Neutrino Spectroscopy with Atoms and Molecules

M.TANAKA
 Osaka University

q=+8	+7	+6	+5	+4	+3	+2	$+1$	-2	-3
192 nm	209	229	253	282	320	369		955	(1586)
*	-	\bullet	-	c	-				
									(4662)

Neutrino Frontier Workshop 20I4, Dec. 23, 2014 @ Fuji Calm

SPAN project

SPectroscopy with Atomic Neutrino

Okayama U.
K. Yoshimura, I. Nakano, A. Yoshimi, S. Uetake, H. Hara, M. Yoshimura, K. Kawaguchi, J.Tang, Y. Miyamoto
M.Tanaka (Osaka),T.Wakabayashi (Kinki),
A. Fukumi (Kawasaki), S. Kuma (Riken),
C. Ohae (ECU), K. Nakajima (KEK), H. Nanjo (Kyoto)

INTRODUCTION

Unknown properties of neutrinos

Absolute mass

$$
m_{1(3)}<0.19 \mathrm{eV}, \quad 0.050 \mathrm{eV}<m_{3(2)}<0.58 \mathrm{eV}
$$

Mass type
Dirac or Majorana
Hierarchy pattern

$$
\begin{aligned}
& m_{3} \xlongequal[\mathrm{NH}]{ } \\
& m_{2}= \\
& m_{1}
\end{aligned}
$$

$$
\underset{m_{1}}{m_{2}} \xlongequal{\mathrm{IH}}
$$

normal or inverted

$$
m_{3}
$$

CP violation one Dirac phase, two Majorana phases
δ
α, β

Neutrino experiments

Conventional approach $E \gtrsim O(10 \mathrm{keV})$
Neutrino oscillation: SK,T2K, reactors,... $\Delta m^{2}, \theta_{i j}, \quad \mathrm{NH}$ or $\mathrm{H} \mathrm{H}, \delta$
Neutrinoless double beta decays
Dirac or Majorana, effective mass $\left|\sum_{i} m_{i} U_{e i}^{2}\right|^{2}$ Beta decay endpoint: KATRIN absolute mass

Our approach $\quad E \lesssim O(\mathrm{eV})$ tabletop experiment Atomic/molecular processes absolute mass, NH or IH, D or $\mathrm{M}, \delta, \alpha, \beta$

RENP

Radiative Emission of Neutrino Pair (RENP)

$$
|e\rangle \rightarrow|g\rangle+\gamma+\nu_{i} \bar{\nu}_{j}
$$

Λ-type level structure $\mathrm{Ba}, \mathrm{Xe}, \mathrm{Ca}+, \mathrm{Yb}, \ldots$ $\mathrm{H} 2, \mathrm{O} 2, \mathrm{l} 2, \ldots$

Atomic/molecular energy scale $\sim \mathrm{eV}$ or less close to the neutrino mass scale

cf. nuclear processes $\sim \mathrm{MeV}$

Rate $\sim \alpha G_{F}^{2} E^{5} \sim 1 /\left(10^{33}\right.$ s)
Enhancement mechanism?

Macrocoherence
 Yoshimura et al. (2008)

Macroscopic target of N atoms, volume $\mathrm{V}(\mathrm{n}=\mathrm{N} / \mathrm{V})$
total amp. $\propto \sum_{a} e^{-i\left(\vec{k}+\vec{p}+\vec{p}^{\prime}\right) \cdot \vec{x}_{a}} \simeq \frac{N}{V}(2 \pi)^{3} \delta^{3}\left(\vec{k}+\vec{p}+\overrightarrow{p^{\prime}}\right)$

$$
d \Gamma \propto n^{2} V(2 \pi)^{4} \delta^{4}\left(q-p-p^{\prime}\right) \quad q^{\mu}=\left(\epsilon_{e g}-\omega,-\vec{k}\right)
$$

macrocoherent amplification

Neutrino emission from valence electron

D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M. Yoshimura PLB7I9(2013)I54, arXiv:I209.4808

Neutral Current

Charged Current

$$
\mathcal{H}_{W}=\frac{G_{F}}{\sqrt{2}} \sum_{i, j} \bar{\nu}_{j} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{i} \bar{e} \gamma^{\mu}\left(C_{j i}^{V}-C_{j i}^{A} \gamma_{5}\right) e
$$

$$
C_{j i}^{V}=U_{e j}^{*} U_{e i}+\left(-1 / 2+2 \sin ^{2} \theta_{W}\right) \delta_{j i}, C_{j i}^{A}=U_{e j}^{*} U_{e i}-\delta_{j i} / 2
$$

Atomic matrix element in the NR approximation

$$
\langle g| \bar{e} \gamma^{\mu} e|p\rangle \simeq\left(\langle g| e^{\dagger} e|p\rangle, \mathbf{0}\right)=0
$$

$$
\langle g| \bar{e} \gamma^{\mu} \gamma_{5} e|p\rangle \simeq(0,2\langle g| \boldsymbol{s}|p\rangle) \quad>\text { spin current }
$$

Neutrino emission from nucleus

Nuclear matrix element in the NR limit

$$
\langle N| \sum_{q} 4 v_{q} \bar{q} \gamma^{\mu} q|N\rangle \simeq\left(Q_{W}, \mathbf{0}\right)
$$

nuclear monopole $\propto Q_{W}^{2} Z^{8 / 3}$ enhancement

RENP spectrum

Energy-momentum conservation due to the macro-coherence
familiar 3-body decay kinematics
Six (or three) thresholds of the photon energy

$$
\begin{gathered}
\omega_{i j}=\frac{\epsilon_{e g}}{2}-\frac{\left(m_{i}+m_{j}\right)^{2}}{2 \epsilon_{e g}} \quad i, j=1,2,3 \\
\epsilon_{e g}=\epsilon_{e}-\epsilon_{g} \quad \text { atomic energy diff. }
\end{gathered}
$$

Required energy resolution $\sim O\left(10^{-6}\right) \mathrm{eV}$ typical laser linewidth

$$
\Delta \omega_{\text {trig. }} \approx 1 \mathrm{GHz} \sim O\left(10^{-6}\right) \mathrm{eV}
$$

RENP rate formula

$$
\begin{gathered}
\Gamma_{\gamma 2 \nu}(\omega, t)=\Gamma_{0} I(\omega) \eta_{\omega}(t) \\
\text { overall rate } \\
\text { spectral function }
\end{gathered}
$$

Overall rate

$$
\begin{gathered}
\Gamma_{0}^{\mathrm{SC}} \sim \frac{3{\left.n^{2} \bar{V} G_{F}^{2} \gamma_{p g} \epsilon_{\text {eq }}\right)}_{2 \epsilon_{p g}^{3}}^{\sim} \sim 1 \mathrm{mHz}\left(n / 10^{21} \mathrm{~cm}^{-3}\right)^{3}\left(V / 10^{2} \mathrm{~cm}^{3}\right)}{\sim \text { field energy density }} \begin{array}{l}
\quad \gamma_{p g}:|p\rangle \rightarrow|g\rangle \text { rate } \\
\Gamma_{0}^{M} \sim Q_{W}^{2} Z^{8 / 3} \times \Gamma_{0}^{S} \sim 100 \mathrm{kHz}
\end{array} .
\end{gathered}
$$

Xe (gas target)

$$
\begin{array}{ll}
|e\rangle \leftrightarrow|p\rangle & \text { M1 } \\
|p\rangle \leftrightarrow|g\rangle & \text { E1 }
\end{array}
$$

Photon spectrum (spin current)

Global shape

Threshold region

Xe NH and $\mathrm{IH}, \mathrm{m} 0=20 \mathrm{meV}$

The threshold weight factors

B_{11}	B_{22}	B_{33}	$B_{12}+B_{21}$	$B_{23}+B_{32}$	$B_{31}+B_{13}$
$\left(c_{12}^{2} c_{13}^{2}-1 / 2\right)^{2}$	$\left(s_{12}^{2} c_{13}^{2}-1 / 2\right)^{2}$	$\left(s_{13}^{2}-1 / 2\right)^{2}$	$2 c_{12}^{2} s_{12}^{2} c_{13}^{4}$	$2 s_{12}^{2} c_{13}^{2} s_{13}^{2}$	$2 c_{12}^{2} c_{13}^{2} s_{13}^{2}$
0.0311	0.0401	0.227	0.405	0.0144	0.0325

Photon spectrum (nuclear monopole)

$$
\begin{aligned}
& \mathrm{Xe}{ }^{3} \mathrm{P}_{1} 8.4365 \mathrm{eV} \\
& n=7 \times 10^{19} \mathrm{~cm}^{-3} \quad V=100 \mathrm{~cm}^{3}
\end{aligned}
$$

Global shape

Threshold region

12 molecule

potential curves

$$
\epsilon_{e g} \sim 1 \mathrm{eV}
$$

I2 $A^{\prime} v=1->X v=15: m 0=5 \mathrm{meV}$

PSR

Paired Super-Radiance (PSR)

M. Yoshimura, N. Sasao, MT, PRA86, 013812 (2012)
$|e\rangle \rightarrow|g\rangle+\gamma+\gamma$

Prototype for RENP proof-of-concept for the macrocoherence

Preparation of initial state for RENP coherence generation $\rho_{e g}$ dynamical factor $\eta_{\omega}(t)$

Theoretical description to be tested Maxwell-Bloch equation

PSR with spatial gratings

How to populate $|e\rangle$
Raman scattering

$$
\omega_{0}-\omega_{-1}=\epsilon_{e g}
$$

Generated coherence density matrix

spatial grating

$$
\rho_{e g}=\rho_{e g}^{(0)}+\rho_{e g}^{(+)} e^{i \epsilon_{e g} x}+\rho_{e g}^{(-)} e^{-i \epsilon_{e g} x}
$$

Stokes
pump

Macrocoherence \rightarrow Unidirectional PSR

Raman sidebands

Harris, Sokolov, Phys. Rev.A55, R40I9(1997)
Kien, Liang, Katsuragawa, Ohtsuki, Hakuta, Sokolov, Phys. Rev.A60, I562(I999)

Homonuclear diatomic molecule

Potential curves

I2 Molecule Potential Curve

Para-hydrogen gas PSR experiment @ okayam U

 Y. Miyamoto et al., PTEP II3C0I(2014), arXiv:I406.2I98.Vibrational transition of $\mathrm{p}-\mathrm{H} 2$
$|e\rangle=|X v=1\rangle \longrightarrow|g\rangle=|X v=0\rangle$ two-photon decay: $\tau_{2 \gamma} \sim 10^{12} \mathrm{~s}$
$\mathrm{p}-\mathrm{H} 2$: nuclear spin=singlet smaller decoherence

$$
1 / T_{2} \sim 130 \mathrm{MHz}
$$

Coherence production adiabatic Raman process

$$
\begin{aligned}
\Delta \omega & =\omega_{0}-\omega_{-1} \\
& =\epsilon_{e g}-\delta^{*} \\
& =\omega_{p}+\omega_{\bar{p}}
\end{aligned} \text { detuning }
$$

$$
\begin{gathered}
0.52 \\
0.00 \\
\\
0
\end{gathered}
$$

Experimental setup

(a) Laser Setup

(b) Target \& Detector

4th Stokes ($q=-4$) as trigger (internal trigger)
Target cell: length 15 cm , diameter $2 \mathrm{~cm}, 78 \mathrm{~K}, 60 \mathrm{kPa}$

$$
n=5.6 \times 10^{19} \mathrm{~cm}^{-3} \quad 1 / T_{2} \sim 130 \mathrm{MHz}
$$

Driving lasers: $5 \mathrm{~mJ}, 6 \mathrm{~ns}, w_{0}=100 \mu \mathrm{~m}\left(5 \mathrm{GW} / \mathrm{cm}^{2}\right)$

Ultra-broadband Raman sidebands

- Raman sidebands, from 192 to 4662 nm , are observed: >24
- Evidence of large coherence

Generated coherence

$$
\begin{aligned}
& \frac{\partial \rho_{e e}}{\partial \tau}=i\left(\Omega_{e g} \rho_{g e}-\Omega_{g e} \rho_{e g}\right)-\gamma_{1} \rho_{e e}, \\
& \frac{\partial \rho_{g e}}{\partial \tau}=i\left(\Omega_{g g}-\Omega_{e e}+\delta\right) \rho_{g e}+i \Omega_{g e}\left(\rho_{e e}-\rho_{g g}\right)-\gamma_{2} \rho_{g e}, \\
& \frac{\partial E_{q}}{\partial \xi}=\frac{i \omega_{q} n}{2 c}\left\{\left(\rho_{g g} \alpha_{g g}^{(q)}+\rho_{e e} \alpha_{e e}^{(q)}\right) E_{q}+\rho_{e g} \alpha_{e g}^{(q-1)} E_{q-1}+\rho_{g e} \alpha_{g e}^{(q)} E_{q+1}\right\}, \\
& \frac{\partial E_{p}}{\partial \xi}=\frac{i \omega_{p} n}{2 c}\left\{\left(\rho_{g g} \alpha_{g g}^{(p)}+\rho_{e e} \alpha_{e e}^{(p)}\right) E_{p}+\rho_{e g} \alpha_{g e}^{(p \bar{p})} E_{\bar{p}}^{*}\right\} .
\end{aligned}
$$

coherence estimation

$\left|\rho_{e g}\right| \simeq 0.032$
(6\% of max.)

Observed two-photon spectrum

\# of observed photons

$$
4.4 \times 10^{7} / \text { pulse }
$$

Estimated spontaneous rate
$O\left(10^{15}\right)$ (or more) enhancement!

SUMMARY

Neutrino Physics with Atoms/Molecules

* RENP spectra are sensitive to unknown neutrino parameters.

Absolute mass, Dirac or Majorana, NH or IH, CP

* Macrocoherent rate amplification is essential. demonstrated by a QED process, PSR.

A new approach to neutrino physics

