原子•分子過程による
 ニュートリノ物理
 田中 実
 大阪大学

q＝＋8	＋7	＋6	＋5	＋4	＋3	＋2	＋1	－2	－3
192 nm	209	229	253	282	320	369	436	955	（1586）
－	－	\bullet	－	\％	－				－4
									（4662）

2014／II／I9＠首都大学東京

SPAN project

SPectroscopy with Atomic Neutrino

Okayama U.
K. Yoshimura, I. Nakano, A. Yoshimi, S. Uetake, H. Hara, M. Yoshimura, K. Kawaguchi, J.Tang, Y. Miyamoto
M.Tanaka (Osaka),T.Wakabayashi (Kinki),
A. Fukumi (Kawasaki), S. Kuma (Riken),
C. Ohae (ECU), K. Nakajima (KEK), H. Nanjo (Kyoto)

INTRODUCTION

What we know about neutrino mass and mixing

Masses:

$$
\begin{aligned}
& \Delta m_{21}^{2}=7.54 \times 10^{-5} \mathrm{eV}^{2}, \quad\left|\Delta m_{31(32)}^{2}\right|=2.47(2.46) \times 10^{-3} \mathrm{eV}^{2} \\
& \sum m_{v} \leqslant 0.58 \mathrm{eV} \quad \text { Jarosik et al. (2011) }
\end{aligned}
$$

Mixing: $U=V_{\text {PMNS }} P$

```
VPMNS =
```

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} 3^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \beta} & c_{12} c_{23}-s_{12} s_{23} 3_{3} e^{23} & c_{23} c_{3}
\end{array}\right]} \\
& P=\text { diag. }\left(1, e^{i \alpha}, e^{\beta \beta}\right)
\end{aligned}
$$

Bilenky, Hosek, Petcov; Doi, Kotani, Nishiura, Okuda, Takasugi; Schechter,Valle

$$
s_{12}^{2} \simeq 0.31, s_{23}^{2} \simeq 0.39, s_{13}^{2} \simeq 0.024
$$

Fogli et al. (2012)

Unknown properties of neutrinos

Absolute mass

$$
m_{1(3)}<0.19 \mathrm{eV}, \quad 0.050 \mathrm{eV}<m_{3(2)}<0.58 \mathrm{eV}
$$

Mass type
Dirac or Majorana
Hierarchy pattern

$$
\begin{aligned}
& m_{3}=\mathrm{NH} \\
& m_{2}= \\
& m_{1}=
\end{aligned}
$$

$$
\underset{m_{1}}{m_{2}} \xlongequal{\mathrm{IH}}
$$

normal or inverted

$$
m_{3}
$$

CP violation one Dirac phase, two Majorana phases
δ
α, β

Neutrino experiments

Conventional approach $E \gtrsim O(10 \mathrm{keV})$ big science Neutrino oscillation: SK,T2K, reactors,... $\Delta m^{2}, \theta_{i j}$, NH or IH, δ
Neutrinoless double beta decays
Dirac or Majorana, effective mass
Beta decay endpoint: KATRIN absolute mass

Our approach $E \lesssim O(\mathrm{eV})$ tabletop experiment Atomic/molecular processes
 absolute mass, NH or IH, D or $\mathrm{M}, \delta, \alpha, \beta$

RENP

Radiative Emission of Neutrino Pair (RENP)

$$
|e\rangle \rightarrow|g\rangle+\gamma+\nu_{i} \bar{\nu}_{j}
$$

Λ-type level structure $\mathrm{Ba}, \mathrm{Xe}, \mathrm{Ca}+, \mathrm{Yb}, \ldots$ $\mathrm{H} 2, \mathrm{O} 2, \mathrm{l} 2, \ldots$

Atomic/molecular energy scale $\sim \mathrm{eV}$ or less close to the neutrino mass scale

cf. nuclear processes $\sim \mathrm{MeV}$

Rate $\sim \alpha G_{F}^{2} E^{5} \sim 1 /\left(10^{33}\right.$ s)
Enhancement mechanism?

Macrocoherence
 Yoshimura et al. (2008)

Macroscopic target of N atoms, volume $\mathrm{V}(\mathrm{n}=\mathrm{N} / \mathrm{V})$
total amp. $\propto \sum_{a} e^{-i\left(\vec{k}+\vec{p}+\vec{p}^{\prime}\right) \cdot \vec{x}_{a}} \simeq \frac{N}{V}(2 \pi)^{3} \delta^{3}\left(\vec{k}+\vec{p}+\overrightarrow{p^{\prime}}\right)$

$$
d \Gamma \propto n^{2} V(2 \pi)^{4} \delta^{4}\left(q-p-p^{\prime}\right) \quad q^{\mu}=\left(\epsilon_{e g}-\omega,-\vec{k}\right)
$$

macrocoherent amplification

Neutrino emission from valence electron

D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M. Yoshimura PLB7I9(2013)I54, arXiv:I209.4808

Neutral Current

Charged Current

$$
\mathcal{H}_{W}=\frac{G_{F}}{\sqrt{2}} \sum_{i, j} \bar{\nu}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{i} \bar{e} \gamma^{\mu}\left(C_{j i}^{V}-C_{j i}^{A} \gamma_{5}\right) e
$$

$$
C_{j i}^{V}=U_{e j}^{*} U_{e i}+\left(-1 / 2+2 \sin ^{2} \theta_{W}\right) \delta_{j i}, C_{j i}^{A}=U_{e j}^{*} U_{e i}-\delta_{j i} / 2
$$

Atomic matrix element in the NR approximation

$$
\langle g| \bar{e} \gamma^{\mu} e|p\rangle \simeq\left(\langle g| e^{\dagger} e|p\rangle, \mathbf{0}\right)=0
$$

$$
\langle g| \bar{e} \gamma^{\mu} \gamma_{5} e|p\rangle \simeq(0,2\langle g| \boldsymbol{s}|p\rangle) \quad>\text { spin current }
$$

Neutrino emission from nucleus

Nuclear matrix element in the NR limit

$$
\langle N| \sum_{q} 4 v_{q} \bar{q} \gamma^{\mu} q|N\rangle \simeq\left(Q_{W}, \mathbf{0}\right)
$$

nuclear monopole $\propto Q_{W}^{2} Z^{8 / 3}$ enhancement

RENP spectrum

Energy-momentum conservation due to the macro-coherence
familiar 3-body decay kinematics
Six (or three) thresholds of the photon energy

$$
\begin{gathered}
\omega_{i j}=\frac{\epsilon_{e g}}{2}-\frac{\left(m_{i}+m_{j}\right)^{2}}{2 \epsilon_{e g}} \quad i, j=1,2,3 \\
\epsilon_{e g}=\epsilon_{e}-\epsilon_{g} \quad \text { atomic energy diff. }
\end{gathered}
$$

Required energy resolution $\sim O\left(10^{-6}\right) \mathrm{eV}$ typical laser linewidth

$$
\Delta \omega_{\text {trig. }} \approx 1 \mathrm{GHz} \sim O\left(10^{-6}\right) \mathrm{eV}
$$

RENP rate formula

$$
\begin{gathered}
\Gamma_{\gamma 2 \nu}(\omega, t)=\Gamma_{0} I(\omega) \eta_{\omega}(t) \\
\text { overall rate } \\
\text { spectral function }
\end{gathered}
$$

Overall rate

$$
\begin{gathered}
\Gamma_{0}^{\mathrm{SC}} \sim \frac{3{\left.n^{2} \bar{V} G_{F}^{2} \gamma_{p g} \epsilon_{\text {eq }}\right)}_{2 \epsilon_{p g}^{3}}^{\sim} \sim 1 \mathrm{mHz}\left(n / 10^{21} \mathrm{~cm}^{-3}\right)^{3}\left(V / 10^{2} \mathrm{~cm}^{3}\right)}{\sim \text { field energy density }} \begin{array}{l}
\quad \gamma_{p g}:|p\rangle \rightarrow|g\rangle \text { rate } \\
\Gamma_{0}^{M} \sim Q_{W}^{2} Z^{8 / 3} \times \Gamma_{0}^{S} \sim 100 \mathrm{kHz}
\end{array} .
\end{gathered}
$$

Spectral function (spin current)

$$
\begin{aligned}
& I(\omega)=F(\omega) /\left(\epsilon_{p g}-\omega\right)^{2} \\
& F(\omega)=\sum_{i j} \Delta_{i j}\left(B_{i j} I_{i j}(\omega)-\delta_{M} B_{i j}^{M} m_{i} m_{j}\right) \theta\left(\omega_{i j}-\omega\right)
\end{aligned}
$$

$$
\Delta_{i j}^{2}=1-2 \frac{m_{i}^{2}+m_{j}^{2}}{q^{2}}+\frac{\left(m_{i}^{2}-m_{j}^{2}\right)^{2}}{q^{4}} \quad q^{2}=\left(p_{i}+p_{j}\right)^{2}
$$

$$
\delta_{M}=0(1) \text { for Dirac(Majorana) }
$$

$$
B_{i j}=\left|U_{e i}^{*} U_{e j}-\delta_{i j} / 2\right|^{2}, B_{i j}^{M}=\Re\left[\left(U_{e i}^{*} U_{e j}-\delta_{i j} / 2\right)^{2}\right]
$$

Dynamical factor
$\sim \mid$ coherence \times field $\left.\right|^{2}$

Xe (gas target)

$$
\begin{array}{ll}
|e\rangle \leftrightarrow|p\rangle & \text { M1 } \\
|p\rangle \leftrightarrow|g\rangle & \text { E1 }
\end{array}
$$

Photon spectrum (spin current)

Global shape

Threshold region

Xe NH and $\mathrm{IH}, \mathrm{m} 0=20 \mathrm{meV}$

The threshold weight factors

B_{11}	B_{22}	B_{33}	$B_{12}+B_{21}$	$B_{23}+B_{32}$	$B_{31}+B_{13}$
$\left(c_{12}^{2} c_{13}^{2}-1 / 2\right)^{2}$	$\left(s_{12}^{2} c_{13}^{2}-1 / 2\right)^{2}$	$\left(s_{13}^{2}-1 / 2\right)^{2}$	$2 c_{12}^{2} s_{12}^{2} c_{13}^{4}$	$2 s_{12}^{2} c_{13}^{2} s_{13}^{2}$	$2 c_{12}^{2} c_{13}^{2} s_{13}^{2}$
0.0311	0.0401	0.227	0.405	0.0144	0.0325

Photon spectrum (nuclear monopole)

$$
\begin{aligned}
& \mathrm{Xe}{ }^{3} \mathrm{P}_{1} 8.4365 \mathrm{eV} \\
& n=7 \times 10^{19} \mathrm{~cm}^{-3} \quad V=100 \mathrm{~cm}^{3}
\end{aligned}
$$

Global shape

Threshold region

Homonuclear diatomic molecule

Potential curves

I2 Molecule Potential Curve

12 molecule

potential curves

$$
\epsilon_{e g} \sim 1 \mathrm{eV}
$$

I2 $A^{\prime} v=1->X v=15: m 0=5 \mathrm{meV}$

CNB

Cosmic Neutrino Background (CNB)

Big bang cosmology

Standard model of particle physics

CNB at present: $f(\boldsymbol{p})=\left[\exp \left(|\boldsymbol{p}| / T_{\nu}-\xi\right)+1\right]^{-1}$ (not) Fermi-Dirac dist. $|\boldsymbol{p}|=\sqrt{E^{2}-m_{\nu}^{2}}$

$$
\begin{aligned}
T_{\nu}= & \left(\frac{4}{11}\right)^{1 / 3} T_{\gamma} \simeq 1.945 \mathrm{~K} \simeq 0.17 \mathrm{meV} \\
& n_{\nu} \simeq 6 \times 56 \mathrm{~cm}^{-3} \quad \text { Detection? }
\end{aligned}
$$

RENP in CNB $\quad|e\rangle \rightarrow|g\rangle+\gamma+\nu_{i} \bar{\nu}_{j}$

Pauli exclusion

$$
d \Gamma \propto|\mathcal{M}|^{2}\left[1-f_{i}(p)\right]\left[1-\bar{f}_{j}\left(p^{\prime}\right)\right]
$$

spectral distortion

Distortion factor

$$
\begin{aligned}
& R_{X}(\omega) \equiv \frac{\Gamma_{X}\left(\omega, T_{\nu}\right)}{\Gamma_{X}(\omega, 0)} \\
& X= \begin{cases}M & \text { nuclear monopole larger rate } i=j \\
S & \text { valence } e \text { spin current }\end{cases}
\end{aligned}
$$

level splitting

$\epsilon_{e g}=11 \mathrm{meV}$

smallest neutrino mass
$m_{0}=5 \mathrm{meV}$
chemical potential

$$
\xi_{i} \equiv \mu_{i} / T_{\nu}=0
$$

$\epsilon_{e g}=1 \mathrm{meV}$
$m_{0}=0.1 \mathrm{meV}$
$\xi_{i}=0$

PSR

Paired Super-Radiance (PSR)

M. Yoshimura, N. Sasao, MT, PRA86, 013812 (2012)
$|e\rangle \rightarrow|g\rangle+\gamma+\gamma$

Prototype for RENP proof-of-concept for the macrocoherence

Preparation of initial state for RENP coherence generation $\rho_{e g}$ dynamical factor $\eta_{\omega}(t)$

Theoretical description to be tested Maxwell-Bloch equation

PSR equation

Effective two-level interaction Hamiltonian

$$
\begin{array}{r}
|g\rangle,|e\rangle,|\not p\rangle \quad \mathcal{H}_{I}=\left(\begin{array}{cc}
\alpha_{e e} & \alpha_{g e} e^{i \varepsilon_{e g} t} \\
* & \alpha_{g g}
\end{array}\right) E^{2} \\
\alpha_{g e}=\frac{2 d_{p e} d_{p g}}{\epsilon_{p g}+\epsilon_{p e}}, \quad \alpha_{a a}=\frac{2 d_{p a}^{2} \epsilon_{p a}}{\epsilon_{p a}^{2}-\omega^{2}}, \quad(a=g, e) \\
d_{p a}: \text { dipole matrix element }
\end{array}
$$

Field (I+I dim.)

$$
\omega=\epsilon_{e g} / 2
$$

$$
\begin{aligned}
& E=E_{R} e^{-i(\omega t-k x)}+E_{L} e^{-i(\omega t+k x)}+\text { c.c. } \quad k=\omega \\
& \quad|e\rangle
\end{aligned}
$$

L-mover
$e^{i \omega(t+x)}$

R-mover
$e^{i \omega(t-x)}$
$\sim e^{2 i \omega t}=e^{i \epsilon_{e g} t}$ macrocoherence

Bloch equation $\partial_{t} \rho=i\left[\rho, \mathcal{H}_{I}\right]+$ relaxation terms density matrix

$$
\rho=|\psi\rangle\langle\psi|=\rho_{g g}|g\rangle\langle g|+\rho_{e e}|e\rangle\langle e|+\rho_{e g}|e\rangle\langle g|+\rho_{g e}|g\rangle\langle e|
$$ coherence (of an atom) $\left|\rho_{e g}\right| \leq 1 / 2$

Maxwell equation $\left(\partial_{t}^{2}-\partial_{x}^{2}\right) E=-\partial_{t}^{2} P$

$$
\text { macroscopic polarization } P=-\frac{\delta}{\delta E} \operatorname{tr}\left(\rho \mathcal{H}_{I}\right)
$$

Rotating wave approximation (RWA) omitting fast oscillation terms
Slowly varying envelope approximation (SVEA)

$$
\left|\partial_{x, t} E_{R, L}\right| \ll \omega\left|E_{R, L}\right|,\left|\partial_{x, t} R_{i}^{(0, \pm)}\right| \ll \omega\left|R_{i}^{(0, \pm)}\right|
$$

PSR with spatial gratings

 How to populate $|e\rangle$Raman scattering

$$
\omega_{0}-\omega_{-1}=\epsilon_{e g}
$$

Generated coherence

$$
\rho_{e g}=\rho_{e g}^{(0)}+\rho_{e g}^{(+)} e^{i \epsilon_{e g} x}+\rho_{e g}^{(-)} e^{-i \epsilon_{e g} x}
$$

Stokes
pump

momentum conservation in the macrocoherence

Para-hydrogen gas PSR experiment @okayamu

 Y. Miyamoto et al., arXiv:I 406.2 198, vibrational transition of $\mathrm{p}-\mathrm{H} 2 \quad$ to be published in PTEP $|e\rangle=|X v=1\rangle \longrightarrow|g\rangle=|X v=0\rangle$ two-photon decay: $\tau_{2 \gamma} \sim 10^{12} \mathrm{~s}$ $\mathrm{p}-\mathrm{H} 2$: nuclear spin=singlet smaller decoherence$$
1 / T_{2} \sim 130 \mathrm{MHz}
$$

coherence production adiabatic Raman process

$$
\begin{aligned}
\Delta \omega & =\omega_{0}-\omega_{-1} \\
& =\epsilon_{e g}-\delta^{*} \\
& =\omega_{p}+\omega_{\bar{p}}
\end{aligned} \text { detuning }
$$

Raman sideband generation

Harris, Sokolov, Phys. Rev.A55, R4019(I997)
Kien, Liang, Katsuragawa, Ohtsuki, Hakuta, Sokolov, Phys. Rev. A60, I 562(I 999)

2nd Stokes

$$
\omega_{q}=\omega_{0}+q\left(\omega_{b}-\omega_{a}-\delta\right)=\omega_{0}+q \omega_{m}
$$

$$
q \geq q_{\min } \quad \text { the lowest Stokes }
$$

Hamiltonian

$$
\begin{gathered}
H_{\mathrm{int}}=-\sum_{j} E\left(\mu_{j a} \sigma_{j a}+\mu_{a j} \sigma_{a j}+\mu_{j b} \sigma_{j b}+\mu_{b j} \sigma_{b j}\right) \\
\mu_{\alpha \beta}=\langle\alpha| d|\beta\rangle \quad \sigma_{\alpha \beta}=|\alpha\rangle\langle\beta| \\
E=\frac{1}{2} \sum_{q}\left(E_{q} e^{-i \omega_{q} \tau}+E_{q}^{*} e^{i \omega_{q} \tau}\right)
\end{gathered}
$$

Effective Hamiltonian

$|j\rangle$ far off-resonance \rightarrow two-level system

$$
H_{\mathrm{eff}}=-\hbar\left[\begin{array}{cc}
\Omega_{a a} & \Omega_{a b} \\
\Omega_{b a} & \Omega_{b b}-\delta
\end{array}\right]
$$

Stark shifts

$$
\begin{array}{ll}
\Omega_{a a}=\frac{1}{2} \sum_{q} a_{q}\left|E_{q}\right|^{2} & a_{q}=\frac{1}{2 \hbar^{2}} \sum_{j}\left(\frac{\left|\mu_{j a}\right|^{2}}{\omega_{j}-\omega_{a}-\omega_{q}}+\frac{\left|\mu_{j a}\right|^{2}}{\omega_{j}-\omega_{a}+\omega_{q}}\right) \\
\Omega_{b b}=\frac{1}{2} \sum_{q} b_{q}\left|E_{q}\right|^{2} & b_{q}=\frac{1}{2 \hbar^{2}} \sum_{j}\left(\frac{\left|\mu_{j b}\right|^{2}}{\omega_{j}-\omega_{b}-\omega_{q}}+\frac{\left|\mu_{j b}\right|^{2}}{\omega_{j}-\omega_{b}+\omega_{q}}\right)
\end{array}
$$

Two-photon Rabi freq.

$$
\Omega_{a b}=\Omega_{b a}^{*}=\frac{1}{2} \sum_{q} d_{q} E_{q} E_{q+1}^{*} \quad d_{q}=\frac{1}{2 \hbar^{2}} \sum_{j}\left(\frac{\mu_{a j} \mu_{j b}}{\omega_{j}-\omega_{b}-\omega_{q}}+\frac{\mu_{a j} \mu_{j b}}{\omega_{j}-\omega_{a}+\omega_{q}}\right)
$$

Adiabatic eigenstate

Wave propagation

$$
\left(\partial_{t}+\partial_{z}\right) E_{q}=i n \hbar \omega_{q}\left(a_{q} \rho_{a a} E_{q}+b_{q} \rho_{b b} E_{q}+d_{q-1} \rho_{b a} E_{q-1}+d_{q}^{*} \rho_{a b} E_{q+1}\right)
$$

Coherence $\quad \rho_{a b}=\frac{1}{2} \sin \theta e^{i \varphi}$
molecular system of far off-resonance

$$
\Omega_{a a} \simeq \Omega_{b b} \quad \tan \theta \simeq 2\left|\Omega_{a b}\right| / \delta \quad \rightarrow\left|\rho_{a b}\right| \simeq 1 / 2
$$

$\delta>0, \sin \theta>0$
phased state

$$
\delta<0, \sin \theta<0
$$

antiphased state

Experimental setup

(a) Laser Setup

(b) Target \& Detector

4th Stokes ($q=-4$) as trigger (internal trigger)
Target cell: length 15 cm , diameter $2 \mathrm{~cm}, 78 \mathrm{~K}, 60 \mathrm{kPa}$

$$
n=5.6 \times 10^{19} \mathrm{~cm}^{-3} \quad 1 / T_{2} \sim 130 \mathrm{MHz}
$$

Driving lasers: $5 \mathrm{~mJ}, 6 \mathrm{~ns}, w_{0}=100 \mu \mathrm{~m}\left(5 \mathrm{GW} / \mathrm{cm}^{2}\right)$

Ultra-broadband Raman sidebands

- Raman sidebands, from 192 to 4662 nm , are observed: >24
- Evidence of large coherence

Generated coherence

$$
\begin{aligned}
& \frac{\partial \rho_{e e}}{\partial \tau}=i\left(\Omega_{e g} \rho_{g e}-\Omega_{g e} \rho_{e g}\right)-\gamma_{1} \rho_{e e}, \\
& \frac{\partial \rho_{g e}}{\partial \tau}=i\left(\Omega_{g g}-\Omega_{e e}+\delta\right) \rho_{g e}+i \Omega_{g e}\left(\rho_{e e}-\rho_{g g}\right)-\gamma_{2} \rho_{g e}, \\
& \frac{\partial E_{q}}{\partial \xi}=\frac{i \omega_{q} n}{2 c}\left\{\left(\rho_{g g} \alpha_{g g}^{(q)}+\rho_{e e} \alpha_{e e}^{(q)}\right) E_{q}+\rho_{e g} \alpha_{e g}^{(q-1)} E_{q-1}+\rho_{g e} \alpha_{g e}^{(q)} E_{q+1}\right\}, \\
& \frac{\partial E_{p}}{\partial \xi}=\frac{i \omega_{p} n}{2 c}\left\{\left(\rho_{g g} \alpha_{g g}^{(p)}+\rho_{e e} \alpha_{e e}^{(p)}\right) E_{p}+\rho_{e g} \alpha_{g e}^{(p \bar{p})} E_{\bar{p}}^{*}\right\} .
\end{aligned}
$$

coherence estimation

$\left|\rho_{e g}\right| \simeq 0.032$
(6\% of max.)

Observed two-photon spectrum

\# of observed photons

$$
4.4 \times 10^{7} / \text { pulse }
$$

Estimated spontaneous rate
$O\left(10^{15}\right)$ (or more) enhancement!

SUMMARY

Neutrino Physics with Atoms/Molecules

* RENP spectra are sensitive to unknown neutrino parameters.

Absolute mass, Dirac or Majorana, NH or IH, CP

* RENP spectra are sensitive to the cosmic neutrino background.
temperature, chemical potential.
* Macrocoherent rate amplification is essential. demonstrated by a QED process, PSR.

A new approach to neutrino physics

Backup Slides

More on Dirac vs Majorana and CP phases

hypothetical atom

$$
\epsilon_{e g}=0.43 \mathrm{eV}
$$

CP phases (NH); Red=(0,0), Blue $=(\pi / 2,0)$, Blue Dashed $=(0, \pi / 2)$

CP phases (IH); Red=(0,0), Black=($\pi / 2,0)$, Black Dashed $=(0, \pi / 2)$

Thermal history of cosmic neutrinos

$T \gtrsim 3.2 \mathrm{MeV} \quad \nu_{e, \mu, \tau}$ in equilibrium
$T \simeq 3.2 \mathrm{MeV} \quad \nu_{\mu, \tau}$ decoupling
$T \simeq 1.9 \mathrm{MeV} \quad \nu_{e} \quad$ decoupling

$$
f_{D}(\boldsymbol{p})=\left[\exp \left(\frac{\sqrt{\boldsymbol{p}^{2}+m^{2}}}{T_{D}}-\xi\right)+1\right]^{-1}
$$

$T \lesssim 1.9 \mathrm{MeV} \quad$ free propagation
Present $a=1 \quad f(\boldsymbol{p})=f_{D}\left(\boldsymbol{p} / a_{D}\right)$

$$
f(\boldsymbol{p})=\left[\exp \left(\frac{\sqrt{\boldsymbol{p}^{2}+\left(m a_{D}\right)^{2}}}{T_{D} a_{D}}-\xi\right)+1\right]^{-1}
$$

