 2.
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Experimental setup

36

PPSLT LBO

OPA

Nd:YAG Laser
532 nm

Laser Diode
(ECDL, 683 nm)

OPG

p-H
2

532

683

DCM

DCM DCM

BD

Monochromator

MCTLPFs

(a) Laser Setup

(b) Target & Detector

Fig. 2 Schematics of the experimental setup. (a) The laser system. The main Nd:YAG
laser beam is divided into three beams. Two of them are used as pumping light sources to
generate the ω−1 laser (683 nm) and the rest is used as the ω0 laser (532 nm). For the ω−1

light generation, we employed an injection seeded OPG with a PPSLT crystal and OPA with
LBO crystals. A typical output power at OPA stage is ≥6 mJ at 683 nm. (b) Schematic
diagram of the target and the detector. DCM: dichroic mirror; BD: Beam dumper; LPFs:
long-pass filters; MCT: Hg-Cd-Te mid-infrared detector.

The actual pulse energy and the beam waist size of the ω0 (ω−1) driving laser is 4.3 mJ
(4.3 mJ) and 0.12 mm (0.15 mm), respectively. Both lasers are linearly polarized in the same
direction. For the detuning (δ) scan, we changed the frequency of the ECDL seeding laser.

3.2. Target

We used para-hydrogen (p-H2 with purity of < 500 ppm ortho-hydrogen contamination) gas
at the temperature of 78 K as a target. The main reasons of using p-H2 are that it is suited
to observe two-photon emission from the E1 forbidden vibrationally-excited state, and that
the production technique of large coherence is well established. In addition to these, para-
hydrogen has a merit of longer decoherence time over normal-hydrogen (1:3 mixture of para-
and ortho-hydrogen), and the low temperature (78 K) is better because the decoherence time
(γ−1

2 ) is nearly the longest thanks to the Dicke narrowing [21].
The actual target, cylindrical with 20 mm in diameter and 150 mm in length, was installed

in a cryostat. The pressure could be varied, but in the present experiment it was fixed at
60 kPa (the estimated number density assuming ideal gas is n = 5.6 × 1019 cm−3). Both
pressure and temperature were monitored constantly during the experiment. The estimated
decoherence rate at this condition is about 130 MHz [7].

7

Target cell: length 15cm, diameter 2cm, 78K, 60kPa
n = 5.6⇥ 1019 cm�3 1/T2 ⇠ 130 MHz

Driving lasers: 5 mJ, 6 ns, w0 = 100 µm (5 GW/cm2)

|e�

|g�

pump
532 nm

Stokes 683 nm

!0

!�1

(internal trigger)4th Stokes (q=-4) as trigger

trigger
4662 nm
!�4 = !p̄

signal
4959 nm
!p
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Ultra-broadband Raman sidebands�

2014/10/TU� Kyoto� &'�

!  Raman sidebands, from 192 to 4662nm, 
are observed: >24  

!  Evidence of large coherence�

N. Sasao
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Generated coherence

given by [18]

α(m)
aa =

|daj |2

ε0!

(
1

ωja + ωm
+

1
ωja − ωm

)
, (a = g, e; m = p, p, q) (7)

where daj and !ωja ≡ !(ωj − ωa) are, respectively, a transition dipole moment and energy
difference between levels a − j. Similarly the off-diagonal parts of the polarizability in eq.(5-
6) are given by

α(q)
ge = α(q)

eg =
dgjdje

ε0!

(
1

ωjg + ωq
+

1
ωje − ωq

)
, (8)

α(pp)
ge = α(pp)

eg =
dgjdje

ε0!

(
1

ωjg − ωp
+

1
ωjg − ωp

)
=

dgjdje

ε0!

(
1

ωje + ωp
+

1
ωje + ωp

)
.(9)

In order to include relaxation effects, it is necessary to introduce the density matrix for a
mixture of pure states:

ρ =

(
ρgg ρge

ρeg ρee

)
. (10)

The equation of motion for the density matrix is governed by i!(dρ/dt) = [H, ρ] +
(relaxation terms), and its explicit forms will be shown below. So far we have considered a
single molecule, which is now extended to an ensemble of molecules within a finite volume.
To this end, the density matrix is considered to be a function of the position x by taking a
continuous limit of atom distribution in the target. We also need to consider a propagation
effect of the electromagnetic fields: this effect is included by the one-dimensional Maxwell
equation

∂2E

∂t2
− c2 ∂2E

∂x2
= − n

ε0

∂2P

∂t2
, (11)

where P denotes the macroscopic polarization, and n the number density of the hydrogen
molecules. The polarization P can be calculated with P = Tr(ρd). Putting P into eq.(11)
with the help of RWA and SVEA, we arrive at a set of equations, referred to as Maxwell-Bloch
equation, expressed by

∂ρgg

∂τ
= i

(
Ωgeρeg − Ωegρge

)
+ γ1ρee, (12)

∂ρee

∂τ
= i

(
Ωegρge − Ωgeρeg

)
− γ1ρee, (13)

∂ρge

∂τ
= i

(
Ωgg − Ωee + δ

)
ρge + iΩge

(
ρee − ρgg

)
− γ2ρge, (14)

∂Eq

∂ξ
=

iωqn

2c

{(
ρggα

(q)
gg + ρeeα

(q)
ee

)
Eq + ρegα

(q−1)
eg Eq−1 + ρgeα

(q)
ge Eq+1

}
, (15)

∂Ep

∂ξ
=

iωpn

2c

{(
ρggα

(p)
gg + ρeeα

(p)
ee

)
Ep + ρegα

(pp)
ge E∗

p

}
. (16)

Here we have introduced the co-moving coordinates defined by (τ, ξ) = (t − x/c, x), and the
Rabi frequencies by

Ωaa =
1
2!

∑

m=p,p,q

1
2
ε0 α(m)

aa |Em|2 (a = g, e),

Ωge = Ω∗
eg =

1
2!

{
∑

q

1
2
ε0 α(q)

ge EqE
∗
q+1 +

1
2
ε0 α(pp)

ge E∗
pE∗

p

}
. (17)
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Maxwell-Bloch eq.

q=+8
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Fig. 3 Photograph of the Raman sidebands (projected onto a fluorescent sheet and taken
by a CCD camera). The wavelengths calculated with eq.(1) are also shown. The third and
fourth Stokes sidebands shown in parentheses are observed only by the pyroelectric energy
and/or MCT detector. The photograph contrast and light level from q = 2 to q = 8 are
enhanced for clear view. Apparent variation in the spot sizes is due to over exposure while
distortion from the straight line (around q =6–8) is caused by bent of the fluorescent sheet.
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Fig. 4 Comparison of the Raman sideband pulse energy measurements (from q = −3
to q = +4 at δ = 0) with the simulation results. The vertical axis represents energies (the
simulation results are normalized at q = 1) while the horizontal axis is the Raman order q.
The 4.96 µm signal is plotted at q = −5 for convenience. The circles in blue (squares in red)
indicate the experimental (simulation) results.

4.2. Two-photon emission process

Figure 5 shows the result of spectrum measurements at the detuning of δ = 0. The black
line is the spectrum without the long-pass filter (LPF, Spectrogon LP-4700nm) while the
blue (red) line is the one with two (four) LPFs inserted in front of the monochromator. The
transmittance of the LPF is indicated by the white portion excluded by the gray hatch.
Two peaks were unambiguously observed corresponding to the fourth Stokes sideband (4.66
µm) and its two-photon partner (4.96 µm). The 4.66 µm signal saturated the detector
without LPF, but was mostly filtered out with LPFs. On the other hand, the 4.96 µm signal
remained unaffected with and without LPFs (the peak heights reduced by LPF transmittance
of ∼ 0.85 per a filter): This fact eliminates the possibility of spurious higher order lights
in the monochromator grating system. It was found that these signals had a sharp forward
distribution (half angular divergence of ∼20 mrad for 4.66 µm and ∼10 mrad for 4.96 µm)

9

coherence estimation
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Observed two-photon spectrum

39

and a time profile similar to the input driving lasers (with slightly narrower FWHM pulse
durations of 5 ns). The latter can be interpreted as a measure of the duration time of the
produced coherence. A typical 4.96 µm pulse energy observed by the MCT detector was 1.8
pJ/pulse (without acceptance correction of the monochromator), and the ratio of the two
signals, defined by the 4.96 µm energies divided by those of 4.66 µm, was ∼ 0.8 × 10−3 at
this detuning.

Fig. 5 Observed spectra at δ = 0 MHz and 60 kPa ; (a) without the longpass filter (LPF),
(b) with two LPFs, and (c) with four LPFs. The white portion excluded by the gray hatch
shows the LPF transmittance; it is ∼0.85 at 4.96 µm.
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Fig. 6 The 4.66 and 4.96 µm output pulse energies as a function of the detuning frequency
δ. The solid (open) symbols connected by solid (dashed) lines indicate the experimental
(simulation) data. The red circles are for 4.96 µm (scaled up by 103) and the blue squares
for 4.66 µm. The horizontal bar in the plot indicates ±75 MHz uncertainty in the frequency
measurements.
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Neutrino Physics with Atoms/Molecules

A new approach to neutrino physics

RENP spectra are sensitive to unknown
neutrino parameters.

Absolute mass, Dirac or Majorana, 
NH or IH,  CP

Macrocoherent rate amplification is essential.

demonstrated by a QED process, PSR.

RENP spectra are sensitive to 
the cosmic neutrino background.

temperature, chemical potential.
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More on Dirac vs Majorana and CP phases

hypothetical atom

�eg = 0.43 eV
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Figure 8: CP phase dependence in NH case for the transition corresponding to Fig. 6. CP (α, β− δ)
assumed are (0, 0) in red, (π/2, 0) in blue, and (0, π/2) in blue dashed.
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Figure 9: CP phase dependence in IH case for the transition corresponding to Fig. 6. CP (α, β − δ)
assumed are (0, 0) in red, (π/2, 0) in black, and (0, π/2) in black dashed.
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Figure 8: CP phase dependence in NH case for the transition corresponding to Fig. 6. CP (α, β− δ)
assumed are (0, 0) in red, (π/2, 0) in blue, and (0, π/2) in blue dashed.
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Figure 9: CP phase dependence in IH case for the transition corresponding to Fig. 6. CP (α, β − δ)
assumed are (0, 0) in red, (π/2, 0) in black, and (0, π/2) in black dashed.
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Figure 6: Majorana vs Dirac comparison from X 3P0 → 1S0 of energy difference ϵeg = ϵeg(Yb)/5 for
m0 = 2 meV; NH in solid and IH in dashed, and the Majorana case in red, the Dirac case in black.

the heaviest pair threshold in the NH (IH) case. The difference becomes bigger for larger values
of the smallest neutrino mass m0, making the measurement easier. This is illustrated in Fig. 7,
where we show again the ratio R(Γ) = I(ω)/I(ω;mi = 0) as a function of ω in the case of Dirac and
Majorana pair neutrino emission for m0 = 50; 100 meV and NO and IO spectra. In the Majorana
neutrino case, the ratio R(Γ) is plotted for the four combinations of CP conserving values of the
phases (α, β − δ) = (0, 0); (0, π/2); (π/2, 0); (π/2, π/2). There is a significant difference between the
Majorana neutrino emission rates corresponding to (α, β− δ) = (0, 0) and (π/2, π/2). The difference
between the emission rates of Dirac and Majorana neutrinos is largest for (α, β − δ) = (0, 0). For
m0 = 50 (100) meV and (α, β − δ) = (0, 0). for instance, the rate of emission of Dirac neutrinos at
ω sufficiently smaller than ω33 in the NO case and ω22 in the IO one, can be larger than the rate of
Majorana neutrino emission by ∼ 20% (70%). The Dirac and Majorana neutrino emission spectral
rates never coincide.

In Figs. 8 and 9 we show the spectral rate dependence on the CPV phases α and β−δ for m0 = 2
meV. Generally speaking, the CPV phase measurement is challenging, requiring a high statistics data
acquisition. A possible exception is the case of α and IH spectrum, as shown in Fig. 9, where the
difference between the spectral rates for α = 0 and α = π/2 can reach 10%. For the NH spectrum,
the analogous difference is at most a few percent; observing this case requires large statistics in actual
measurements.

It follows from these results that one of the most critical atomic physics parameters for the
potential of an RENP experiment to provide information on the largest number of fundamental
neutrino physics observables of interest is the value of the energy difference ϵeg. Values ϵeg ≤0.4
eV are favorable for determining the nature of massive neutrinos, and, if neutrinos are Majorana
particles, for getting information about at least some of the leptonic CPV phases, which are the
most difficult neutrino related observables to probe experimentally.
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Thermal history of cosmic neutrinos
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