New Physics in $\bar{B} \to D^{(*)} \tau \bar{\nu}$

Minoru Tanaka Osaka U

Based on works with Y.Sakaki, A. Tayduganov and R. Watanabe

WRU Symposium 2016
"Interplay between LHC and Flavor Physics"
Nagoya, Mar. 15 2016

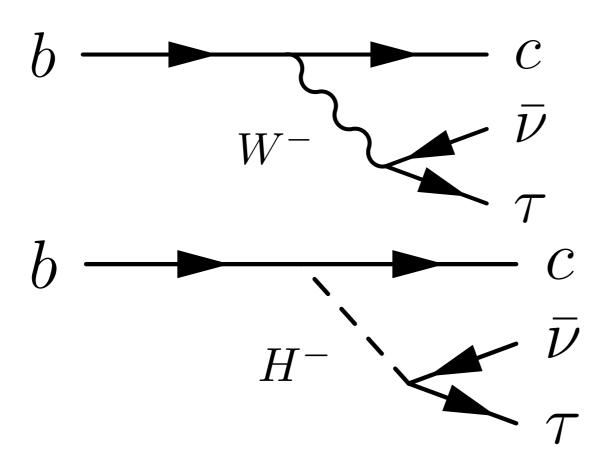
Introduction

 $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ Br ~ 0.7+1.3 % in the SM

Not rare, but two or more missing neutrinos Data available since 2007 (Belle, BABAR, LHCb)

Theoretical motivation

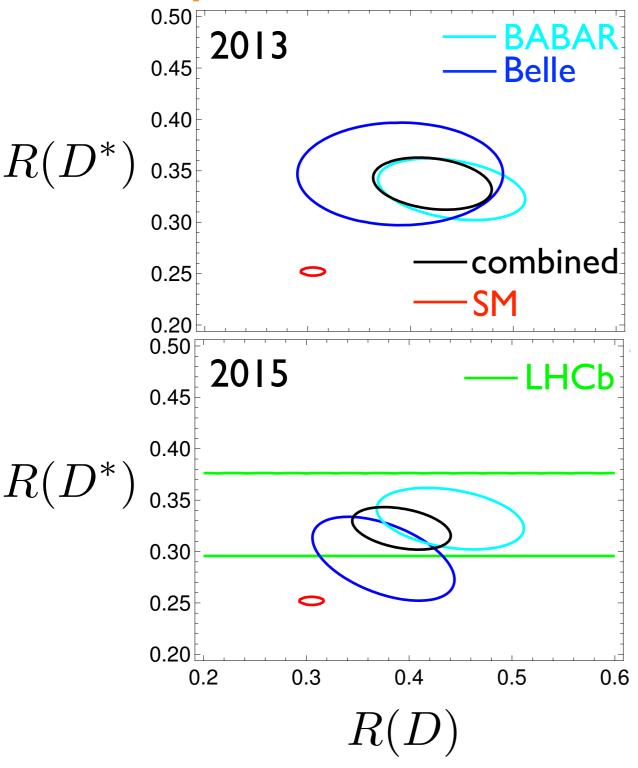
W.S. Hou and B. Grzadkowski (1992)



SM: gauge coupling lepton universality

Type-II 2HDM (SUSY)
Yukawa coupling $\propto m_b m_\tau \tan^2 \beta$

Experiments



$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell\bar{\nu}_{\ell})}$$

$$R(D) = 0.421 \pm 0.058$$
 $R(D^*) = 0.337 \pm 0.025$ $\sim 3.5\sigma$

Y. Sakaki, MT, A. Tayduganov, R. Watanabe

$$R(D) = 0.391 \pm 0.041 \pm 0.028$$
 $R(D^*) = 0.322 \pm 0.018 \pm 0.012$ ~3.9 σ HFAG

Belle, Moriond 2016 $R(D^*) = 0.302 \pm 0.030 \pm 0.011$

Standard model predictions

Theoretical uncertainty: form factors

data from
$$\bar{B} \to D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu)$$

- + HQET or pQCD
- + lattice QCD

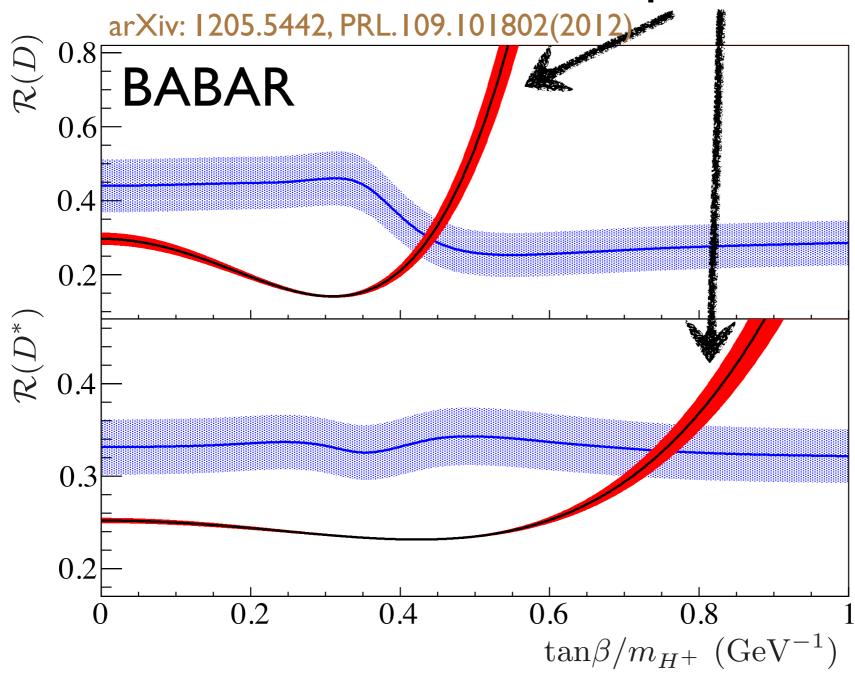
```
R(D) = 0.296 \pm 0.016 (Fajfer, Kamenik, Nisandzic) 0.302 \pm 0.015 (Sakaki, MT, Tayduganov, Watanabe) 0.299 \pm 0.011 (Bailey et al.) 0.337^{+0.038}_{-0.037} (Fan, Xiao, Wang, Li) 0.391 \pm 0.041 \pm 0.028 (Exp. HFAG)
```

$$R(D^*)=0.252\pm0.003$$
 (Fajfer, Kamenik, Nisandzic) 0.252 ± 0.004 (Sakaki, MT, Tayduganov, Watanabe) $0.269^{+0.021}_{-0.020}$ (Fan, Xiao, Wang, Li)

 $0.322 \pm 0.018 \pm 0.012$ (Exp. HFAG)

Charged Higgs boson

predictions of 2HDM II



Charged Higgs excluded at 99.8% CL

Model-independent approach

MT, R.Watanabe, arXiv1212.1878, PRD87.034028(2013).

Effective Lagrangian for $b \to c \tau \bar{\nu}$ all possible 4f operators with LH neutrinos

$$\begin{split} -\mathcal{L}_{\text{eff}} &= 2\sqrt{2}G_{F}V_{cb}\sum_{l=e,\mu,\tau} \left[(\delta_{l\tau} + C_{V_{1}}^{l})\mathcal{O}_{V_{1}}^{l} + C_{V_{2}}^{l}\mathcal{O}_{V_{2}}^{l} + C_{S_{1}}^{l}\mathcal{O}_{S_{1}}^{l} + C_{S_{2}}^{l}\mathcal{O}_{S_{2}}^{l} + C_{T}^{l}\mathcal{O}_{T}^{l} \right] \\ &\quad \mathbf{SM} \\ \mathcal{O}_{V_{1}}^{l} &= \ \overline{c}_{L}\gamma^{\mu}b_{L}\ \overline{\tau}_{L}\gamma_{\mu}\nu_{Ll} \ , \end{split} \quad \quad \mathbf{SM-like, RPV, LQ,W'} \end{split}$$

$$\mathcal{O}_{V_2}^l = \bar{c}_R \gamma^\mu b_R \, \bar{ au}_L \gamma_\mu
u_{Ll} \,, \qquad \mathsf{RH} \; \mathsf{current}$$

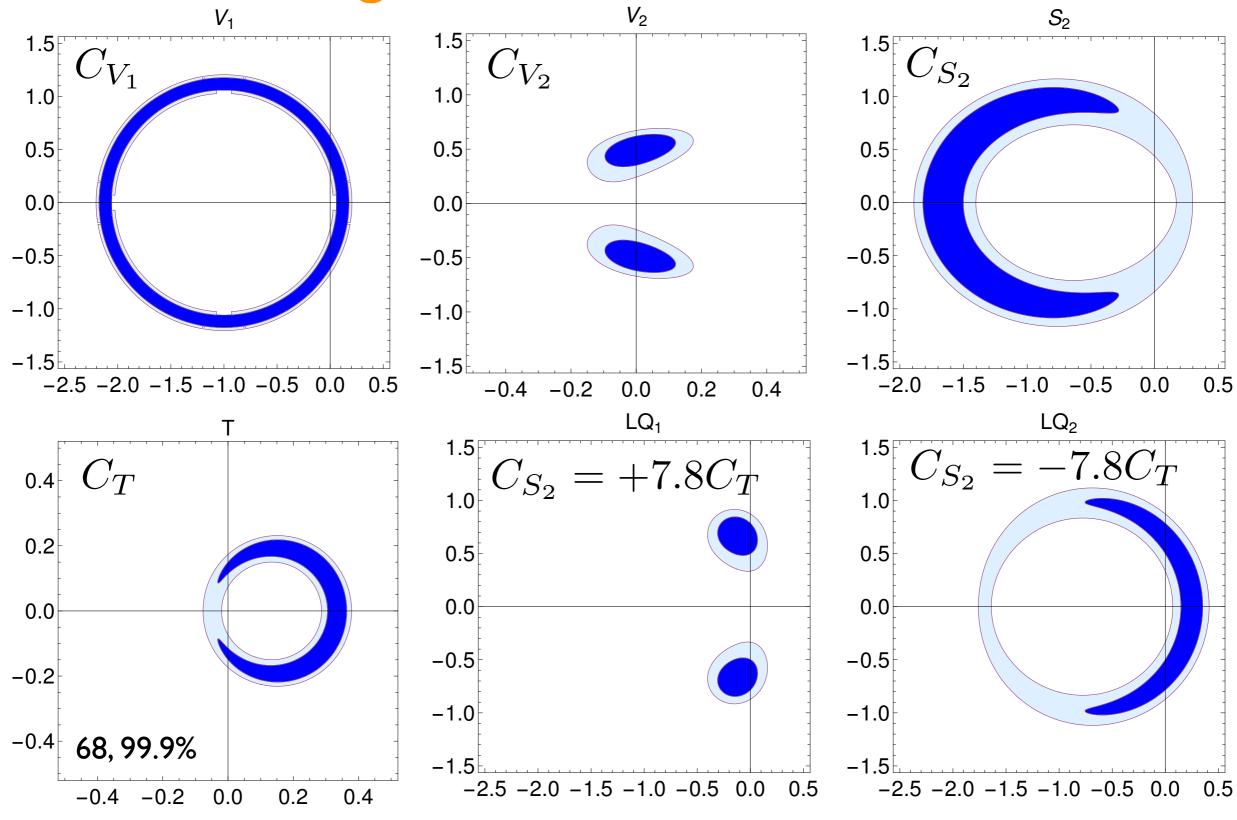
$$\mathcal{O}_{S_1}^l = \bar{c}_L b_R \bar{\tau}_R \nu_{Ll}$$
, charged Higgs II, RPV, LQ

$$\mathcal{O}_{S_2}^l = \bar{c}_R b_L \, \bar{ au}_R
u_{Ll} \,,$$
 charged Higgs III, LQ

$$\mathcal{O}_T^l = \bar{c}_R \sigma^{\mu\nu} b_L \, \bar{\tau}_R \sigma_{\mu\nu} \nu_{Ll}$$
 LQ

Allowed regions

Minoru TANAKA



7

Leptoquark models

Y. Sakaki, MT, A. Tayduganov, R. Watanabe arXiv:1309.0301; PRD88, 094012(2013)

Six types of LQ possible Buchmueller, Ruckl, Wyler (1987)

	S_1	S_3	V_2	R_2	U_1	U_3
spin	0	0	1	0	1	1
F = 3B + L	-2	-2	-2	0	0	0
$SU(3)_c$	3*	3*	3*	3	3	3
$SU(2)_L$	1	3	2	2	1	3
$U(1)_{Y=Q-T_3}$	1/3	1/3	5/6	7/6	2/3	2/3

$$C_{V_{1}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl}g_{1L}^{23*}}{2M_{S_{1}^{1/3}}^{2}} - \frac{g_{3L}^{kl}g_{3L}^{23*}}{2M_{S_{3}^{1/3}}^{2}} + \frac{h_{1L}^{2l}h_{1L}^{k3*}}{M_{U_{1}^{2/3}}^{2}} - \frac{h_{3L}^{2l}h_{3L}^{k3*}}{M_{U_{3}^{2/3}}^{2}} \right], \quad \text{constrained by}$$

$$C_{V_{2}}^{l} = 0,$$

$$C_{V_{3}}^{l} = 0,$$

8

$$C_{S_1}^l = \frac{1}{2\sqrt{2}G_F V_{cb}} \sum_{k=1}^3 V_{k3} \left[-\frac{2g_{2L}^{kl} g_{2R}^{23*}}{M_{V_2^{1/3}}^2} - \frac{2h_{1L}^{2l} h_{1R}^{k3*}}{M_{U_1^{2/3}}^2} \right],$$

$$C_{S_2}^l = \frac{1}{2\sqrt{2}G_F V_{cb}} \sum_{k=1}^3 V_{k3} \left[-\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_1^{1/3}}^2} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{2M_{R_2^{2/3}}^2} \right],$$

$$C_T^l = \frac{1}{2\sqrt{2}G_F V_{cb}} \sum_{k=1}^3 V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{8M_{S_1^{1/3}}^2} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{8M_{R_2^{2/3}}^2} \right],$$

disfavored

$$C_{S_2}(m_{
m LQ}) = \pm 4C_T(m_{
m LQ})$$
 RG
 $C_{S_2}(m_b) = \pm 7.8C_T(m_b)$

q2 distribution

Y. Sakaki, MT, A. Tayduganov, R. Watanabe arXiv: 1412.3761; PRD91, 14028 (2015)

Several possible NP scenarios

$$V_1: C_{V_1} = 0.16 \; (0.12) \qquad (\dots) \; {
m current \; best \; fits}$$
 $V_2: C_{V_2} = 0.01 \pm 0.60i \; (0.01 \pm 0.51i)$ $S_2: C_{S_2} = -1.75 \; (-1.67)$ $T: C_T = 0.33 \; (0.34)$ ${
m LQ}_1: C_{S_2} = 7.8C_T = -0.17 \pm 0.80i \; (-0.12 \pm 0.69i)$ ${
m LQ}_2: C_{S_2} = -7.8C_T = 0.34 \; (0.25)$

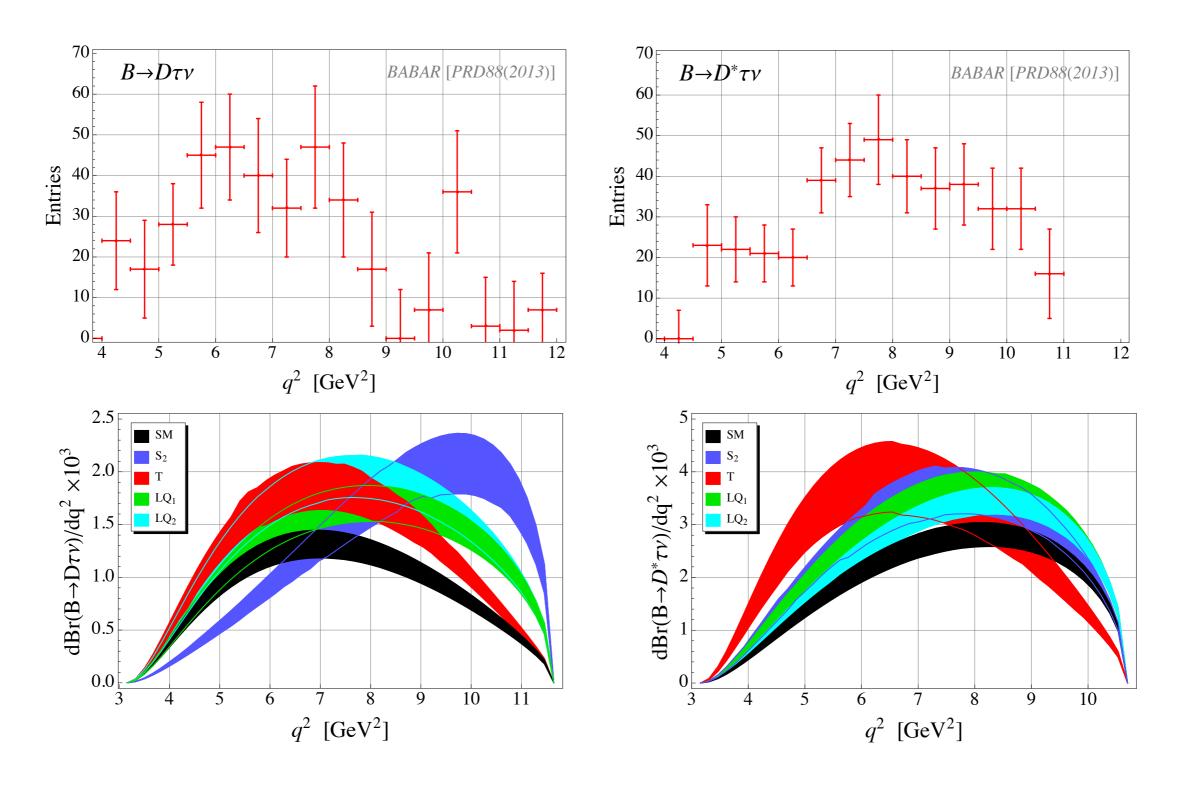
How to discriminate: other observables

 $A_{FB}, P_{\tau}, P_{D^*}$ rather hard to measure

9

$$q^2 = (p_B - p_{D^{(*)}})^2$$
 easier

Implication of the BABAR q2 data



p value

model	$\overline{B} \to D \tau \overline{\nu}$	$\overline{B} \to D^* \tau \overline{\nu}$	$\overline{B} \to (D + D^*)\tau\overline{\nu}$
SM	54%	65%	67%
V_1	54%	65%	67%
V_2	54%	65%	67%
S_2	(0.02%)	37%	0.1%
T	58%	0.1%	1.0%
LQ_1	13%	58%	25%
LQ_2	21%	72%	42%

 S_2 , T disfavored

 $\mathrm{LQ}_{1,2}$ (combinations of $S_2,\ T$) allowed

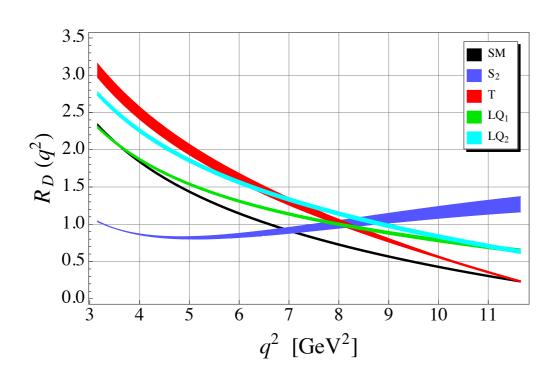
Ratio of the q2 distributions

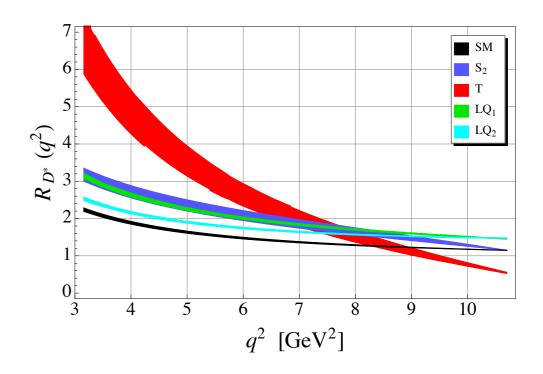
$$R_{D}(q^{2}) \equiv \frac{d\mathcal{B}(\overline{B} \to D\tau \overline{\nu})/dq^{2}}{d\mathcal{B}(\overline{B} \to D\ell \overline{\nu})/dq^{2}} \frac{\lambda_{D}(q^{2})}{(m_{B}^{2} - m_{D}^{2})^{2}} \left(1 - \frac{m_{\tau}^{2}}{q^{2}}\right)^{-2}$$

$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D^* \tau \overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D^* \ell \overline{\nu})/dq^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^{-2}.$$

$$\lambda_{D^{(*)}}(q^2) = ((m_B - m_{D^{(*)}})^2 - q^2)((m_B + m_{D^{(*)}})^2 - q^2)$$

No Vcb dependence, less form factor uncertainties





Simulated data vs tested models

 χ^2 of the binned $R_{D^{(*)}}(q^2)$

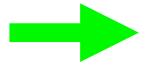
Required luminosity to exclude the tested model

\mathcal{L} [fb ⁻¹]		model							
		SM	V_1	V_2	S_2	T	LQ_1	LQ_2	
"data"	V_1	1170		10^{6}	500	900	4140	2860	
		(270)		(X)	(X)	(X)	(X)	(1390)	
	V_2	1140	10^{6}		510	910	4210	3370	
		(270)	(X)		(X)	(X)	(X)	(1960)	
	S_2	560	560	540		380	1310	730	
		(290)	(13750)	(36450)		(X)	(35720)	(4720)	
	T	600	680	700	320		620	550	
		(270)	(X)	(X)	(X)		(X)	(1980)	
	LQ_1	1010	4820	4650	1510	800		5920	
		(270)	(X)	(X)	(X)	(X)		(1940)	
	LQ_2	1020	3420	3990	1040	650	5930		
		(250)	(1320)	(1820)	(20560)	(4110)	(1860)		

(...): integrated quantities

99.9 % CL

 $L \lesssim 6 \text{ ab}^{-1} \text{ in most cases}$



A good target at an earlier stage of Belle II

0.5 0.2 Belle II sensitivity at 40 $\operatorname{Im}[C_{S_1}]$ ${\rm Im}[C_{V_2}]$ -0.2Assuming exp. = SM for $R(D)_{\mathbb{R}[\mathcal{E}_{v_i}]} R(D)$ 0.00 $Re[C_{V_2}]$ $\mathcal{L}=40 \text{ ab}^{-1}$ blue R $\mathcal{L} = 40 \text{ ab}^{-1}$ 68% CL 99.9% CL 0.2 0.5 0.2 $\operatorname{Im}[C_{V_2}]$ $Im[C_T]$ ${\rm Im}[C_{S_2}]$ 0.0 -0.05-0.2-0.2-0.10-1.0-0.4-0.80.4 - 0.6.3 = 0.4 - 0.02 0.0.0 0.1 0.2.2-2.0 -1.5 -1.0 -0.5-0.050.00 0.05 0.10 -0.10 $-0.04 - 0.02\ 0.00\ 0.02\ 0.04\ 0.06\ 0.08$ $Re[C_{V_1}]$ $Re[C_{V_2}]$ $Re[C]_{S_2}$ $Re[C_T]$ $\mathcal{L}=40 \text{ ab}^{-1}$ $\mathcal{L} = 40 \text{ ab}^{-1}$ $\mathcal{L}=40 \text{ ab}^{-1}$ 68% CL 68% CL $\mathcal{L} = 40 \text{ ab}^{-1}$ 68% CL 99.9% CL 99.9% CL 99.9% CL 0.4 99.9% CL 0.10 0.4 0.2 0.2 0.2 0.05 $\operatorname{Im}[C_{S_2}]$ ${\rm Im}[C_{S_2}]$ ${\rm Im}[C_{S_2}]$ $\operatorname{Im}[C_T]$ 0.0 0.0 0.00 -0.2-0.05-0.2-0.4-0.4-0.10 $LQ_1: C_{S_2} = +7.8C_T$ -0.6 LQ_2 : $C_{S_2} = -7.8C_T$ -0.20.05 0.0 $-0.4 -0.3 -0.2 -0.1 \ 0.0 \ 0.1 \ 0.2$ -0.050.00 -0.60.2 -0.10-0.04-0.02 0.00 0.02 0.04 0.06 0.08 $Re[C_{S_2}]$ $Re[C_{S_2}]$ $Re[C_{S_2}]$ $Re[C_T]$ 7(10), 5(7), 5(6)0.2 14 Minoru TANAKA 0.0

99.970 CL

Other flavor signals of LQ

Scalar LQ S_1 (3*, 1, 1/3) Bauer, Neubert 1511.01900

Tree:
$$B \to X_s \nu \bar{\nu}, \ K^{(*)} \nu \bar{\nu}$$

 $D \to \mu^+ \mu^-$

Loop: $b \to s\ell\bar{\ell}$

$$R_K = rac{\Gamma(B o K \mu^+ \mu^-)}{\Gamma(B o K e^+ e^-)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$
 $(g-2)_{\mu}, \ au o \mu \gamma$

Vector LQ U_3 (3, 3, 2/3) Fajfer, Kosnik 1511.06024

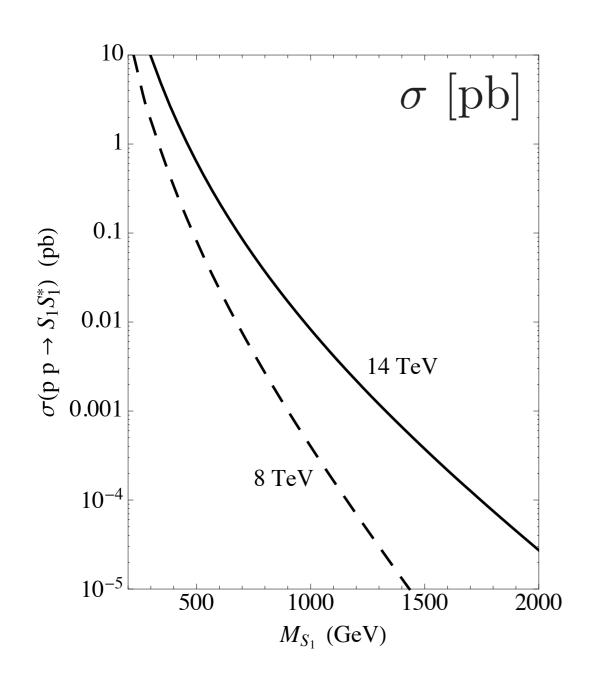
Tree:
$$B \to X_s \nu \bar{\nu}, \ K^{(*)} \nu \bar{\nu}$$

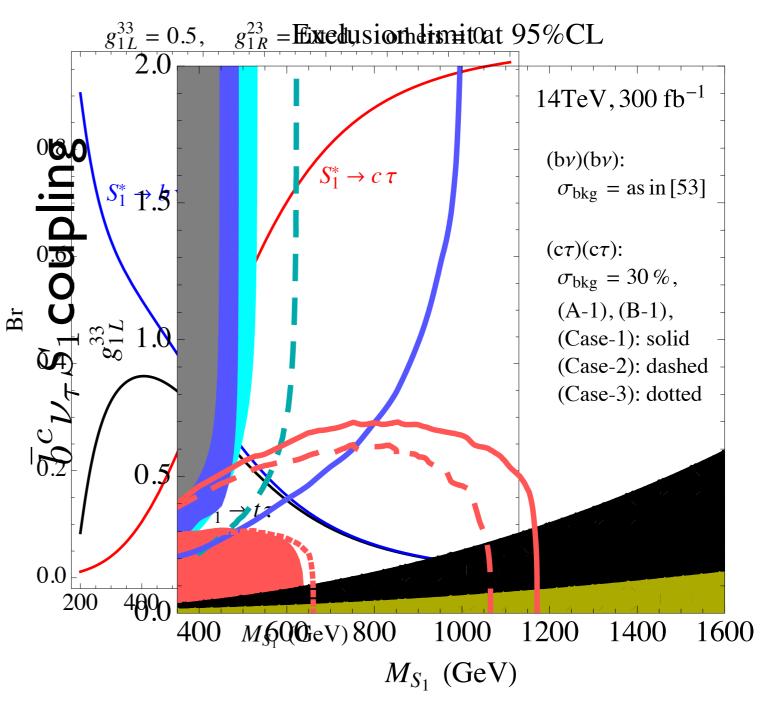
 $b \to s \ell \bar{\ell}, \ P_5', \ R_K$
 $t \to b \tau^+ \nu$

Search for a scalar LQ at LHC

 $S_1 (\mathbf{3}^*, \mathbf{1}, 1/3)$

Dumont, Nishiwaki, Watanabe, to appear





Outlook

Excess of semitauonic B decays $R(D), R(D^*) \sim 4\sigma$

- Testing NP with the q2 distribution

 The earlier stage of Belle II ~ 5-10 /ab
- Other observables $A_{FB},\ P_{\tau},\ P_{D^*},\ R(X_c)$ Belle II, LHCb prospect?
- Flavor structure of possible NP

$$(\bar{u}b)(\bar{ au}
u)$$
 ? $B^- \to auar{
u}$, $B \to \pi auar{
u}$ Belle, I50906521 Bernlochner, I50906938

MFV Freytsis, Ligeti, Ruderman 150608896

U(2) Barbieri et al. 151201560