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Figure 1.3.1. Schematic view of the PEP-II (left) and KEKB (right) rings. At PEP-II, the two beams are stacked one on top
of the other; the BABAR experiment is located in an experimental hall at the single interaction region, within region 2 of the
PEP-II complex. At KEKB, the two beams are side-by-side, and intersect in the Tsukuba area experimental hall where the
Belle detector was placed.

1.3 PEP-II and KEKB

PEP-II was located in the tunnel that had housed the
32 GeV center-of-mass energy PEP e+e− storage ring,2
while the KEKB ring was in the 64 GeV center-of-mass
energy e+e− TRISTAN storage accelerator tunnel. Fig-
ure 1.3.1 shows a schematic overview of the PEP-II and
KEKB rings.

Both projects included conversions to meet the B Fac-
tory requirements, namely an instantaneous luminosity in
excess of 1033 cm−2 s−1 and a boost factor (of the CM
frame relative to the laboratory) sufficient for observing
the time evolution of B decays. To achieve these require-
ments, however, some considerable challenges had to be
addressed.

Asymmetric energies mean a dedicated ring for each
beam. In order to reach a high integrated luminosity one
requires an intense positron source and on-energy injec-
tion for both rings. For KEKB, this meant that the in-
jection linear accelerator (Linac) energy had to be raised
from 2.5GeV to 8 GeV in order to provide for on-energy
injection of 8 GeV electrons and sufficient production of
3.5 GeV positrons. PEP-II had the advantage of the ex-
isting powerful SLAC Linac, which could provide the re-
quired electron and positron beams with minimal modi-
fications. Both facilities used high-energy electron beams

2 A maximum center-of-mass energy of 29 GeV was achieved
during the lifetime of PEP.

and low-energy positron beams in order to avoid beam-
instability problems due to ion trapping, which are most
serious at lower energies. Both facilities had only one in-
teraction region (IR) for the detector in order to optimize
the luminosity. The luminosity of an e+e− storage ring is
given by

L =
Nbne−ne+f

Aeff
(1.3.1)

where the numbers of electrons and positrons in each bunch
are given by ne− and ne+ , Nb is the number of bunches,
f is the circulation frequency, and Aeff is the effective
cross-sectional overlapping transverse area of the beams at
the interaction point (IP). While the five parameters are
independent at lower beam currents, at high beam cur-
rents Aeff becomes strongly beam-current dependent. As
the product Nbne−ne+ is increased, Aeff increases, thereby
limiting the luminosity.

Particles inside a beam bunch are deflected when they
pass through the collective electromagnetic fields of the
oncoming beam bunch at the IP; as a result, the on-
coming bunch collectively acts as a focusing lens. How-
ever, these beam-beam effects are highly non-linear and
produce spreads in the operating point in the betatron-
oscillation tune plane, causing considerable complications
in the machine operation. These beam-beam interactions,
which become larger as the bunch charges are increased,
also limit the luminosity by enlarging Aeff .

Attempts to raise the luminosity by raising Nb, the
number of bunches in each ring, face a different prob-
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Table 2.1.1. Beam energies, corresponding Lorentz factor, and beam crossing angle of the B Factories for the nominal Υ (4S)
running.

B Factory e− beam energy e+ beam energy Lorentz factor crossing angle

E− (GeV) E+ (GeV) βγ ϕ (mrad)

PEP-II 9.0 3.1 0.56 0

KEKB 8.0 3.5 0.425 22

– Precise measurements of photon energy and position,
from 20 MeV to 8 GeV in order to reconstruct π0

mesons or radiative decays.
– Highly efficient particle identification for electrons and

muons, as well as a π/K separation over a wide range
of momenta – from ∼0.6 GeV/c to ∼4 GeV/c.

– A fast and reliable trigger, and online data acquisition
system able to acquire good quality data, to process
the data live, and finally to store it pending offline
reconstruction

– A high radiation tolerance and the capability to oper-
ate efficiently in the presence of high-background lev-
els.

Both detectors have the same structure with a cylindri-
cal symmetry around the beam axis. They are of compact
design with their size being a trade-off between the need
for a large tracking system and the need to minimize the
volume of the calorimeter, by far the most expensive sin-
gle component of the detector. The forward and backward
acceptances are constrained by the beamline geometry. Al-
though the BABAR and Belle collaborations made different
technological choices for their detector components, they
have similar subdetectors, each with well-defined func-
tions. Going from the inside to the outside of the BABAR
and Belle detectors, one finds successively:

– A charged particle tracking system, made of two com-
ponents.
– A silicon detector, known as the SVT (‘Silicon Ver-

tex Tracker’) in BABAR, and the SVD (‘Silicon Ver-
tex Detector’) in Belle, made of double-sided strip
layers to measure charged particle tracks just out-
side the beam pipe. This detector is used to recon-
struct vertices (both primary and secondary), mea-
sures the momentum of low-energy charged parti-
cles which do not reach the outer detectors due to
the strong longitudinal magnetic field and provide
inputs (angles and positions) to the second tracking
detector, a drift chamber, which lies just beyond its
outer radius – see below for details.

– A drift chamber, known in BABAR as DCH (‘Drift
CHamber’) and in Belle as the CDC (‘Central Drift
Chamber’), which measures the momentum and
the energy loss (dE/dx) of the charged particles
which cross its sensitive volume. The latter infor-
mation is useful for particle identification (PID).

– A solenoid cryostat located between the electromag-
netic calorimeter and the instrumented flux return –
these two detectors are described below. The cryostat

is needed by the superconducting solenoid that pro-
vides a 1.5 T longitudinal magnetic field in which both
tracking devices are embedded.

– PID detectors designed to distinguish the numerous
pions from the rarer kaons from a momentum of about
500 MeV/c to the kinematic limit of 4.5 GeV/c.
– BABAR is using a novel device called DIRC (Adam,

2005) – ‘Detector of Internally Reflected Cherenkov
light’ – which covers the barrel region.

– Belle has two types of PID detectors: Aerogel Che-
renkov Counters (‘ACC’) covering both the bar-
rel and the forward regions; additional Time-Of-
Flight (‘TOF’) counters in the barrel region with
a ∼100 ps resolution which makes them efficient in
separating charged particles up to 1.2 GeV/c, as
the particle flight path from the IP to the TOF
counters is about 1.2 m.

– The BABAR (EMC) and Belle (ECL) calorimeters;
these are highly-segmented arrays of thallium-doped
cesium iodide – in short CsI(Tl) – crystals assembled
in a projective geometry. The BABAR EMC consists of
a barrel and a forward end cap while the Belle ECL in-
cludes a barrel, a forward end cap and a backward end
cap. Both calorimeters cover about 90% of the total
solid angle. In addition to the ECL, Belle developed a
special extreme forward calorimeter (the EFC), made
of radiation-hard BGO (Bismuth Germanate Oxide or
Bi4Ge3O12) crystals. Mounted on the final quadrupoles
close to the beam pipe, it provided information on the
instantaneous luminosity and the machine background
which helped optimize KEKB operation.

– An instrumented flux return, designed to identify
muons and to detect neutral hadrons (primarily K0

L

and neutrons), and divided into three regions: central
barrel, forward and backward end caps. The BABAR
IFR (‘Instrumented Flux Return’) consists of alterna-
tive layers of glass-electrode-resistive plate chambers
(RPC’s) and steel of the magnet flux return. Origi-
nally, there were 19 RPC layers in the barrel and 18 in
the end caps. Second-generation RPCs were installed
in the forward end cap in 2002 while RPCs were re-
placed by Limited Streamer Tubes (LSTs) in the barrel
in the period 2004-2006. Belle K0

L and Muon detec-
tion system (KLM) was designed designed similarly
and employed alternating layers of RPC’s (15 in the
barrel and 14 in the end caps) and 4.7 cm-thick iron
plates.

– A two-level trigger with a hardware Level-1 (L1) fol-
lowed by a software Level-3 (L3). The L1 trigger com-
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CHAPTER 2. SUPERKEKB

Figure 2.1: Schematic view of beam collision in the Nano-Beam scheme.

KEKB Achieved SuperKEKB
Energy (GeV) (LER/HER) 3.5/8.0 4.0/7.0
ξy 0.129/0.090 0.090/0.088
β∗y (mm) 5.9/5.9 0.27/0.41
I (A) 1.64/1.19 3.60/2.62
Luminosity (1034cm−2s−1) 2.11 80

Table 2.1: Fundamental parameters of SuperKEKB and present KEKB.

RL andRξy represent reduction factors for the luminosity and the vertical beam-beam parameter,
which arise from the crossing angle and the hourglass effect. The ratio of these parameters
is usually not far from unity. Therefore, the luminosity is mainly determined by the three
fundamental parameters; i.e. the total beam current (I), the vertical beam-beam parameter
(ξy) and the vertical beta function at the IP (β∗y). The choice of these three parameters, the
beam energy and the luminosity is shown in Table 2.1 together with those of present KEKB.
For the vertical beam-beam parameter ξy, we assume the same value of 0.09 as has been achieved
at KEKB. The vertical beta functions at the IP for SuperKEKB are smaller by almost by a
factor of 20 than those of the present KEKB owing to the adoption of the Nano-Beam scheme.
Assuming these parameters, we need to double the total beam currents compared with those
of the present KEKB to achieve the luminosity goal of SuperKEKB, 8 × 1035cm−2s−1. The
machine parameters of SuperKEKB including the three fundamental parameters are shown in
Table 2.2. In the following, it is shown how these parameters are determined.

2.1.2 Machine parameters of SuperKEKB

2.1.2.1 Emittance, crossing angle, beta functions at the IP

To realize the Nano-Beam scheme, the effective bunch length d(= σ∗x/φ) should be small. Of
the two parameters of σ∗x and φ, having a smaller σ∗x is more important than having a larger
φ, since it becomes difficult to obtain the design beam-beam parameter if we decrease d only
by enlarging φ. In the Nano-Beam scheme, each particle in a bunch interacts with only a small
portion of the other colliding bunch. To obtain the design value of ξy, extremely small horizontal
and vertical beam sizes are needed.
In the optics design of SuperKEKB, we have made efforts to decrease the horizontal emittance
while preserving as much as possible of the present lattice . The design values of the horizontal
emittance shown in Table 2.2, which are smaller by a factor 5 or 10 than those of the present
KEKB, include some enlargement due to intra-beam scattering. We are continuing the process

20

x40
CHAPTER 1. MOTIVATION AND OVERVIEW

1.3 The Belle II overview

Figure 1.9: Upgraded Belle II spectrometer (top half) as compared to the present Belle detector
(bottom half).

The design of the Belle II detector follows to a large extent the scheme discussed in the Letter
of Intent [5] and its 2008 supplement, Design Study Report [6], with one notable exception: a
pixel detector now appears in the innermost part of the vertex detector. Other modifications are
due to the change in the accelerator design from the high current version to the “nano-beam”
collider, and are associated with the larger crossing angle, the need to have the final quadrupoles
as close as possible to the interaction point, and the smaller beam energy asymmetry (7 GeV/c
on 4 GeV/c instead of 8 GeV/c on 3.5 GeV/c).
For the Belle II detector, our main concern is to maintain the current performance of Belle
in an environment with considerably higher background levels. As discussed in detail in the
2008 Design Report [6], we evaluate the possible degradation of the performance in a high-
background environment by extrapolating from the present operating conditions of KEKB and
Belle by accounting for the scaling of each component of background with the higher currents,
smaller beam sizes and modified interaction region. From these studies, we assume a conservative
factor of twenty increase in the background hit rate. The physics event rate will be about 50
times higher.
The following changes to Belle will maintain a comparable or better performance in Belle II:

• just outside the beam pipe, the silicon strip detector is replaced by a two-layer silicon pixel
detector based on the DEPFET technology;

• the silicon strip detector extends from just outside the pixel detector to a larger radius

14

SuperKEKB luminosity projection
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Overture: CKM matrix at 1%

“the dream” “the nightmare”

today     future
 

r 0.159±0.045 1±0.008

h 0.363±0.049  ±0.010-
-

Generalized UT fits:

CKM at 1% in the

presence of NP! 

- crucial for many NP searches

End of next-gen expertiments
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B̄ � D(�)� �̄
W�
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�̄
c

Experiments 

R(D) � B(B̄ ⇥ D⇥ �̄� )
B(B̄ ⇥ D⇤�̄�)

= 0.440± 0.058± 0.042

R(D�) � B(B̄ ⇥ D�⇥ �̄� )
B(B̄ ⇥ D�⇤�̄�)

= 0.332± 0.024± 0.018

BABAR 2012

Belle 2007, 2009, 2010

arXiv: 1205.5442, PRL.109.101802(2012)

R(D) = 0.390± 0.100 R(D⇤) = 0.347± 0.050

Combined:
R(D⇤) = 0.337± 0.025

R(D) = 0.421± 0.058
(⇢ = �0.19)
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Standard model

(Bailey et al., lattice)

R(D) = 0.297± 0.017 (BaBar, Fajfer et al.)
0.302± 0.015 (MT, Watanabe)
0.316± 0.012± 0.007
0.31± 0.02 (Becirevic et al.)

R(D�) = 0.252± 0.003 (BaBar, Fajfer et al.)
(MT, Watanabe)0.251± 0.004

Theoretical uncertainty
Form factors

+ heavy quark effective theory (HQET)
data from B̄ ! D(⇤)`⌫̄ (` = e, µ)

+ lattice QCD
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increases up to 8% for large values of tan!=mH! , and, as
we noted earlier, its uncertainty increases due to the larger
dispersion of the weights in the 2HDM reweighting.

The variation of the fitted signal yields as a function of
tan!=mH! is also shown in Fig. 19. The sharp drop in the
!B ! D"" !#" yield at tan!=mH! # 0:4 GeV"1 is due to
the large shift in the m2

miss distribution which occurs when

the Higgs contribution begins to dominate the total rate.
This shift is also reflected in the q2 distribution and, as we
will see in the next section, the data do not support it. The
change of the !B ! D$"" !#" yield, mostly caused by the
correlation with the !B ! D"" !#" sample, is much smaller.
Figure 20 compares the measured values of RðDÞ and

RðD$Þ in the context of the type II 2HDM to the theoretical
predictions as a function of tan!=mH! . The increase in the
uncertainty on the signal PDFs and the efficiency ratio as a
function of tan!=mH! are taken into account. Other sources
of systematic uncertainty are kept constant in relative terms.
The measured values of RðDÞ and RðD$Þ match the

predictions of this particular Higgs model for tan!=mH! ¼
0:44!0:02GeV"1 and tan!=mH! ¼ 0:75! 0:04 GeV"1,
respectively. However, the combination of RðDÞ and
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FIG. 16 (color online). mES distributions before (left) and after (center) subtraction of normalization of background events, and
lepton momentum distributions after this subtraction (right) for events with m2

miss > 1:5 GeV2 scaled to the results of the isospin-
constrained fit. The B0 and Bþ samples are combined. See Fig. 15 for a legend.
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FIG. 17 (color online). Representation of $2 [Eq. (33)] in the
RðDÞ-RðD$Þ plane. The white cross corresponds to the mea-
sured RðDð$ÞÞ, and the black cross to the SM predictions. The
shaded bands represent one standard deviation each.
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FIG. 18 (color online). m2
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‘j projections of the
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FIG. 19 (color online). Left: Variation of the !B ! D"" !#"

(top) and !B ! D$"" !#" (bottom) efficiency in the 2HDM with
respect to the SM efficiency. The band indicates the increase on
statistical uncertainty with respect to the SM value. Right:
Variation of the fitted !B ! D"" !#" (top) and !B ! D$"" !#"

(bottom) yields as a function of tan!=mH! . The band indicates
the statistical uncertainty of the fit.

J. P. LEES et al. PHYSICAL REVIEW D 88, 072012 (2013)

072012-24

BABAR
arXiv:1303.0571, PRD88.072012(2013)

Exp. 0.421±0.058 0.337±0.025
SM 0.305±0.012 0.252±0.004
SD 1.9σ 2.9σ

R(D) R(D�)

New physics?
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W.S. Hou and B. Grzadkowski (1992),
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Sensitive to the charged Higgs 
if tanβ is large.

H�

b

⇥
�̄
c

Type-II 2HDM  (SUSY)

m� tan �

mb tan�

/ mbm⌧ tan2 �



Minoru TANAKA 17

But, negative interference.

Charged Higgs excluded at 99.8% CL
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tistical and systematic uncertainties on the signal PDFs
and background distributions.

We extract the branching fraction ratios as R(D(∗)) =
(Nsig/Nnorm)/(εsig/εnorm), where Nsig and Nnorm refer
to the number of signal and normalization events and
εsig/εnorm is the ratio of their efficiencies derived from
simulations. Table I shows the results of the fits for the
four individual samples as well as an additional fit in
which we impose the isospin relationsR(D0) = R(D+) ≡
R(D) and R(D∗0) = R(D∗+) ≡ R(D∗). The statistical
correlations are −0.59 for R(D0) and R(D∗0), −0.23 for
R(D+) and R(D∗+), and −0.45 for R(D) and R(D∗).
We have verified that the values of R(D(∗)) from fits to
samples corresponding to different run periods are con-
sistent. We repeated the analysis varying the selection
criteria over a wide range, corresponding to changes in
the signal-to-background ratios between 0.3 and 1.3, and
also arrive at consistent values of R(D(∗)).

The systematic uncertainties on R(D) and R(D∗) af-
fecting the fit are dominated by the limited understand-
ing of the D∗∗(ℓ/τ)ν backgrounds [31] (5.8% and 3.7%),
the continuum and BB backgrounds (4.9% and 2.7%),
and the PDFs for the signal and normalization decays
(4.3% and 2.1%). The uncertainties in the efficiency
ratios εsig/εnorm are 2.6% and 1.6%; they do not af-
fect the significance of the signal and are dominated by
the limited size of the MC samples. Uncertainties due
to the FFs, particle identification, final-state radiation,
soft-pion reconstruction, and others related to the detec-
tor performance largely cancel in the ratio, contributing
only about 1%. The individual systematic uncertainties
are added in quadrature to define the total systematic
uncertainty, reported in Table I.

There is a positive correlation between some of the
systematic uncertainties on R(D) and R(D∗), and, as a
result the correlation of the total uncertainties is reduced
to −0.48 forR(D0) andR(D∗0), to −0.15 forR(D+) and
R(D∗+), and to −0.27 for R(D) and R(D∗).

The statistical significance of the signal is determined
as Σstat =

√

2∆(lnL), where ∆(lnL) is the change in
the log-likelihood between the nominal fit and the no-
signal hypothesis. The statistical and dominant system-
atic uncertainties are Gaussian. The overall significance
is determined by scaling the statistical significance with

the total uncertainty, Σtot = Σstat×σstat/
√

σ2
stat + σ∗2

syst.

Here, σstat is the statistical uncertainty and σ∗
syst is the

total systematic uncertainty affecting the fit. The signif-
icance of the B → Dτ−ντ signal is 6.8σ, the first such
measurement exceeding 5σ.

To compare the measured R(D(∗)) with the SM pre-
dictions we have updated the calculations in Refs. [8, 32]
taking into account recent FF measurements. Averaged
over electrons and muons, we find R(D)SM = 0.297 ±
0.017 and R(D∗)SM = 0.252±0.003. At this level of pre-
cision, additional uncertainties could contribute [8], but
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FIG. 2. (Color online) Comparison of the results of this anal-
ysis (light grey, blue) with predictions that include a charged
Higgs boson of type II 2HDM (dark grey, red). The SM cor-
responds to tanβ/mH+ = 0.

the experimental uncertainties are expected to dominate.

Our measurements exceed the SM predictions for
R(D) and R(D∗) by 2.0σ and 2.7σ, respectively. The
combination of these results, including their −0.27 cor-
relation, yields χ2 = 14.6 for two degrees of freedom,
corresponding to a p-value of 6.9× 10−4. Thus, the pos-
sibility of both the measured R(D) and R(D∗) agreeing
with the SM predictions is excluded at the 3.4σ level.

Figure 2 shows the effect that a charged Higgs boson
of the type II 2HDM [7, 33] would have on R(D) and
R(D∗) in terms of the ratio of the vacuum expectation
values tanβ ≡ v2/v1, and the mass of the charged Higgs
mH+ . We estimate the effect of the 2HDM on our mea-
surements by re-weighting the simulated events at the
matrix element level for 20 values of tanβ/mH+ over the
[0.05, 1]GeV−1 range. We then repeat the fit with up-
dated PDF shapes and εsig/εnorm values. The increase
in the uncertainty on the efficiency ratio is estimated for
each value of tanβ/mH+ . The other sources of systematic
uncertainty are kept constant in relative terms.

The measured values of R(D) and R(D∗) match
the predictions of this particular Higgs model for
tanβ/mH+ = 0.44 ± 0.02 and tanβ/mH+ = 0.75± 0.04,
respectively. However, the combination of R(D) and
R(D∗) excludes the type II 2HDM charged Higgs boson
with a 99.8% confidence level for any value of tanβ/mH+ .
This calculation is only valid for values of mH+ greater
than about 10GeV [4, 7]. The region for mH+ ≤ 10GeV
has already been excluded by B → Xsγ measurements
[34], and, therefore, the type II 2HDM is excluded in the
full tanβ–mH+ parameter space.

In summary, we have measured the B → Dτ−ντ and
B → D∗τ−ντ decays relative to the decays to light lep-

predictions of 2HDM II

BABAR
arXiv: 1205.5442, PRL.109.101802(2012)



Minoru TANAKA

Model-independent approach

18

Effective Lagrangian for
all possible 4f operators with LH neutrinos

b� c⇥ �̄
The e�ective Lagrangian that contains all conceivable four-Fermi operators is written as
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TOl
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and C l
X denotes the Wilson coe⌅cient of Ol

X . Here we assume that the neutrinos are left-

handed. The neutrino flavor is specified by l, and we take all cases of l = e, µ and �

into account in the contributions of new physics. Since the neutrino flavor is not observed

in the experiments of bottom decays, the neutrino mixing does not a�ect the following

argument provided that the Pontecorvo-Maki-Nakagawa-Sakata matrix is unitary. The SM

contribution is expressed by the term of ⇥l⌅ in Eq. (4). We note that the tensor operator

with the opposite set of quark chiralities identically vanishes; c̄L⌥µ⇤bR �̄R⌥µ⇤⌃Ll = 0.

B. Helicity Amplitudes

The helicity amplitudes of B̄ ⇤ D� ⌃̄ and B̄ ⇤ D�� ⌃̄ for all the cases are summarized as
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where ⌅⌅ is the helicity of the tau lepton, ⌅M = s indicates the amplitude of B̄ ⇤ D� ⌃̄,

that of B̄ ⇤ D�� ⌃̄ is defined with its helicity ⌅M = ±1, 0. M�� ,�M
SM represents the SM

contribution, and other terms in the right-hand side stand for new physics contributions.

The SM amplitude is given by [41, 42]
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The SM amplitude is given by [41, 42]
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4

SM-like, RPV, LQ

RH current

charged Higgs II, RPV, LQ

charged Higgs III, LQ

LQ, GUT

MT, R.Watanabe,arXiv1212.1878, PRD87.034028(2013).
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Figure 1: Constraints on the Wilson coe�cients at the mb scale. The constraints are obtained from the

�2 fit of the measured R(D) and R(D⇤). The stars represent the optimal fitted values giving the smallest

�2.

• LQ
1

scenario: CS2 = 7.8CT = �0.17± 0.80i, CX 6=S2,T = 0 ,61

• LQ
2

scenario: CS2 = �7.8CT = 0.34, CX 6=S2,T = 0 .62

3 New Physics e↵ects in the q2 distributions63

Using the e↵ective Hamiltonian in Eq. (4) and calculating the helicity amplitudes (for the64

details see Ref. [5]), one finds the di↵erential decay rates as follows [6] :65

d�(B ! D⌧⌫⌧ )

dq2
=
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F |Vcb|2
192⇡3m3
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q2
p
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1� m2

⌧

q2

◆
2

⇥
⇢

|1 + CV1 + CV2 |2
✓

1 +
m2

⌧

2q2

◆
Hs 2

V,0 +
3

2

m2
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q2
Hs 2

V,t

�

+
3

2
|CS1 + CS2 |2 Hs 2

S + 8|CT |2
✓
1 +

2m2

⌧
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◆
Hs 2

T

+ 3Re[(1 + CV1 + CV2)(C
⇤
S1
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S2
)]

m⌧p
q2
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SH

s
V,t

� 12Re[(1 + CV1 + CV2)C
⇤
T ]

m⌧p
q2

Hs
TH

s
V,0

�
,

(6)

4

V1 V2 S2

T LQ1 LQ2

S1 (charged Higgs in type-II 2HDM) disfavored.
µ = mb

Y. Sakaki, MT, A. Tayduganov,R.Watanabe, 1412.3761
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Y. Sakaki, MT, A. Tayduganov, R. Watanabe

arXiv:1309.0301, PRD88.094012(2013)

Six types of LQ possible Buchmueller, Ruckl, Wyler (1987)lepton number conservation, introduced by Buchmüller
et al. [27]. The interaction Lagrangian that induces
contributions to the b ! c‘ !! process is given as follows:

LLQ ¼ LLQ
F¼0 þLLQ

F¼#2;

LLQ
F¼0 ¼ ðhij1L !QiL"

#LjL þ hij1R
!diR"

#‘jRÞU1#

þ hij3L !QiL!"#LjLU3#

þ ðhij2L !uiRLjL þ hij2R !QiLi$2‘jRÞR2;

LLQ
F¼#2 ¼ ðgij1L !Qc

iLi$2LjL þ gij1R !u
c
iR‘jRÞS1

þ gij3L !Qc
iLi$2!LjLS3

þ ðgij2L !dciR"#LjL þ gij2R
!Qc
iL"

#‘jRÞV2#; (13)

where Qi and Lj are the left-handed quark and lepton
SUð2ÞL doublets, respectively, while uiR, diR, and ‘jR are
the right-handed up, down quark and charged lepton
SUð2ÞL singlets; indices i and j denote the generations of
quarks and leptons; and c c ¼ C !c T ¼ C"0c & is a charge-
conjugated fermion field. For simplicity, the color indices

are suppressed. The quantum numbers of the leptoquarks
are summarized in Table I.
We note that the fermion fields in Eq. (13) are given in

the gauge eigenstate basis in which Yukawa couplings of
the up-type quarks and the charged leptons are diagonal.
Rotating the down-type quark fields into the mass eigen-
state basis and performing the Fierz transformations, one
finds the general Wilson coefficients at the leptoquark
mass scale for all possible types of leptoquarks contribut-
ing to the b ! c% !!l process:

Cl
V1

¼ 1

2
ffiffiffi
2

p
GFVcb

X3
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Vk3
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gkl1Lg

23&
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2M2
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U2=3

1

# h2l3Lh
k3&
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U2=3

3

#
; (14a)

Cl
V2

¼ 0; (14b)
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¼ 1

2
ffiffiffi
2
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Vk3

"
# 2gkl2Lg

23&
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M2
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2
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; (14c)
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; (14d)

Cl
T ¼ 1
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gkl1Lg

23&
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8M2
S1=31

# h2l2Lh
k3&
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8M2
R2=3
2

#
; (14e)

where Vk3 denotes the Cabibbo-Kobayashi-Maskawa ma-
trix elements and the upper index of the leptoquark denotes
its electric charge. In the following we will neglect double
Cabibbo suppressedOð&2Þ terms and keep only the leading
terms proportional to V33 ' Vtb.

The vector and axial vector currents are not renormal-
ized and their anomalous dimensions vanish. The scale
dependence of the scalar and tensor currents at leading
logarithm approximation is given by

CSð#bÞ ¼
"
'sðmtÞ
'sð#bÞ

# "S

2(
ð5Þ
0

"
'sðmLQÞ
'sðmtÞ

# "S

2(
ð6Þ
0 CSðmLQÞ;

CTð#bÞ ¼
"
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# "T

2(
ð5Þ
0

"
'sðmLQÞ
'sðmtÞ

# "T

2(
ð6Þ
0 CTðmLQÞ;

(15)

where the anomalous dimensions of the scalar and tensor
operators are"S ¼ #6CF ¼ #8,"T ¼ 2CF ¼ 8=3, respec-

tively, and (ðfÞ
0 ¼ 11# 2nf=3 [26]. Taking into account the

most recent constraints on the scalar and vector leptoquark
masses by theATLAS andCMScollaborations [30,31], in our
numerical analysis we assume that all scalar and vector lep-
toquarks are of the same mass mLQ ¼ 1 TeV. The b-quark
scale is chosen to be#b ¼ !mb ¼ 4:2 GeV.
One can easily notice from Eq. (14) that in the simplified

scenario with a presence of only one type of leptoquark,

namely, R2=3
2 or S1=31 , the scalar Cl

S2
and tensor Cl

T Wilson

coefficients are no longer independent: one finds that at the
scale of leptoquark mass Cl

S2
ðmLQÞ¼(4Cl

TðmLQÞ. Then,
using Eq. (15), one obtains the relation at the bottom mass
scale,

Cl
S2
ð !mbÞ ’ (7:8Cl

Tð !mbÞ: (16)

B. Constraints from !B ! Xs" !"

Recent progress in experiment and theory has made
FCNCs in B decays good tests of the SM and powerful

TABLE I. Quantum numbers of scalar and vector leptoquarks
with SUð3Þc ) SUð2ÞL )Uð1ÞY invariant couplings.

S1 S3 V2 R2 U1 U3

spin 0 0 1 0 1 1
F ¼ 3Bþ L #2 #2 #2 0 0 0
SUð3Þc 3& 3& 3& 3 3 3
SUð2ÞL 1 3 2 2 1 3
Uð1ÞY¼Q#T3

1=3 1=3 5=6 7=6 2=3 2=3
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trix elements and the upper index of the leptoquark denotes
its electric charge. In the following we will neglect double
Cabibbo suppressedOð&2Þ terms and keep only the leading
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The vector and axial vector currents are not renormal-
ized and their anomalous dimensions vanish. The scale
dependence of the scalar and tensor currents at leading
logarithm approximation is given by

CSð#bÞ ¼
"
'sðmtÞ
'sð#bÞ

# "S

2(
ð5Þ
0

"
'sðmLQÞ
'sðmtÞ

# "S

2(
ð6Þ
0 CSðmLQÞ;

CTð#bÞ ¼
"
'sðmtÞ
'sð#bÞ

# "T

2(
ð5Þ
0

"
'sðmLQÞ
'sðmtÞ

# "T

2(
ð6Þ
0 CTðmLQÞ;

(15)

where the anomalous dimensions of the scalar and tensor
operators are"S ¼ #6CF ¼ #8,"T ¼ 2CF ¼ 8=3, respec-
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masses by theATLAS andCMScollaborations [30,31], in our
numerical analysis we assume that all scalar and vector lep-
toquarks are of the same mass mLQ ¼ 1 TeV. The b-quark
scale is chosen to be#b ¼ !mb ¼ 4:2 GeV.
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disfavored

constrained by

probes of NP beyond the SM. Along with the b ! s! and
b ! s‘þ‘" processes, the b ! s" !" decay is also sensitive
to extensions of the SM. From a theoretical point of view,
the inclusive decay !B ! Xs" !" is a very clean process since
both perturbative #s and nonperturbative 1=m

2
b corrections

are known to be small, what makes it to be well suited to
search for NP.

The b ! s"j !"i process can be described by the follow-
ing effective Hamiltonian:

H eff ¼
4GFffiffiffi
2

p VtbV
$
ts½ð$ijC

ðSMÞ
L þ Cij

L ÞOij
L þ Cij

RO
ij
R (; (17)

where the left- and right-handed operators are defined as

Oij
L ¼ ð !sL!%bLÞð !"jL!%"iLÞ;

Oij
R ¼ ð !sR!%bRÞð !"jL!%"iLÞ:

(18)

In the SM, the Wilson coefficient is determined by box and
Z-penguin loop diagrams computation which gives

CðSMÞ
L ¼ #

2&sin 2'W
Xðm2

t =M
2
WÞ; (19)

where the loop function XðxtÞ can be found e.g. in
Ref. [32].

As one can notice from Eq. (13), the scalar leptoquarks

S1=31;3 and vector leptoquarks V1=3
2 and U"1=3

3 give the

following contribution to b ! s"j !"i:
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In the following, for simplicity we neglect the subleading
Oð(Þ terms in Eq. (20) and keep only the VtbV

$
cs ’ 1 term.

One has to note that theU"1=3
3 leptoquark does not affect

b ! c‘ !". In this way, as can be seen from Eq. (14), only

the g3l1ð3ÞLg
23$
1ð3ÞL couplings of the S1=31ð3Þ leptoquarks can be

constrained using both b ! c) !"l and b ! s") !"l pro-
cesses. Nevertheless, assuming that the leptoquarks from

the same SUð2Þ triplet, namely, U"1=3
3 and U2=3

3 , have
masses of the same order, one can combine the constraints
on h2l3Lh

33$
3L .

Summing over all neutrino flavors and taking into ac-
count that the amplitudes with i ! j do not interfere with
the SM contribution, the branching ratio can be written as

dBð !B ! Xs" !"Þ
dx

¼ )B
G2

F

12&3 jVtbV
$
tsj2m5

bSðxÞ

)
"
3CðSMÞ2

L þ
X3

i;j¼1

ðjCij
L j2 þ jCij

R j2Þ

þ 2CðSMÞ
L

X3

i¼1

Re½Cii$
L (

#
; (21)

where x ¼ Emiss=mb and the SðxÞ function describes the
shape of the missing energy spectrum [33]. In our estima-
tion we set ms ¼ 0 (therefore 1=2 * x * 1) and neglect
the #s and 1=m2

b corrections.
Using the experimental limit on the inclusive branching

ratio, determined by the ALEPH Collaboration [34],

BexpðB ! Xs" !"Þ< 6:4) 10"4 at the 90%C:L:; (22)

and assuming for simplicity that only one specific ij
combination of one type of leptoquarks contributes, we
obtain constraints on the leptoquark couplings depicted
in Fig. 1. In the case that the couplings are real, the
obtained numbers are consistent with the result of
Grossman et al. [33].
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FIG. 1 (color online). Constraints on the leptoquark couplings contributing to the b ! s"j !"i process using the experimental upper
limit on BðB ! Xs" !"Þ.
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Several possible NP scenarios

2 E↵ective Hamiltonian and New Physics constraints35

Assuming the neutrinos to be left-handed, we introduce the most general e↵ective Hamil-36

tonian that contains all possible four-fermion operators of the lowest dimension for the37

b ! c⌧⌫⌧ transition 2,38

H
e↵

=
4GFp

2
Vcb [(1 + CV1)OV1 + CV2OV2 + CS1OS1 + CS2OS2 + CTOT ] , (4)

where the operator basis is defined as39

OV1 =(cL�
µbL)(⌧L�µ⌫L) ,

OV2 =(cR�
µbR)(⌧L�µ⌫L) ,

OS1 =(cLbR)(⌧R⌫L) ,

OS2 =(cRbL)(⌧R⌫L) ,

OT =(cR�
µ⌫bL)(⌧R�µ⌫⌫L) ,

(5)

and the neutrino flavor is assumed to be identical to the SM one. In the SM, the Wilson40

coe�cients are set to zero, C(SM)

X = 0 (X = V
1,2, S1,2, T ). In Ref. [5], all five generic41

operators were studied. It was demonstrated that vector OV1,2 , scalar OS2 and tensor OT42

operators can reasonably explain the current data, and the scalar OS1 is unlikely.43

In Fig. 1 the allowed regions for complex NP Wilson coe�cients at the bottom quark44

mass scale are shown, obtained from the �2 fit of the current BABAR and Belle measure-45

ments of R(D) and R(D⇤) in Eq. (2). We assume the presence of only one NP operator for46

(a)-(d); and two operators OS2 and OT for (e) and (f), for which the Wilson coe�cients47

are related as CS2 = ±7.8CT at the mb scale 3 as written in the figure. These NP types of48

scalar and tensor exist in leptoquark models [5, 6, 8, 9]. The star corresponds to the best49

fitted values giving the smallest �2 value. We note that, since B = |1 + CV1 |2BSM, the50

best fitted value for CV1 is degenerate and represented by the red circle on the left-top51

panel of Fig. 1. One can see that Wilson coe�cients of O(1) are su�cient to explain the52

observed discrepancy in R(D) and R(D⇤).53

Minimizing �2 and finding the optimal NPWilson coe�cients, in the following sections54

we study various scenarios as benchmarks:55

• SM : CX = 0 ,56

• V
1

: CV1 = 0.16, CX 6=V1 = 0 ,57

• V
2

: CV2 = 0.01± 0.60i, CX 6=V2 = 0 ,58

• S
2

: CS2 = �1.75, CX 6=S2 = 0 ,59

• T : CT = 0.33± 0.09i, CX 6=T = 0 ,60

2In our work, we assume that couplings of NP particles to light leptons are significantly suppressed

(as in the 2HDM-II) and NP e↵ects can be observed only in the tauonic decay modes.
3This ratio is obtained from the renormalization group running of the scalar and tensor operators

from the leptoquark mass scale of 1 TeV, at which one finds CS2 = ±4CT , down to the mb scale [8].

3
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Figure 1: Constraints on the Wilson coe�cients at the mb scale. The constraints are obtained from the

�2 fit of the measured R(D) and R(D⇤). The stars represent the optimal fitted values giving the smallest

�2.

• LQ
1

scenario: CS2 = 7.8CT = �0.17± 0.80i, CX 6=S2,T = 0 ,61

• LQ
2

scenario: CS2 = �7.8CT = 0.34, CX 6=S2,T = 0 .62

3 New Physics e↵ects in the q2 distributions63

Using the e↵ective Hamiltonian in Eq. (4) and calculating the helicity amplitudes (for the64

details see Ref. [5]), one finds the di↵erential decay rates as follows [6] :65

d�(B ! D⌧⌫⌧ )

dq2
=

G2

F |Vcb|2
192⇡3m3

B

q2
p
�D(q2)

✓
1� m2

⌧

q2

◆
2

⇥
⇢

|1 + CV1 + CV2 |2
✓

1 +
m2

⌧

2q2

◆
Hs 2

V,0 +
3

2

m2

⌧

q2
Hs 2

V,t

�

+
3

2
|CS1 + CS2 |2 Hs 2

S + 8|CT |2
✓
1 +

2m2

⌧

q2

◆
Hs 2

T

+ 3Re[(1 + CV1 + CV2)(C
⇤
S1

+ C⇤
S2
)]

m⌧p
q2

Hs
SH

s
V,t

� 12Re[(1 + CV1 + CV2)C
⇤
T ]

m⌧p
q2

Hs
TH

s
V,0

�
,

(6)

4

How to discriminate: other observables
AFB , P⌧ , PD⇤ rather hard to measure

q2 = (pB � pD(⇤))
2 easier

Y. Sakaki, MT, A. Tayduganov,R.Watanabe, 1412.3761
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Figure 2: The measured background subtracted q2 distributions for B ! D⌧⌫ and B ! D⇤⌧⌫ events,

extracted from the BABAR data [2].

and66
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dq2
=
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�
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(7)

where �D(⇤)(q2) = ((mB � mD(⇤))2 � q2)((mB + mD(⇤))2 � q2). The SM distributions for67

the light lepton modes can be easily obtained by setting CX = 0 and m⌧ = 0.68

The helicity amplitudes H’s are expressed in terms of hadronic B ! D(⇤) form factors.69

In this work we use the Heavy Quark E↵ective Theory (HQET) form factors [10] with70

parameters extracted from experiments by the BABAR and Belle collaborations [11]. A71

detailed description of the matrix elements and form factor parametrization can be found72

in Ref. [6].73

To estimate the (dis)agreement between the measured and expected q2 spectra, we74

extract the experimental numbers of signal events from Fig. 23 in Ref. [2] and compare75

them with the expectations of di↵erent scenarios listed in the previous section. We present76

the extracted experimental data points in Fig. 2. In our study, we merge two last bins in77

Fig. 2 in order to satisfy the physical condition q2  (mB�mD(⇤))2 and add corresponding78

errors in quadratures. The corresponding theoretical predictions for dB/dq2 distributions79
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2

dB(B ! D`⌫)/dq2
�D(q2)

(m2

B �m2

D)
2

✓
1� m2

⌧

q2

◆�2

,

RD⇤(q2) ⌘dB(B ! D⇤⌧⌫)/dq2

dB(B ! D⇤`⌫)/dq2

✓
1� m2

⌧

q2

◆�2

.

(8)

Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs

V )
2 / �D(q2) ! 0 for q2 ! q2

max

.

6
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
2) ⌘dB(B ! D⌧⌫)/dq2

dB(B ! D`⌫)/dq2
�D(q2)

(m2
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(8)

Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs

V )
2 / �D(q2) ! 0 for q2 ! q2

max

.
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Figure 3: The di↵erential branching fractions, predicted in the SM (black) and various NP scenarios

listed in Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to

the theoretical errors in the hadronic form factor parameters and the uncertainty of Vcb.

model B ! D⌧⌫ B ! D⇤⌧⌫ B ! (D +D⇤
)⌧⌫

SM 54% 65% 67%

V1 54% 65% 67%

V2 54% 65% 67%

S2 0.02% 37% 0.1%

T 58% 0.1% 1.0%

LQ1 13% 58% 25%

LQ2 21% 72% 42%

Table 1: p values for the fit of the BABAR data of dB/dq2 with various models.

are presented in Fig. 3. The width of each curve is due to the theoretical errors in the80

hadronic form factor parameters and the uncertainty of Vcb = (41.1± 1.3)⇥ 10�3 [12].81

Due to the lack of knowledge about the overall normalization of the spectra, in our82

study we test only the shape of the distributions and leave the normalization of the data83

to be a free parameter of each fit. This implies that the total e�ciency is assumed to be84

a free parameter, constant for all q2 bins and dependent on the tested model. The results85

on p values are presented in Table 1. One can see from the table that the scalar (tensor)86

operator is disfavored by the observed q2 distribution of the B ! D(⇤)⌧⌫ decays.87

In order to get rid of the dependence on Vcb, reduce theoretical uncertainties of hadronic88

form factors and increase the sensitivity of the q2 dependencies to NP, we introduce the89

following quantities 4 :90

RD(q
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Here for our convenience, to remove zero 5 of dB(B ! D`⌫)/dq2 at q2
max

= (mB �mD)291

and the phase space suppression of dB(B ! D(⇤)⌧⌫)/dq2 at q2
min

= m2

⌧ , we introduced92

additional purely kinematic factors above.93

4The NP e↵ects in q2 distributions are also studied in Ref. [13].
5In the SM, dB(B ! D`⌫)/dq2 / (Hs
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Figure 2: The measured background subtracted q2 distributions for B ! D⌧⌫ and B ! D⇤⌧⌫ events,

extracted from the BABAR data [2].

and66
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where �D(⇤)(q2) = ((mB � mD(⇤))2 � q2)((mB + mD(⇤))2 � q2). The SM distributions for67

the light lepton modes can be easily obtained by setting CX = 0 and m⌧ = 0.68

The helicity amplitudes H’s are expressed in terms of hadronic B ! D(⇤) form factors.69

In this work we use the Heavy Quark E↵ective Theory (HQET) form factors [10] with70

parameters extracted from experiments by the BABAR and Belle collaborations [11]. A71

detailed description of the matrix elements and form factor parametrization can be found72

in Ref. [6].73

To estimate the (dis)agreement between the measured and expected q2 spectra, we74

extract the experimental numbers of signal events from Fig. 23 in Ref. [2] and compare75

them with the expectations of di↵erent scenarios listed in the previous section. We present76

the extracted experimental data points in Fig. 2. In our study, we merge two last bins in77

Fig. 2 in order to satisfy the physical condition q2  (mB�mD(⇤))2 and add corresponding78

errors in quadratures. The corresponding theoretical predictions for dB/dq2 distributions79

5

No Vcb dependence, less form factor uncertainties
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Figure 4: The RD(⇤)(q2) distributions, predicted in the SM (black) and various NP scenarios listed in

Section 2 : S
2

(blue), T (red), LQ
1

(green) and LQ
2

(cyan). The width of each curve is due to the

theoretical errors in the hadronic form factor parameters

In Fig. 4, for illustration, we show the RD(⇤)(q2) distributions, predicted for the five94

scenarios described in Section 2. The width of each curve is due to the theoretical errors95

in the hadronic form factor parameters, which are varied within ±1� ranges. The dis-96

tributions for the vector V
1,2 NP scenarios (with best fitted values of Wilson coe�cients97

CV1 = 0.16 and CV2 = 0.01 ± 0.60i respectively) have small theoretical uncertainties as98

in the SM, but are practically indistinguishable from the distribution of the tensor (LQ
1

)99

NP scenario for the D(D⇤) mode. Therefore we omit plotting them in Fig. 4.100

We find that RD(q2) is very sensitive to the scalar contribution and RD⇤(q2) is more101

sensitive to the tensor operator. Moreover, one can easily see from Figs. 3 and 4 that the102

theoretical uncertainties in RD(⇤)(q2) are significantly smaller than those of the di↵erential103

branching fractions. Hence, the RD(⇤)(q2) distributions provide a good test of NP in104

addition to R(D(⇤)).105

4 Discriminative potential at Belle II106

In order to demonstrate the discriminating power of RD(⇤)(q2), we simulate “experimental107

data” for the binned RD(⇤)(q2) distributions, assuming one of the scenarios, listed in108

Section 2, that can explain the observed deviation in R(D) and R(D⇤), and compare109

them with other various model predictions by calculating �2 defined in the following way:110

111

�2 =
NbinsX

i,j=1

(Rexp

i �Rmodel

i )(V exp + V model)�1

ij (R
exp

j �Rmodel

j ) , (9)

where i and j denote the q2-bin indices, V exp and V model are the experimental and the-112

oretical covariance matrices of the simulated “experimental data” and the tested model113

respectively. Here the binned Ri is defined as Ri = (N ⌧
i /N

`
i )f(q

2

i ) with f(q2i ) for shortness114

denoting purely kinematic factors introduced in Eq. (8), where N ⌧,`
i are the numbers of115

signal events in the ith bin for a given luminosity. We evaluate N ⌧,`
i for each benchmark116

scenario using the central values of the hadronic parameters.117

For model predictions, the uncertainties of the HQET hadronic form factors and the118

7
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Required luminosity to exclude the tested model
L [fb

�1
]

model

SM V1 V2 S2 T LQ1 LQ2

V1
1170

(270)

10

6

(5)

500

(5)

900

(5)

4140

(5)

2860

(1390)

V2
1140

(270)

10

6

(5)

510

(5)

910

(5)

4210

(5)

3370

(1960)

“
d
a
t
a
” S2

560

(290)

560

(13750)

540

(36450)

380

(5)

1310

(35720)

730

(4720)

T
600

(270)

680

(5)

700

(5)

320

(5)

620

(5)

550

(1980)

LQ1
1010

(270)

4820

(5)

4650

(5)

1510

(5)

800

(5)

5920

(1940)

LQ2
1020

(250)

3420

(1320)

3990

(1820)

1040

(20560)

650

(4110)

5930

(1860)

Table 2: Luminosity required to discriminate various simulated “data” and tested model sets at

99.9% C.L. using RD(⇤)(q2) or R(D(⇤)) (in parentheses).

model

SM V1 V2 S2 T LQ1 LQ2

V1 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅
V2 ⌅⌅⌅ 8 }}} }}} }}} ⌅⌅⌅

“
d
a
t
a
” S2 ⌅⌅⌅ � � }}} � �

T ⌅⌅⌅ }}} }}} }}} }}} �
LQ1 ⌅⌅⌅ }}} }}} }}} }}} ⌅⌅⌅
LQ2 ⌅⌅⌅ ⌅⌅⌅ ⌅⌅⌅ � � ⌅⌅⌅

Table 3: Comparison of two discrimination methods, using RD(⇤)(q2) (circle) or R(D(⇤)) (square): the

method requiring a smaller luminosity to distinguish “data” and theoretical model at 99.9% C.L. is more

advantageous. Double circle corresponds to the case when only RD(⇤)(q2) is e↵ective and can distinguish

scenarios. Cross marks denote the impossibility of discrimination by either of the two methods.

experimental data of R(D(⇤)) have already shown the significant deviation from the SM153

as explained in Section 1.154

As can been seen from Table 3, for the “data”-model cases LQ
2

(V
1,2)-V1,2(LQ2

) and155

LQ
2(1)

-LQ
1(2)

, R(D(⇤)) turn out to be more advantageous quantities to be studied. On156

the other hand, if we assume “data” to be e.g. S
2

or T , the binned q2 distributions157

become more profitable for discrimination of other NP models. Moreover, only RD(⇤)(q2)158

can clearly distinguish the S
2

-T and T -S
2

cases. To summarise, among the 36 cases listed159

in Table 3, in 22 cases the study of q2 distributions turns out to be more advantageous160

and has a lower luminosity cost, and in 15 cases only RD(⇤)(q2) can discriminate “data”161

and models at 99.9% C.L.162

To clarify the sensitivity to NP Wilson coe�cients in the Belle II experiment, in Fig. 5163

we present constraints on the Wilson coe�cients, obtained from the �2 fit of binned RD(q2)164

and RD⇤(q2) for the integrated luminosity of 40 ab�1, assuming the “data” to be perfectly165

consistent with the SM predictions. The dark (light) blue regions represent the expected166

68% (99.9%) C.L. constraints from RD(q2) and RD⇤(q2). For comparison, we show the167

68% (99.9%) C.L. allowed regions, represented by red solid (dashed) lines, from R(D) and168

R(D⇤). Due to the large statistics of the B ! D(⇤)`⌫` events at the Belle II experiment, it169

9

�2 of the binned

(...): integrated quantities

A good target at an earlier stage of Belle II 
in most casesL . 6 ab�1

RD(⇤)(q2)

99.9 % CL
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Figure 5: Constraints on the Wilson coe�cients at the mb scale. The constraints are obtained from the

�2 fit of binned RD(q2) and RD⇤(q2) assuming the future experimental measurements at Belle II for the

integrated luminosity 40 ab�1 to be perfectly consistent with the SM predictions. The red solid(dashed)

lines correspond to the constraints at 68% (99.9%) C.L. coming from the q2-integrated R(D(⇤)).
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Figure 5: Constraints on the Wilson coe�cients at the mb scale. The constraints are obtained from the

�2 fit of binned RD(q2) and RD⇤(q2) assuming the future experimental measurements at Belle II for the

integrated luminosity 40 ab�1 to be perfectly consistent with the SM predictions. The red solid(dashed)

lines correspond to the constraints at 68% (99.9%) C.L. coming from the q2-integrated R(D(⇤)).
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New Physics:
Minimal Flavor Violation

No other flavor violation 
Non-MFV

New source(s) of flavor violation

Standard Model:
Yukawa couplings ⇒ charged current

VCKM =

�

⇤
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⇥

⌅

LCC =
g�
2
W+

µ ūL�µVCKMdL + h. c.
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Hierarchy

VCKM =

�

�
1� �2

2 ⇥ ⇥3A(⇤� i�)
�⇥ 1� �2

2 ⇥2A
⇥3A(1� ⇤� i�) �⇥2A 1

�

�

14 11. CKM quark-mixing matrix

γ

γ

α

α

!"∆
#ε

#ε

$"∆%&%!"∆

'()

β$*+%,

-./012%34%56%7%829:;
%<%8β$=12%>?%0=$%,

./01'!.!%34%56%7%829:

α

βγ

ρ
!"#$ !$#% $#$ $#% "#$ "#% &#$

η

!"#%

!"#$

!$#%

$#$

$#%

"#$

"#%
./01'!.!%3@.3%A3$%56%7%829:

Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL. Color
version at end of book.

These values are obtained using the method of Refs. [6,95]. Using the prescription
of Refs. [102,118] gives λ = 0.2246 ± 0.0011, A = 0.832 ± 0.017, ρ̄ = 0.130 ± 0.018,
η̄ = 0.350± 0.013 [119]. The fit results for the magnitudes of all nine CKM elements are.

VCKM =

⎛

⎝
0.97428± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

⎞

⎠ , (11.27)

and the Jarlskog invariant is J = (2.91+0.19
−0.11) × 10−5.

Fig. 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements and
the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region, though the consistency of |Vub/Vcb| and sin 2β is not very good.

July 30, 2010 14:36

Vub

may be affected by Non-MFV new physics

the smallest element
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Right-handed current in b→u

Model-indep. effective Lagrangian of dim. 6

L6 =
C

�2
ūR�µbR ⇥̃†iDµ⇥ + h. c.

Le�
cc = � g⇥

2

�
V L

ubūL�µbL + V R
ubūR�µbR

�
W+

µ + h. c.

V R
ub = C

v2

2�2
� 3� 10�2C

�
1TeV

�

�2

possible� �3

Effective charged current interaction
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では、χ2 を用いてより定量的に解析する。

χ2 =

(
|V B→τν

ub |− |V L
ub|
√

1 + x2 + y2 − 2x

σ|V B→τν
ub |

)2

+

(
|V B→πlν

ub |− |V L
ub|
√

1 + x2 + y2 + 2x

σ|V B→πlν
ub |

)2

+

(
|V B→Xulν

ub |− |V L
ub|
√

1 + x2 + y2

σ|V B→Xulν
ub |

)2

+

(
|V Unitary

ub |− |V L
ub|

σ|V Unitary
ub |

)2

(61)

+

(
|V B→ρlν

ub |− |V L
ub|
√

1 + x2 + y2 − 1.18x

σ|V B→ρlν
ub |

)2

+

(
|V B→ωlν

ub |− |V L
ub|
√

1 + x2 + y2 − 1.25x

σ|V B→ωlν
ub |

)2

と定義して、まずは右巻き荷電カレント無しのときの χ2
min/dof と V L

ub は 4 つの測定を
合わせると

χ2
min

d.o.f.
=

10.8
5

= 2.16 (62)

|V L
ub| = 3.64 × 10−3 (63)

となる。よって、現状は十分合っているとは言えない (図 5)。

図 5 現在の各測定方法による |V L
ub|

さて、ではこれに右巻き荷電カレントを加える。先行研究の Crivellin の論文 [1] で
は B → τν,πlν, Xulν の３つのみで y = 0 として考えているが、y もきちんと入れて、
B → ρlν,ωlν も加えて χ2 の最小値と x, y, V L

ub の値を求めるたい。しかし、３変数を
V L

ub
2(1 + x2 + y2)と V L

ub
2
xの 2変数の形で書き直せるために、それだけではすべての値

15

|V L
ub|⇥ 103

Average

(p = 0.055)

|Vub| = 3.64⇥ 10�3

�2/dof = 2.16

The mass di↵erence in the Bd meson system due to the Bd–B̄d mixing, denoted by �mBd
,

is dominated by the top quark loop in the SM and proportional to |VtdV ⇤
tb|2; and similarly in

the Bs system, �mBs / |VtsV ⇤
tb|2. Theoretical uncertainties of the relevant hadronic matrix

elements are reduced by taking the ratio of �mBd
and �mBs owing to the SU(3) flavor

symmetry:
�mBd

�mBs

=
mBd

mBs

⇠�2

����
VtdV ⇤

tb

VtsV ⇤
tb

����
2

=
mBd

mBs

⇠�2�2
�
(1� ⇢)2 + ⌘2

 
, (15)

where ⇠ = 1.268 ± 0.063 [8] represents the SU(3) breaking e↵ect. Thus, we determine

|VtdV ⇤
tb| from the present experimental data, �mBd

= 0.510 ± 0.003 ps�1 and �mBs =

17.761± 0.022 ps�1 [7]. The result is shown as the red arc in Fig. 1.

The time-dependent CP asymmetries in b ! cc̄s processes such as B ! J/ KS give

sin 2�
1

with small theoretical uncertainty in the SM. This argument does not change in the

presence of the b ! u RHC. The combined experimental data sin 2�
1

= 0.682 ± 0.019 [7]

gives �
1

with a four-fold ambiguity. It turns out that only the solution favored in the SM,

as depicted in Fig. 1, is consistent with the RHC.

Consequently, one of the apices of the unitarity triangle (⇢, ⌘) is uniquely determined

(with errors) and V L
ub = �3A(⇢� i⌘) is evaluated as

|V L
ub| = (3.43± 0.16)⇥ 10�3 , �L

3

= arg V L⇤
ub = 73.8� ± 7.5� , (16)

where � = 0.225 and A = 0.823 are used [16].

F. Combined result

Combining the results in Eqs. (5), (7), (11), (12), (13), (14) and (16), we obtain a

constraint on V R
ub . The numerical result is presented in Fig. 2, where 1�, 2� and 3� allowed

regions are indicated by solid lines. The best fit is given by

Re

✓
V R
ub

V L
ub

◆
= �4.21⇥ 10�3 ,

����Im
✓
V R
ub

V L
ub

◆���� = 0.551 , |V L
ub| = 3.43⇥ 10�3 , (17)

with �2

min

/dof = 2.27. We obtain �2

min

/dof = 2.16 in the SM and thus the scenario of the

b ! u RHC exhibits a similar consistency as the SM among the above experimental results

in |Vub| determination.

As seen in Fig. 2 and Eq. (17), a large relative phase between V R
ub and V L

ub is favored. We

examine its implication for CP violations in hadronic B decays in the next section.

7

CKM unitarity

f1

f2
L

f3
L

» VubL˜ Vud »» Vcb˜ Vcd »
» Vtb˜ Vtd »» Vcb˜ Vcd »

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

r

h

FIG. 1. Unitarity triangle (solid lines). Experimental constrains from the B–B̄ mixings and

CP violation in b ! cc̄s decays are also indicated by the red arc and the green narrow sectors

respectively.

mass of the up quark. Thus, the decay rate is proportional to |V exp

ub |2 = |V L
ub|2 + |V R

ub |2. In

our numerical analysis, we use the following result of GGOU method [13] given by HFAG

[7]:

|V exp

ub | =
q
|V L

ub|2 + |V R
ub |2 = (4.39± 0.31)⇥ 10�3 , (14)

where the statistic and systematic errors are linearly added in order to take the sizable

method dependence into account.

E. Unitarity triangle

Since the above five processes of direct |Vub| measurement are described by two inde-

pendent quantities, |V L
ub|2 + |V R

ub |2 and Re(V L
ubV

R⇤
ub ), they are insu�cient to determine the

absolute values of V L
ub and V R

ub , and their relative phase. In order to extract more information

on V L
ub and V R

ub , we utilize the unitarity of the CKM matrix V L assuming the validity of the

SM except for the V R
ub term in Eq. (2) as stated previously.

The unitarity of V L is conveniently represented by the unitarity triangle in Fig. 1, where

Wolfenstein parameterization [14, 15] is introduced. Measuring |VtdV ⇤
tb| by the B–B̄ mixings

and �
1

(or �) with CP violation in b ! cc̄s decays, together with results of kaon and b ! c

semileptonic decays that give � and A in Wolfenstein parameterization, we can indirectly

determine the magnitude and phase of V L
ub.

6
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|V exp
ub |2 = |V L

ub � V R
ub|2 = |V L

ub|2
�
1� 2Re

�
V R

ub

V L
ub

�
+

����
V R

ub

V L
ub

����
2
�B � ⇥� axial vector current only

B � ⇥⇤� vector current only

|V exp
ub |2 = |V L

ub + V R
ub|2 = |V L

ub|2
�
1 + 2Re

�
V R

ub

V L
ub

�
+

����
V R

ub

V L
ub

����
2
�

B � Xu⇥� no interference mu � 0

|V exp
ub |2 = |V L

ub|2 + |V R
ub|2 = |V L

ub|2
�
1 +

����
V R

ub

V L
ub

����
2
�
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B ! ⇡⇡

I = 0, 2 I = 0

AI = h(⇡⇡)I |B0i ĀI = h(⇡⇡)I |B̄0i

and

S⇡+⇡� =
2Im ((q/p)⇢̄(⇡+⇡�))

1 + |⇢̄(⇡+⇡�)|2 , (20)

respectively. The amplitude ratio ⇢̄(⇡+⇡�) is defined by

⇢̄(⇡+⇡�) =
A(B̄0 ! ⇡+⇡�)

A(B0 ! ⇡+⇡�)
, (21)

and the ratio of the B–B̄ mixing coe�cients is given as q/p = V L
tdV

L⇤
tb /V L⇤

td V L
tb for the Bd

case under consideration here.

The isospin analysis is mandatory to extract the information on the weak phase in this

process because of the penguin pollution [18]. The decay amplitudes of the isospin doublet

(B+, B0) are expressed in terms of the isospin amplitudes AI = h(⇡⇡)I |B0i (I = 0, 2):

A(B+ ! ⇡+⇡0) =

r
3

2
A

2

, (22)

A(B0 ! ⇡+⇡�) =
1p
3
A

2

+

r
2

3
A

0

, (23)

A(B0 ! ⇡0⇡0) =

r
2

3
A

2

� 1p
3
A

0

. (24)

We note a simple triangle relation, A(B+ ! ⇡+⇡0) = A(B0 ! ⇡+⇡�)/
p
2+A(B0 ! ⇡0⇡0).

The (B̄0, B�) decay amplitudes bear similar relations to ĀI = h(⇡⇡)I |B̄0i. The relative

phase between A
0

and A
2

can be determined with a twofold ambiguity as well as their

magnitudes by measuring the branching fractions of three decay modes in Eqs. (22), (23)

and (24); and likewise for (B̄0, B�) and ĀI .

The ratio of B ! ⇡+⇡� amplitudes in Eq. (21) is expressed in terms of the isospin

amplitudes as

⇢̄(⇡+⇡�) =
Ā

2

A
2

1 + z̄

1 + z
, (25)

where z =
p
2A

0

/A
2

, z̄ =
p
2Ā

0

/Ā
2

, and they are obtained from the relevant branching

fractions as described above. The amplitudes of I = 2 are determined by the tree-level W

boson exchange since the gluon penguin diagram has the nature of �I = 1/2. In the SM,

the I = 2 amplitudes are governed by the single weak phase of V L
ub and thus there is no

CP asymmetry in this channel except the small correction due to the electroweak penguin

diagrams.

In the presence of the right-handed b ! u current in Eq. (2), the amplitudes of I = 2

consist of the left- and right- handed contributions: A
2

= A
2L + A

2R and Ā
2

= Ā
2L + Ā

2R.
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determined from BR’s

Isospin analysis for �2
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Observables

BR(B ! ⇡+⇡�), BR(B ! ⇡0⇡0), BR(B± ! ⇡±⇡0)

Branching ratios

Time-dependent CP asymmetry

4 B → ππ による右巻き荷電カレントへの制限
φ2 や φ3 の測定は b → u遷移に右巻き荷電カレントを加える影響を受ける。ここでは

φ2 への影響をみる。

4.1 isospin analysis～標準模型における φ2 の測定～
後に φ2 の話をするために、ここで φ2 の測定法について書いておく。φ2 は B → ππ 遷

移を用いて測定する。B0(B̄0) → π+π− の時間 (距離)に依存する asymmetryは

Γ(B0 → π+π−) − Γ(B̄0 → π+π−)
Γ(B0 → π+π−) + Γ(B̄0 → π+π−)

= Cπ+π− cos (∆MBdt) − Sπ+π− sin (∆MBdt)

Cπ+π− =
1 − |ρ̄(π+π−)|2

1 + |ρ̄(π+π−)|2 (68)

Sπ+π− =
2Im

(
q
p ρ̄(π

+π−)
)

1 + |ρ̄(π+π−)|2 (69)

ρ̄(π+π−) =
A(B̄0 → π+π−)
A(B0 → π+π−)

(70)

と書ける。この Cπ+π− と Sπ+π− が実験で測る量。 q
p は、B − B̄ mixingからくる量で、

q

p
=

VtdV ∗
tb

V ∗
tdVtb

(71)

である。ここで、もし B(B̄) → π+π− が tree diagramしかない場合は

ρ̄(π+π−) =
VubV ∗

ud

V ∗
ubVud

(72)

であるので、

Sπ+π− = sin
(

arg
(

VtdV ∗
tb

V ∗
tdVtb

VubV ∗
ud

V ∗
ubVud

))

= sin(2φ2) (73)

と書け、Sπ+π− から φ2 が測れることがわかる。
しかし、実際は B(B̄) → π+π− には penguin diagramも寄与するため、その影響を勘

定しなければならない。そのために、isospin analysisを利用する。

19

C⇡+⇡� , S⇡+⇡�

Time-integrated CP asymmetry
C⇡0⇡0

Direct CP asymmetry in charged B decays
ACP (B

+ ! ⇡+⇡0)
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C⇡+⇡� �0.31± 0.05

S⇡+⇡� �0.66± 0.06

C⇡0⇡0 �0.43± 0.24

ACP (B+ ! ⇡+⇡0) �0.026± 0.039

BR(B ! ⇡+⇡�) (5.10± 0.19)⇥ 10�6

BR(B ! ⇡0⇡0) (1.91± 0.225)⇥ 10�6

BR(B± ! ⇡±⇡0) (5.48± 0.345)⇥ 10�6

TABLE I. Experimental data in B ! ⇡⇡, taken from the compilation by HFAG [7].

Thus, the large imaginary part of V R
ub/V

L
ub suggested by the analysis in Sec. II implies a

possibility of CP violation in the I = 2 channel. We neglect the electroweak penguins in

the following analysis because e↵ects of the RHC are expected to be larger than them.

The direct CP asymmetry in B+ ! ⇡+⇡0, which vanishes in the SM, is written as

ACP (B
+ ! ⇡+⇡0) =

1� |R⇡⇡|2
1 + |R⇡⇡|2

, (26)

where the e↵ect of the RHC in the I = 2 channel is represented by

R⇡⇡ ⌘ 1 + Ā
2R/Ā2L

1 + A
2R/A2L

. (27)

Other CPV observables are also a↵ected by the RHC:

C⇡+⇡� =

 
1� |R⇡⇡|2

����
1 + z̄

1 + z

����
2

!
/

 
1 + |R⇡⇡|2

����
1 + z̄

1 + z

����
2

!
, (28)

S⇡+⇡� =
q
1� C2

⇡+⇡� sin

✓
2�L

2

+ arg (R⇡⇡) + arg

✓
1 + z̄

1 + z

◆◆
, (29)

and

C⇡0⇡0 =

 
1� |R⇡⇡|2

����
2� z̄

2� z

����
2

!
/

 
1 + |R⇡⇡|2

����
2� z̄

2� z

����
2

!
, (30)

where �L
2

is one of the angles of the unitarity triangle in Fig. 1 and C⇡0⇡0 is the counter

part of C⇡+⇡� in B ! ⇡0⇡0. We note that C⇡0⇡0 is determined with the time-integrated

decay rate of the tagged B ! ⇡0⇡0 process. The experimental data of these observables

and relevant CP averaged branching fractions are summarized in Table I. The phase �L
2

is

extracted from the unitarity triangle construction indicated in Fig. 1 as �L
2

= 84.7� ± 7.5�.

10

Experimental values
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Effect of the right-handed current

A2 = A2L +A2R, Ā2 = Ā2L + Ā2R
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C⇡0⇡0 �0.43± 0.24

ACP (B+ ! ⇡+⇡0) �0.026± 0.039

BR(B ! ⇡+⇡�) (5.10± 0.19)⇥ 10�6

BR(B ! ⇡0⇡0) (1.91± 0.225)⇥ 10�6

BR(B± ! ⇡±⇡0) (5.48± 0.345)⇥ 10�6

TABLE I. Experimental data in B ! ⇡⇡, taken from the compilation by HFAG [7].

Thus, the large imaginary part of V R
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possibility of CP violation in the I = 2 channel. We neglect the electroweak penguins in

the following analysis because e↵ects of the RHC are expected to be larger than them.
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where �L
2

is one of the angles of the unitarity triangle in Fig. 1 and C⇡0⇡0 is the counter

part of C⇡+⇡� in B ! ⇡0⇡0. We note that C⇡0⇡0 is determined with the time-integrated

decay rate of the tagged B ! ⇡0⇡0 process. The experimental data of these observables

and relevant CP averaged branching fractions are summarized in Table I. The phase �L
2

is

extracted from the unitarity triangle construction indicated in Fig. 1 as �L
2

= 84.7� ± 7.5�.
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possibility of CP violation in the I = 2 channel. We neglect the electroweak penguins in

the following analysis because e↵ects of the RHC are expected to be larger than them.
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2R/Ā2L

1 + A
2R/A2L

. (27)

Other CPV observables are also a↵ected by the RHC:

C⇡+⇡� =

 
1� |R⇡⇡|2

����
1 + z̄

1 + z

����
2

!
/

 
1 + |R⇡⇡|2

����
1 + z̄

1 + z

����
2

!
, (28)

S⇡+⇡� =
q
1� C2

⇡+⇡� sin

✓
2�L

2

+ arg (R⇡⇡) + arg

✓
1 + z̄

1 + z

◆◆
, (29)

and

C⇡0⇡0 =

 
1� |R⇡⇡|2

����
2� z̄

2� z

����
2

!
/

 
1 + |R⇡⇡|2

����
2� z̄

2� z

����
2

!
, (30)

where �L
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is one of the angles of the unitarity triangle in Fig. 1 and C⇡0⇡0 is the counter

part of C⇡+⇡� in B ! ⇡0⇡0. We note that C⇡0⇡0 is determined with the time-integrated

decay rate of the tagged B ! ⇡0⇡0 process. The experimental data of these observables

and relevant CP averaged branching fractions are summarized in Table I. The phase �L
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is

extracted from the unitarity triangle construction indicated in Fig. 1 as �L
2

= 84.7� ± 7.5�.
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FIG. 3. Allowed region of the direct CP asymmetry and the phase discrepancy in B ! ⇡⇡.

The dark (light) red region is 1� (2�). The prediction of the CPV RHC is also shown: The

region between the black dashed ellipse and two black dashed lines represents the 1� prediction as

indicated and the region between the blue dotted lines is 2�.

We determine or constrain R⇡⇡ with these data as shown in Fig. 3. The abscissa is the CP

asymmetry ACP (B+ ! ⇡+⇡0), which is uniquely related to |R⇡⇡| as seen in Eq. (26), and

the ordinate is arg(R⇡⇡), which represents the possible discrepancy in the �
2

measurements

between B ! ⇡⇡ and the unitarity triangle as seen in Eq. (29). A strong constraint is given

for ACP (B+ ! ⇡+⇡0), while arg(R⇡⇡) is restricted rather weakly because of the eight-fold

ambiguity in the isospin analysis.

The dependence of R⇡⇡ on V R
ub is obtained by evaluating A

2R/A2L in the factorization

approximation:
A

2R

A
2L

' 1.56
V R⇤
ub

V L⇤
ub

ei�⇡⇡ , (31)

where we introduce a strong phase �⇡⇡ as an arbitrary parameter, which cannot be evalu-

ated by the factorization method. A similar expression is obtained for Ā
2R/Ā2L replacing

V R⇤
ub /V L⇤

ub by its complex conjugate. The details of the calculation using renormalization

group equations (RGE) and the factorization is relegated in Appendix B 1.

In Fig. 3, taking the strong phase �⇡⇡ as a free parameter, we also present the prediction on

11

RGE
factorization
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B ! ⇢⇢

⇢L⇢L CP even, I = 0, 2

Isospin analysis as the two-pion mode

RHC 1s

-1.0 -0.5 0.0 0.5 1.0

-150

-100

-50

0

50

100

150

ACP IB+ Æ rL+rL0M

ar
gIR

r L
r L
M

FIG. 5. Allowed region of the direct CP asymmetry and the possible phase discrepancy in

B ! ⇢L⇢L is shown in the same manner as Fig. 3. The prediction of the CPV RHC is presented

as well. The region between two black dashed ovals is 1� and the region surrounded by the blue

dotted one is 2�.

Fig. 5. In other words, the possible discrepancy in the �
2

determinations between B ! ⇢L⇢L

and the unitarity triangle are constrained more strongly.

We evaluate R⇢L⇢L in the presence of the CPV RHC using the RGE and the factorization

method as in the case of B ! ⇡⇡. We obtain A
2R/A2L as

A
2R

A
2L

' �0.91
V R⇤
ub

V L⇤
ub

ei�⇢L⇢L , (33)

where an independent strong phase �⇢L⇢L is introduced. This calculation is described in

Appendix B 2. The predicted region of R⇢L⇢L for the allowed V R
ub/V

L
ub shown in Fig. 2 and

arbitrary values of �⇢L⇢L is also depicted in Fig. 5. One of the two experimentally allowed

regions, which is consistent with the SM, is also compatible with the scenario of the CPV

RHC. In Fig. 6, we present the p value of �L
2

+arg(R⇢L⇢L)/2 assuming sin �⇢L⇢L = 0 as well as

its range predicted for the allowed region of V R
ub/V

L
ub in Fig. 2. The CPV RHC is consistent

with one of the two possible solutions that is also favored in the SM. One may judge from

Figs. 5 and 6 that the CPV RHC is incompatible with the experimental data at the 1� level.

However this is not the case because of the theoretical uncertainty in the factorization. We
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B ! DK

Dalitz plot method D ! Ks⇡
+⇡�
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FIG. 8. Allowed region of the direct CP asymmetry and the possible phase discrepancy in

B ! DK as in the same manner in Fig. 3. The prediction of the CPV RHC is also shown.

The region between two black dashed ellipses is 1� prediction as denoted and the whole plane is

practically allowed at the 2� level.

Eq. (52) below.) as presented in Fig. 8. Although the restriction is rather mild at present,

we confirm that the extended Dalitz plot method does work and expect a better sensitivity

in future.

In order for a comparison with the allowed region in Fig. 8, we evaluate the e↵ect of

the CPV RHC on B+ ! D0K+ and the charge conjugation mode. Their amplitudes are

decomposed into the left- and right- handed contributions:

A(B+ ! D0K+) = |AL|ei(�L
3 +�L) + |AR|ei(�R

3 +�R) , (47)

and

A(B� ! D̄0K�) = |AL|ei(��L
3 +�L) + |AR|ei(��R

3 +�R) , (48)

where �L(R)

3

= arg(V L(R)⇤
ub ) is the weak phase of the left(right)-handed current and �L,R

18

Effect of the right-handed current
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FIG. 8. Allowed region of the direct CP asymmetry and the possible phase discrepancy in

B ! DK as in the same manner in Fig. 3. The prediction of the CPV RHC is also shown.

The region between two black dashed ellipses is 1� prediction as denoted and the whole plane is

practically allowed at the 2� level.

Eq. (52) below.) as presented in Fig. 8. Although the restriction is rather mild at present,

we confirm that the extended Dalitz plot method does work and expect a better sensitivity

in future.

In order for a comparison with the allowed region in Fig. 8, we evaluate the e↵ect of

the CPV RHC on B+ ! D0K+ and the charge conjugation mode. Their amplitudes are

decomposed into the left- and right- handed contributions:

A(B+ ! D0K+) = |AL|ei(�L
3 +�L) + |AR|ei(�R

3 +�R) , (47)

and

A(B� ! D̄0K�) = |AL|ei(��L
3 +�L) + |AR|ei(��R

3 +�R) , (48)

where �L(R)

3

= arg(V L(R)⇤
ub ) is the weak phase of the left(right)-handed current and �L,R

18

RDK = e2i�
L
3
A(B� ! D̄0K�)

A(B+ ! D0K+)
=

1 + |AR/AL|ei(��R
3 +�L

3 +�)

1 + |AR/AL|ei(�
R
3 ��L

3 +�)

denote strong phases. It is convenient to introduce an amplitude ratio as

RDK = e2i�
L
3
A(B� ! D̄0K�)

A(B+ ! D0K+)
(49)

=
1 + |AR/AL|ei(��R

3 +�L
3 +�)

1 + |AR/AL|ei(�R
3 ��L

3 +�)
, (50)

where � = �R � �L. Then, it is straightforward to obtain the following relations from

Eqs. (35), (37) and (38):

ACP (B
+ ! D0K+) =

1� |RDK |2
1 + |RDK |2 , (51)

and

�DK = �L
3

� arg(RDK)/2 . (52)

The RGE and the factorization approximation gives

|AR/AL| = 4.99|V R
ub/V

L
ub| , (53)

as described in Appendix B 3.

We evaluate RDK in Eq. (50) for the allowed value of V R
ub/V

L
ub shown in Fig. 2 and

�L
3

determined by the unitarity triangle taking � as a free parameter. Then, we obtain

theoretical prediction on ACP (B+ ! D0K+) and arg(RDK) as presented in Fig. 8. We find

that the scenario of the CPV RHC is disfavored at the 1� level despite the moderate current

experimental constraint though it is not excluded at 2�. This is due to the enhancement

of the RHC contribution in the DK mode shown in Eq. (53) compared to those in the ⇡⇡

and ⇢L⇢L modes in Eqs. (31) and (33). This notable sensitivity, though it is derived in the

factorization approximation, might play an important role in future experiments in order to

probe or exclude the CPV RHC.

D. Prediction of the MSSM

It has been pointed out that the b ! u RHC is induced by radiative corrections in the

MSSM [4, 32]. The gluino-squark one-loop diagram with simultaneous insertions of the

left-right mixing in the (3,3) component of the down-type squark mass matrix (�dLR
33

) and

that in the (1,3) component of the up-type squark mass matrix (�uRL
13

) gives the dominant

contribution and one obtains

V R
ub =

↵s

36⇡
�dLR
33

�uRL
13

, (54)

19
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1412.2530, T. Goto, Y. Okada, T. Shindou, MT, R. Watanabe
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Neutrino oscillation
Lepton flavors are NOT conserved.

Charged lepton sector µ ! e�, ⌧ ! µ�, · · ·

⌫i ! ⌫j

suppressed by the small neutrino masses

BR ⇠ (m⌫/mW )4 . 10�54

Supersymmetric models

flavor mixing among scalar leptons 

new source of LFV at SUSY mass scale



Minoru TANAKA

LFV experiments

45

µ ! e�

MEG BR(µ ! e�) < 5.7⇥ 10�13

MEG II (expectation) ⇠ 5⇥ 10�14

⌧ ! µ�

BR(⌧ ! µ�) < 4.4⇥ 10�8BaBar

Belle II (expectation) ⇠ 10�9
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MSSM + type-I seesaw + minimal SUGRA

II. SUPERSYMMETRIC SEESAW MODEL

A. Overview of the model

In this section, we briefly review the supersymmetric seesaw model and summarize its features.

As is well known, the seesaw mechanism describes the tiny neutrino masses by introducing a new

high mass scale. In the case of the type-I seesaw model, such a high scale is identical to the

right-handed neutrino mass scale. A minimal supersymmetric version of the type-I seesaw model

is defined by a superpotential as

W
lepton

= Y ij
E Ec

iLjH1

+ Y ij
N N c

i LjH2

+
1

2
M ij

NN c
i N

c
j , (1)

where N c, Ec, L and H
1,2 are superfields of a singlet neutrino, charged lepton, SU(2)L lepton

doublet and two Higgs doublet, respectively. The generations are denoted by i and j. Yukawa

matrices for charged leptons and neutrinos are defined as YE and YN respectively. A Majorana

mass matrix is represented as MN . The soft supersymmetry breaking terms in the lepton sector

are given by1

� Llepton

soft

= (m2

L)
ij ˜̀†

i
˜̀
j + (m2

E)
ij ẽ†i ẽj + (m2

N )ij ⌫̃†i ⌫̃j + (T ij
E ẽ†i

˜̀
jh1 + T ij

N ⌫̃i ˜̀jh2 + h.c.) , (2)

where f̃ is a superpartner of f . The quark and gauge sector are defined in the same way as in the

minimal supersymmetric standard model (MSSM). We follow the convention and notation defined

by SUSY Les Houches Accord 2 [33] in the present paper.

At a low energy scale where the heavy fields N c
i are integrated out, the e↵ective higher dimen-

sional term is given as

W
seesaw

=
1

2
Kij

N (LiH2

)(LjH2

) , (3)

KN = �Y T
NM�1

N YN , (4)

at the tree level. The neutrino mass matrix is obtained from this term after the electroweak

symmetry is broken:

mij
⌫ = Kij

Nv2 sin2 � , (5)

where v ' 174GeV and tan� is the ratio of two vacuum expectation values of the Higgs scalar

fields in the superfields H
1

and H
2

. Diagonalizing the mass matrix m⌫ results in the tiny neutrino

masses and the PMNS matrix.

1
We neglect the term ⌫̃†

i ⌫̃
†

j [25].
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We assume a universality of the soft SUSY breaking parameters as

(m2

L)
ij = (m2

E)
ij = (m2

N )ij = M2

0

�ij , T ij
N = M

0

A
0

Y ij
N , T ij

E = M
0

A
0

Y ij
E , (6)

at the GUT scale µG, where M
0

is the universal scalar mass and A
0

is the dimensionless universal

trilinear coupling. The soft breaking parameters in the squark and Higgs sector are also taken

universal. For the gaugino masses, we introduce M
1/2 assuming the GUT relation. This ansatz

clearly implies that the source of LFVs does not exist in the soft supersymmetry breaking terms at

this scale of the Lagrangian while it does in the superpotential. For details on these assumptions

and references, see in Ref. [25].

Below the GUT scale, however, the renormalization group equations (RGEs) of the parameters

in Eq. (6) generate a slepton flavor mixing. A main source of the mixing is o↵-diagonal elements

of (Y †

NYN )ij . In the approximation that all the singlet neutrinos are decoupled at a scale µR, the

contribution to the slepton mixing is represented as

(m2

L)
ij ' � 1

8⇡2

M2

0

(3 + |A
0

|2)(Y †

NYN )ij ln
µ
G

µR
, (7)

(m2

E)
ij ' 0 , (8)

(TE)
ij ' � 1

8⇡2

M
0

A
0

Ŷ ii
E (Y †

NYN )ij ln
µ
G

µR
, (9)

for i 6= j, where ŶE is the real positive matrix obtained by diagonalizing YE . To be more precise,

we need to take into account the threshold e↵ect because three right-handed neutrinos decouple

at di↵erent mass scales. The precise treatment of this threshold e↵ect modifies the calculation of

the flavor mixing in the slepton sector. As explained in Sec. III, we evaluate the LFVs by taking

these e↵ects.

B. Structure of the neutrino Yukawa matrix

Patterns of LFVs are considerably a↵ected by the structure of matrices YN and MN . Here we

summarize the parametrizations of them in our analysis. The superpotential for the lepton sector

is given in Eq. (1). We decompose YE , YN and MN in Eq. (1) as

YE = U [e]†
E ŶEU

[e]
L , (10)

YN = U [⌫]†
N ŶNU [⌫]

L , (11)

MN = U [M ]†

N M̂NU [M ]⇤

N , (12)

where ŶE , ŶN and M̂N are real positive diagonal matrices and U [e]†
E , U [⌫]†

N , U [M ]†

N , U [e]
L , U [⌫]

L and U [M ]

N

are unitary matrices. We define the rotated fields as L[a] = U [a]
L L (for a = e, ⌫), Ec[e] = U [e]⇤

E Ec

6

at GUT scale

18 parameters in

Source of LFV

YN , MN

9 in the light neutrino masses and PMNS

18-9=9 left for cLFV
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We numerically determine UG

⌫ and mG

⌫ which reproduce the PMNS matrix and the neutrino masses

at the low energy scale by an iterative method. We note that sG
12

, �m2,G
32

and �m2,G
21

in Eq. (22)

are sensitive to the running e↵ect compared with the other components [38, 39].

C. Structure of YN

In the present work, we investigate LFV signals in two cases with specific structures in YN

and MN : degenerate case and non-degenerate case. For each case, we apply the appropriate

parametrization which we have shown in the previous section.

Degenerate case:

First, we consider degenerate case (D case), which means that the Majorana mass matrix is assumed

to be proportional to the unit matrix. In this case, we apply Parametrization 1. We decompose

the matrix ON as

ON = ÕNeiAN , AN =

0

BBB@

0 a b

�a 0 c

�b �c 0

1

CCCA
(23)

where ÕN is a real orthogonal matrix and AN is a real anti-symmetric matrix AT
N = �AN . The

matrix ÕN is irrelevant for the LFV signals since the source of the flavor mixing comes from Y †

NYN .

Thus we take ÕN = 1 without loss of generalities. The neutrino Yukawa matrix YN is written as

YN =

p
M̃N

v sin�
eiAN

0

BBB@

p
m⌫1

p
m⌫2

p
m⌫3

1

CCCA
U †

⌫ , (24)

where M̃N is the degenerate Majorana mass eigenvalue. As for the parameters in AN , we take

a = b = 0 (b = c = 0) for normal (inverted) hierarchical mass spectrum of the neutrinos since the

contributions of a and b (b and c) are subdominant according to the analysis in Ref. [26]. This can

be understood as follows. If we expand the o↵-diagonal element (Y †

NYN )ij by a, b and c assuming

|a|, |b|, |c| ⌧ 1, the contributions of a, b and c appear at the leading order in the combinations of

|a|pm⌫1m⌫2 , |b|pm⌫1m⌫3 and |c|pm⌫2m⌫3 . In the case of the normal hierarchy, the contributions

of |a|pm⌫1m⌫2 and |b|pm⌫1m⌫3 are not significant compared with |c|pm⌫2m⌫3 . For example, the

10

–‹ = 0

–‹ = 0

–‹ = 0

±2fi

±2fi

≠fi

≠fi

≠fi

fi

fi

fi

–‹ = 0

±2fi

±2fi

≠fi

≠fi

≠fi

fi

fi

fi

BR(⌧ ! µ�)/BR(µ ! e�) > 1800(100)

Belle II reach
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element (Y †

NYN )
12

which induces µ ! e� can be represented as

(Y †

NYN )
12

' M̃N

v2 sin2 �

 
(m⌫2 �m⌫1) c12s12c23 + (m⌫3 �m⌫2) s13s23e

�i�⌫

+ 2i c
p
m⌫2m⌫3 s12s23e

i(↵⌫��⌫)

!
, (25)

with this approximation. The expression for the inverted hierarchy is obtained in a similar way.

Non-degenerate case:

Second, we consider non-degenerate case (ND case) for the structure of MN . In this case, we apply

Parametrization 2 and Y †

NYN can be considered as an input. Thus the Majorana mass matrix MN

is determined by Eq. (20). To see how large B(⌧ ! µ�) can be within the constraint on B(µ ! e�),

we take ✓̄
12

= ✓̄
13

= 0. Accordingly, YN is parametrized as

YN =

0

BBB@

y
1

y
2

y
3

1

CCCA

0

BBB@

1 0 0

0 cos ✓ sin ✓

0 � sin ✓ cos ✓

1

CCCA
PL , (26)

where ✓ = ✓̄
23

. We also take PL = 1 for simplicity and consider y
1

, y
2

, y
3

. O(1). Even though

µ ! e� and ⌧ ! e� do not occur in the approximation using Eqs. (7)–(9), the threshold e↵ects

generate non zero contributions to µ ! e� and ⌧ ! e�. In the case of ✓̄
12

= ✓̄
23

= 0, a similar

consideration can be applied for ⌧ ! e�.

D. Observables

In this subsection, we summarize the formulae of relevant processes. The LFV process emitting

a photon, `j ! `i�, is generated by O
7

operator which is defined as

L`!`0�
e↵

= Cij
7LOij

7L + Cij
7ROij

7R + h.c. , (27)

Oij
7

L
R
= Fµ⌫

¯̀
i�

µ⌫

✓
1⌥ �5

2

◆
`j , (28)

where �µ⌫ = (i/2)[�µ, �⌫ ] and the coe�cients Cij
7L, 7R are obtained from contributions via lepton

flavor mixing loop diagrams. Then, the decay rate is given by

�(`j ! `i�) =
m3

`j

4⇡

⇣
|Cij

7L|2 + |Cij
7R|2

⌘
, (29)

where we neglect the lepton mass in the final state. In the SM, neutrino mixings contribute to

Cij
7R with a strong suppression factor as �m2

ij/m
2

W . In a supersymmetric model, since sleptons

11
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Belle II
40 times (or more) larger statistics
A few % error in UT
Indirect search for new physics

LHCb can do 

Excess of semitauonic B decays

A good target of an earlier stage of Belle II
Testing NP with the q2 distribution

5-10 /ab
B ! D⇤⌧⌫.

LHCb
Competition and complementarity
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Right-handed b to u current
Shifts in UT phases
New direct CP asymmetries

�2, �3

Many other issues to be discussed

.........

LFV
Both MEG II and Belle II have possibilities
to observe LFV.

Large A term?
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B2TIP
Belle II Theory Interface Platform

https://belle2.cc.kek.jp/~twiki/bin/view/Public/B2TIP

WG 1: Semileptonic & leptonic decays
WG 2: Radiative & EW penguins
WG 3: phi1 & phi2
WG 4: phi3
WG 5: Charmless hadronic B decays
WG 6: Charm
WG 7: Quarkonium
WG 8: Tau, low multiplicity & EW
WG 9: New Physics

https://belle2.cc.kek.jp/~twiki/bin/view/Public/B2TIP
https://belle2.cc.kek.jp/~twiki/bin/view/Public/B2TIP
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Table of golden modes

Tags:  create new tag , view all tags

Group Observables Mode SM or CKM
Fit
Expectation

Belle 2014 Babar 2014 Belle
II 5
/ab

Belle
II 50/
ab

LHCb
2014

LHCb
8/fb

LHCb
50/fb

 WG

page

   

           

   0.053 0.018  0.2 0.04

    0.028 0.011    

    0.100 0.033    

           

 , 

, 

  (Belle + Babar)     

           

 WG page      

           

Hadronic B

WG page

  0.07 0.04    

           

Semileptonic

& Leptonic

WG page

inclusive
  1.2%     

 
exclusive

  1.8% 1.4%    

 
inclusive

  3.4% 3.0%    

 
exclusive (Hadronic tag)

  4.4% 2.3%    

           

 
(Hadronic tag)

  10% 5%    

    20% 7%    

 
(Hadronic tag)

  5.6% 3.4%    

 
(Hadronic tag)

  4.4% 2.3%    

           

Radiative &

Electroweak

WG page

(inclusive)
  7% 6%    

   1 0.5    

           

   0.11 0.035    

   0.23 0.07    

           

        

        

           

  20%  10% 5%    

           

   –    

  –  –    

           

Charm WG

page

  2.9% 0.9%    

   3.5% 2.3%    

 Home  Public Web View Edit  Account 

 Edit Attach

Jump  Search

ObservableGroup Mode
SM or fit

Belle 2014 Babar 2014 5/ab 50

LHCb 
2014 8/fb50/ab

Belle II
50/fb

LHCb 

THeorists to fill!
Detailed explanation can be 
added to the linked page.

Experimentalists to fill!
Simulation result can be 
added to the linked page.

Decide maximum of 
5 key observable

leaving a few spaces for 
new ideas

Please 
tell us the 

responsible 
person for 

each 
process !

https://belle2.cc.kek.jp/~twiki/bin/view/Public/B2TIPGoldenModes

Lots to do. Please join us.
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P. Urquijo, B2TiP, Closing Remarks 9

Future$External$Workshops

North"America"2016"(~April/May)."USA"colleagues"are"looking"into"funding"
options"and"locations.

Next meeting is at Krakow  !

B2TiP 2nd Workshop 

27-29th April 2015

Crown Piast Hotel

The timetable is typically, 

- One day equivalent of  plenary session

- Two days equivalent of  parallel session

住所

-15mins from city 
-In front of  the institute

See you there!


