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Introduction

2

Semi-tauonic B decays
B̄ � D(�)� �̄ W�

b

�
�̄
c

Experiments 

R(D) � B(B̄ ⇥ D⇥ �̄� )
B(B̄ ⇥ D⇤�̄�)

= 0.440± 0.058± 0.042

R(D�) � B(B̄ ⇥ D�⇥ �̄� )
B(B̄ ⇥ D�⇤�̄�)

= 0.332± 0.024± 0.018

arXiv: 1205.5442BABAR 2012

Belle 2007, 2009, 2010

Combined: R(D) = 0.42± 0.06
R(D�) = 0.34± 0.03
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1.9σ
2.9σ 3.5σR(D)

R(D�)

Theory (SM)

(Bailey et al., lattice)

R(D) = 0.297± 0.017 (BABAR, Fajfer et al.)
0.302± 0.015 (MT, Watanabe)
0.316± 0.012± 0.007
0.31± 0.02 (Becirevic et al.)

R(D�) = 0.252± 0.003 (BABAR, Fajfer et al.)
(MT, Watanabe)0.251± 0.004
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H�

b

⇥
�̄
c

Charged Higgs contribution

Type-II 2HDM  (SUSY)
W.S. Hou and B. Grzadkowski (1992),
M.T. (1995),  ....

Sensitive to the charged Higgs 
if tanβ is large.

m� tan �

mb tan�

/ mbm⌧ tan2 �
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But, negative interference.

charged Higgs excluded at 99.8% CL

6

tistical and systematic uncertainties on the signal PDFs
and background distributions.

We extract the branching fraction ratios as R(D(∗)) =
(Nsig/Nnorm)/(εsig/εnorm), where Nsig and Nnorm refer
to the number of signal and normalization events and
εsig/εnorm is the ratio of their efficiencies derived from
simulations. Table I shows the results of the fits for the
four individual samples as well as an additional fit in
which we impose the isospin relationsR(D0) = R(D+) ≡
R(D) and R(D∗0) = R(D∗+) ≡ R(D∗). The statistical
correlations are −0.59 for R(D0) and R(D∗0), −0.23 for
R(D+) and R(D∗+), and −0.45 for R(D) and R(D∗).
We have verified that the values of R(D(∗)) from fits to
samples corresponding to different run periods are con-
sistent. We repeated the analysis varying the selection
criteria over a wide range, corresponding to changes in
the signal-to-background ratios between 0.3 and 1.3, and
also arrive at consistent values of R(D(∗)).

The systematic uncertainties on R(D) and R(D∗) af-
fecting the fit are dominated by the limited understand-
ing of the D∗∗("/τ)ν backgrounds [31] (5.8% and 3.7%),
the continuum and BB backgrounds (4.9% and 2.7%),
and the PDFs for the signal and normalization decays
(4.3% and 2.1%). The uncertainties in the efficiency
ratios εsig/εnorm are 2.6% and 1.6%; they do not af-
fect the significance of the signal and are dominated by
the limited size of the MC samples. Uncertainties due
to the FFs, particle identification, final-state radiation,
soft-pion reconstruction, and others related to the detec-
tor performance largely cancel in the ratio, contributing
only about 1%. The individual systematic uncertainties
are added in quadrature to define the total systematic
uncertainty, reported in Table I.

There is a positive correlation between some of the
systematic uncertainties on R(D) and R(D∗), and, as a
result the correlation of the total uncertainties is reduced
to −0.48 forR(D0) andR(D∗0), to −0.15 forR(D+) and
R(D∗+), and to −0.27 for R(D) and R(D∗).

The statistical significance of the signal is determined
as Σstat =

√

2∆(lnL), where ∆(lnL) is the change in
the log-likelihood between the nominal fit and the no-
signal hypothesis. The statistical and dominant system-
atic uncertainties are Gaussian. The overall significance
is determined by scaling the statistical significance with

the total uncertainty, Σtot = Σstat×σstat/
√

σ2
stat + σ∗2

syst.

Here, σstat is the statistical uncertainty and σ∗
syst is the

total systematic uncertainty affecting the fit. The signif-
icance of the B → Dτ−ντ signal is 6.8σ, the first such
measurement exceeding 5σ.

To compare the measured R(D(∗)) with the SM pre-
dictions we have updated the calculations in Refs. [8, 32]
taking into account recent FF measurements. Averaged
over electrons and muons, we find R(D)SM = 0.297 ±
0.017 and R(D∗)SM = 0.252±0.003. At this level of pre-
cision, additional uncertainties could contribute [8], but

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

R
(D

)
R
(D

∗
)

tanβ/mH+ (GeV−1)

FIG. 2. (Color online) Comparison of the results of this anal-
ysis (light grey, blue) with predictions that include a charged
Higgs boson of type II 2HDM (dark grey, red). The SM cor-
responds to tanβ/mH+ = 0.

the experimental uncertainties are expected to dominate.

Our measurements exceed the SM predictions for
R(D) and R(D∗) by 2.0σ and 2.7σ, respectively. The
combination of these results, including their −0.27 cor-
relation, yields χ2 = 14.6 for two degrees of freedom,
corresponding to a p-value of 6.9× 10−4. Thus, the pos-
sibility of both the measured R(D) and R(D∗) agreeing
with the SM predictions is excluded at the 3.4σ level.

Figure 2 shows the effect that a charged Higgs boson
of the type II 2HDM [7, 33] would have on R(D) and
R(D∗) in terms of the ratio of the vacuum expectation
values tanβ ≡ v2/v1, and the mass of the charged Higgs
mH+ . We estimate the effect of the 2HDM on our mea-
surements by re-weighting the simulated events at the
matrix element level for 20 values of tanβ/mH+ over the
[0.05, 1]GeV−1 range. We then repeat the fit with up-
dated PDF shapes and εsig/εnorm values. The increase
in the uncertainty on the efficiency ratio is estimated for
each value of tanβ/mH+ . The other sources of systematic
uncertainty are kept constant in relative terms.

The measured values of R(D) and R(D∗) match
the predictions of this particular Higgs model for
tanβ/mH+ = 0.44 ± 0.02 and tanβ/mH+ = 0.75± 0.04,
respectively. However, the combination of R(D) and
R(D∗) excludes the type II 2HDM charged Higgs boson
with a 99.8% confidence level for any value of tanβ/mH+ .
This calculation is only valid for values of mH+ greater
than about 10GeV [4, 7]. The region for mH+ ≤ 10GeV
has already been excluded by B → Xsγ measurements
[34], and, therefore, the type II 2HDM is excluded in the
full tanβ–mH+ parameter space.

In summary, we have measured the B → Dτ−ντ and
B → D∗τ−ντ decays relative to the decays to light lep-

predictions of 2HDM II

BaBar
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Model-independent approach
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The e�ective Lagrangian that contains all conceivable four-Fermi operators is written as

�Le� = 2
⌥
2GFVcb

⇧

l=e,µ,⌅

�
(⇥l⌅ + C l

V1
)Ol

V1
+ C l

V2
Ol

V2
+ C l

S1
Ol

S1
+ C l

S2
Ol

S2
+ C l

TOl
T

⇥
, (4)

where the four-Fermi operators are defined by

Ol
V1

= c̄L�
µbL �̄L�µ⌃Ll , (5)

Ol
V2

= c̄R�
µbR �̄L�µ⌃Ll , (6)

Ol
S1

= c̄LbR �̄R⌃Ll , (7)

Ol
S2

= c̄RbL �̄R⌃Ll , (8)

Ol
T = c̄R⌥

µ⇤bL �̄R⌥µ⇤⌃Ll , (9)

and C l
X denotes the Wilson coe⌅cient of Ol

X . Here we assume that the neutrinos are left-

handed. The neutrino flavor is specified by l, and we take all cases of l = e, µ and �

into account in the contributions of new physics. Since the neutrino flavor is not observed

in the experiments of bottom decays, the neutrino mixing does not a�ect the following

argument provided that the Pontecorvo-Maki-Nakagawa-Sakata matrix is unitary. The SM

contribution is expressed by the term of ⇥l⌅ in Eq. (4). We note that the tensor operator

with the opposite set of quark chiralities identically vanishes; c̄L⌥µ⇤bR �̄R⌥µ⇤⌃Ll = 0.

B. Helicity Amplitudes

The helicity amplitudes of B̄ ⇤ D� ⌃̄ and B̄ ⇤ D�� ⌃̄ for all the cases are summarized as

⇧

l=e,µ,⌅

M�� ,�M
l =

⇧

l=e,µ,⌅

⇤
⇥l⌅ M�� ,�M

SM +M�� ,�M
V1,l

+M�� ,�M
V2,l

+M�� ,�M
S1,l

+M�� ,�M
S2,l

+M�� ,�M
T,l

⌅
,

(10)

where ⌅⌅ is the helicity of the tau lepton, ⌅M = s indicates the amplitude of B̄ ⇤ D� ⌃̄,

that of B̄ ⇤ D�� ⌃̄ is defined with its helicity ⌅M = ±1, 0. M�� ,�M
SM represents the SM

contribution, and other terms in the right-hand side stand for new physics contributions.

The SM amplitude is given by [41, 42]

M�� ,�M
SM =

GF⌥
2
Vcb

⇧

�

⇤�H
�M
� L��

�,⌅ , (11)

4

Effective Lagrangian for
all possible 4-fermi operators with LH neutrinos

b� c⇥ �̄

SM

The e�ective Lagrangian that contains all conceivable four-Fermi operators is written as

�Le� = 2
⌥
2GFVcb

⇧

l=e,µ,⌅

�
(⇥l⌅ + C l

V1
)Ol

V1
+ C l

V2
Ol

V2
+ C l

S1
Ol

S1
+ C l

S2
Ol

S2
+ C l

TOl
T

⇥
, (4)

where the four-Fermi operators are defined by

Ol
V1

= c̄L�
µbL �̄L�µ⌃Ll , (5)

Ol
V2

= c̄R�
µbR �̄L�µ⌃Ll , (6)

Ol
S1

= c̄LbR �̄R⌃Ll , (7)

Ol
S2

= c̄RbL �̄R⌃Ll , (8)

Ol
T = c̄R⌥

µ⇤bL �̄R⌥µ⇤⌃Ll , (9)

and C l
X denotes the Wilson coe⌅cient of Ol

X . Here we assume that the neutrinos are left-

handed. The neutrino flavor is specified by l, and we take all cases of l = e, µ and �

into account in the contributions of new physics. Since the neutrino flavor is not observed

in the experiments of bottom decays, the neutrino mixing does not a�ect the following

argument provided that the Pontecorvo-Maki-Nakagawa-Sakata matrix is unitary. The SM

contribution is expressed by the term of ⇥l⌅ in Eq. (4). We note that the tensor operator

with the opposite set of quark chiralities identically vanishes; c̄L⌥µ⇤bR �̄R⌥µ⇤⌃Ll = 0.

B. Helicity Amplitudes

The helicity amplitudes of B̄ ⇤ D� ⌃̄ and B̄ ⇤ D�� ⌃̄ for all the cases are summarized as

⇧

l=e,µ,⌅

M�� ,�M
l =

⇧

l=e,µ,⌅

⇤
⇥l⌅ M�� ,�M

SM +M�� ,�M
V1,l

+M�� ,�M
V2,l

+M�� ,�M
S1,l

+M�� ,�M
S2,l

+M�� ,�M
T,l

⌅
,

(10)

where ⌅⌅ is the helicity of the tau lepton, ⌅M = s indicates the amplitude of B̄ ⇤ D� ⌃̄,

that of B̄ ⇤ D�� ⌃̄ is defined with its helicity ⌅M = ±1, 0. M�� ,�M
SM represents the SM

contribution, and other terms in the right-hand side stand for new physics contributions.

The SM amplitude is given by [41, 42]

M�� ,�M
SM =

GF⌥
2
Vcb

⇧

�

⇤�H
�M
� L��

�,⌅ , (11)

4

V−A

V+A

S+P

S−P

Tensor

SM-like

RH current

charged Higgs (II)

charged Higgs

GUT?
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Observables

R(D) � B(B̄ ⇥ D⇥ �̄� )
B(B̄ ⇥ D⇤�̄�)

R(D�) � B(B̄ ⇥ D�⇥ �̄� )
B(B̄ ⇥ D�⇤�̄�)

branching fractions

tau longitudinal polarizations
PL(D), PL(D�)

where ! ¼ E"ð‘Þ=E# with E"ð‘Þ being the "ð‘Þ energy in
the q rest frame andB"ð‘Þ denotes the branching fraction of
#! "$ (#! ‘ !$$).

The functions f and g for #! "$ are well known and
given by

fðq2; !Þ ¼ 1=%#; gðq2; !Þ ¼ ð2! $ 1Þ=%2
#; (10)

where we neglect the pion mass for simplicity, and the
range of ! is ð1$ %#Þ=2 % ! % ð1þ %#Þ=2.

As for #! ‘ !$$, ignoring the ‘ mass, the decay distri-
bution is described by

fðq2; !Þ ¼ 16

3

!2

ð1$ %2
#Þ3

½9ð1$ %2
#Þ $ 4ð3þ %2

#Þ!(;

(11)

gðq2; !Þ ¼ $ 16

3

!2

ð1$ %2
#Þ3
%#½3ð1$ %2

#Þ $ 16!(; (12)

for 0 % ! % ð1$ %#Þ=2, and

fðq2; !Þ ¼ 1þ %# $ 2!

3%#ð1þ %#Þ3
½5ð1þ %#Þ2

þ 10ð1þ %#Þ! $ 16!2(; (13)

gðq2; !Þ ¼ 1þ %# $ 2!

3%#ð1þ %#Þ3
1

%#
½ð1þ %#Þ2

þ 2ð1þ %#Þ! $ 8ð1þ 3%#Þ!2(; (14)

for ð1$ %#Þ=2 % ! % ð1þ %#Þ=2. Equations (13) and
(14) reduce to the more familiar functions in the collinear
limit %# ! 1, see, e.g. Ref. [34].

We can determine PLðq2Þ by measuring the ! distribu-
tion for fixed q2 in Eq. (9). The statistical uncertainty of the
ideal experiment is given by [32,33]

&PLðq2Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðq2Þ

p
Sðq2Þ

; (15)

where Nðq2Þ is the number of signal events for fixed q2 (or
in a bin of q2, more practically) and

Sðq2Þ ¼
"Z

d!
g2ðq2; !Þ

fðq2; !Þ þ PLðq2Þgðq2; !Þ

#
1=2

: (16)

For the average polarization PL in Eq. (8), we obtain

&PL ¼ 1ffiffiffiffi
N

p
S
; (17)

where N is the total number of signal events, and the
average sensitivity S is given by

S ¼
"
1

"

Z
dq2

d"

dq2
S$2ðq2Þ

#$1=2
: (18)

Assuming the SM and neglecting the uncertainties in the
form factors discussed in Sec. IV, we obtain S ¼ 0:60 and

0.23 for #! "$ and #! ‘ !$$, respectively. These values
vary less than 20% even in the presence of charged Higgs
boson taking the constraint from the branching fraction
into account.
The expected uncertainty in PL is &PL ) 0:4 with N )

100 for #! ‘ !$$, which corresponds to the present experi-

mental status [22,23]. As for #! "$, &PL )
0:3=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
""="‘

p
, is expected in the present experiments, where

the branching fractions of #! "$ and #! ‘ !$$ are taken
into account, and ""ð‘Þ represents the efficiency of the #!
"$ (#! ‘ !$$) mode. At the super B factory with inte-
grated luminosity of 50 ab$1, N ) 2000ð3000Þ for #!
"$ (#! ‘ !$$) is obtained based on the Monte Carlo simu-
lation in Ref. [25] and thus &PL ) 0:04ð0:08Þ is expected.1

III. HELICITYAMPLITUDES AND DECAY RATES

In the presence of charged Higgs boson, both the W
boson and the charged Higgs boson contribute to the
helicity amplitude of !B ! D# !$. We describe their contri-
butions in turn.
The W boson exchange amplitude M'#

W is written as
[40,41]

M '#
W ðq2; cos(#Þ ¼

GFffiffiffi
2

p Vcb

X

'W

)'WH'WL
'#
'W
; (19)

where Vcb is the cb element of the Cabibbo-Kobayashi-
Maskawa matrix, 'W ¼ *, 0, s denotes the virtual W
helicity, and the metric factor )'W is given by )*;0 ¼ 1
and )s ¼ $1. The hadronic amplitudeH'W that represents
the process !B ! DW+ is defined by

H'W ðq2Þ ¼ *++ð'WÞhDðpDÞj !c,+ð1$ ,5Þbj !BðpBÞi; (20)

where *+ð'WÞ is the polarization vector of the virtual W

boson. The leptonic amplitude L'#'W that represents the

process W+ ! # !$# is defined by

L'#'W ðq
2; cos(#Þ ¼ *+ð'WÞ

, h#ðp#;'#Þ !$#ðp$Þj !#,+ð1$ ,5Þ$#j0i:
(21)

Here, we introduce the hadronic form factors h*ðwÞ
[42],

hDðv0Þj !c,+bj !BðvÞi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ½hþðwÞðvþ v0Þ+

þ h$ðwÞðv$ v0Þ+(; (22)

where v+ ¼ p+B=mB, v
0+ ¼ p+D=mB and w ¼ v - v0. The

hadronic amplitudes are written in terms of these form
factors:

1We assume that efficiencies of #! "$ and #! -$ are the
same.

TAU LONGITUDINAL POLARIZATION IN . . . PHYSICAL REVIEW D 82, 034027 (2010)

034027-3

sensitivity S: PL(D)

PL(D�) no estimation yet
is used in BaBar 2012.� � ���̄

S(⇤ � ⇥�) � 0.60
S(⇥ � ⇤��̄) � 0.23
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D* polarization

In contrast to B̄ ⇤ D�⇥̄, the more than one form factors, which are A1(w) and R1,2(w),

contribute to B̄ ⇤ D⇥�⇥̄. In order to extract them from the experimental data, the experi-

mentalist apply following parametrization to A1(w) and R1,2(w);

A1(w) = A1(1)
�
1� 8⇤2A1

z + (53⇤2A1
� 15)z2 � (231⇤2A1

� 91)z3
⇥
, (41)

R1(w) = R1(1)� 0.12(w � 1) + 0.05(w � 1)2 , (42)

R2(w) = R2(1) + 0.11(w � 1)� 0.06(w � 1)2 . (43)

The form of Eq. (41) is based on Ref. [46] as well as V1(w). The heavy quark e⇥ective

theory is applied to Eq. (42) and Eq. (43), but one consider the leading term R1(1) and

R2(1) as the fitting parameters. The HFAG determines these parameters as follows; ⇤2A1
=

1.24±0.04, R1(1) = 1.41±0.049, R2(1) = 0.844±0.027. The form factor R3(w) only emerge

into B̄ ⇤ D⇥⌅ ⇥̄ and is estimated by using heavy quark e⇥ective theory. As a result, the

function of R3(w) is approximately expressed as

R3(w) = 1.22� 0.052(w � 1) + 0.026(w � 1)2 . (44)

III. THEORETICAL PREDICTIONS AND EXPERIMENTAL CONSTRAINTS

A. Observable and theoretical uncertainty

There are several measurable quantities which reflect the spin structure of new physics

operators in B̄ ⇤ D(⇥)⌅ ⇥̄. The decay process B̄ ⇤ D⌅ ⇥̄ has two such quantities, that is the

decay rate and the tau polarization. In this article, we define them as

R(D) =
�+(D) + ��(D)

�(B̄ ⇤ D�⇥̄)
, P� (D) =

�+(D)� ��(D)

�+(D) + ��(D)
, (45)

respectively, where �±(D) represent the decay rate with �� = ±1/2 and �(B̄ ⇤ D�⇥̄) is

the decay rate of B̄ ⇤ D�⇥̄. Thanks to these definitions, the uncertainties that come from

Vcb and overall form factors V1(1) vanish. The decay process B̄ ⇤ D⇥⌅ ⇥̄ also has R(D⇥),

P� (D⇥), and in addition D⇥ polarization defined as

PD� =
�(D⇥

L)

�(D⇥
L) + �(D⇥

T )
, (46)

where D⇥
L/T represent Longitudinal/Transverse mode of D⇥. The uncertainties of Vcb and

A1(1) are also omitted as same as B̄ ⇤ D⌅ ⇥̄. The new physics operator a⇥ect the magnitude

8

S(D� � D�) � 0.66

q2 distribution
1
�

d�
dq2 (needed in polarization measurements)

Effects of NP operators

Assumption: SM + one NP op.

C⇥
X = |C⇥

X |ei�X
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corresponds to O⇥
X with �X = ⇥/2. From these results, we find that the sensitivity of the

magnitude of the Wilson coe⇥cient varies depending on each operator. And we also find

that the theoretical uncertainty is su⇥ciently smaller than the recent experimental accuracy.

Therefore, we use the central value of the theoretical input following this article. In addition,

we evaluate the allowed region of the Wilson coe⇥cient using the ⇤2 analysis of R(D) and

R(D�) in Fig. 3.
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FIG. 1: The predictions on the branching ratios as a function of the absolute value of the Wilson

coe⇥cient |C⇥
X | for X = V1,2, S1,2, T . The predictions of the new physics e�ect for the operators

Oe,µ
X correspond to the lines for �X = ⇥/2 in these graphs.
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FIG. 2: The predictions on P⇥ (D), P⇥ (D�) and PD� as a function of the absolute value of the

Wilson coe⇥cient |C⇥
X | for X = V1,2, S1,2, T . The predictions of the new physics e�ect for the

operators Oe,µ
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B. Relations with the decay rates

At first, we show the relation with the decay rates in the presence of new physics operator.

The di�erence between D and D� mesons emerges into the structure of the amplitude and

such a di�erence is reflected by each decay rate of B̄ � D(�)⇥ �̄. When some new physics

operator exist, its pattern of the contribution to the decay rate of B̄ � D⇥ �̄ and B̄ � D�⇥ �̄

will be di�erent from each other operators.

In Fig. 4, we show the relation with R(D) and R(D�) when the new physics operator

is a�ected. The point in the shaded region is available when the Wilson coe⌅cient C l
X is

determined in each cases, and this each region is peculiar to each new physics operator. In

particular, we find that R(D) is more sensitive to the scalar type operators OS1 and OS2

than R(D�), as expected (since B̄ and D are both pseudo-scalar meson). On the other hand,

R(D�) has the sensitivity to the tensor type operator OT . Since the vector type new physics

operator OV1 is the same as SM one, it only contributes to the overall decay rates. Therefore,
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C. Correlations between the decay rate and the polarization

In turn, we discuss the correlations between the decay rate and the polarization. As

stated above, the tau polarization in B̄ ⇥ D(⇥)⇥ �̄ and the D⇥ polarization in B̄ ⇥ D⇥⇥ �̄

are useful to extract the new physics information. We plot the relations with the decay rate

and the tau polarization, and with the decay rate and D⇥ polarization in Fig. 5. In this

analysis, we find the specific feature in the case of scalar and vector type operators.

In spite that there are two free parameters (real and imaginary part) in the Wilson

coe⇤cient C l
X , the polarizations, P� (D(⇥)) and PD� , have one-to-one correspondence to the

decay rate in the presence of scalar type operator as the figures show. It is easy to understand

this relation. The both scalar operators, OS1 andOS2 , only contribute to �+(D) and �+(D⇥
L).

Therefore, the identities written as

�
�+(D

(⇥)) + ��(D
(⇥))

⇥ �
1� P� (D

(⇥))
⇥
= ��(D

(⇥)) , (47)

[�(D⇥
T ) + �(D⇥

L)] (1� PD�) = �(D⇥
T ) , (48)

imply that the right-hand side is determined by SM, and then the polarizations are correlated

to the total decay rate as in Fig. 5. As a result, we cannot discriminate OS1 from OS2 in

13
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FIG. 6: Three particular situations in the light of the discrimination of the new physics contribution:

(a) R(D) = 0.20, R(D�) = 0.28, (b) R(D) = 0.28, R(D�) = 0.30, (c) R(D) = 0.50, R(D�) = 0.25.

this relations, but these correlations are particular predictions in the scalar type operators

dominated case.

The Wilson coe⇤cient of SM-like operator OV1 in B̄ � D(�)⇥ �̄ and of the right-handed

quark current OV2 in B̄ � D⇥ �̄ does not a�ect the polarizations by definition. Then these

relations in Fig. 5 are the typical prediction in the case that the vector type operator is

dominated.

The operator OV2 in B̄ � D�⇥ �̄ and the tensor operator OT in both processes have no

such a specific relation, but the covered regions in these cases are partly distinguishable.

We conclude that this analysis predict the typical correlations between the decay rate and

the polarizations in each new physics operator dominated cases, but we can not completely

distinguish the e�ect of the new physics operator from the others only by this analysis.

IV. MODEL-INDEPENDENT IDENTIFICATION OF NEW PHYSICS

In this section, we illustrate how to distinguish the new physics e�ect from the others

by use of the set of two relations we have previously shown and the q2 distribution of

the decay rate. It is natural that we at first know the values of R(D) and R(D�) by

experiment. And then, from these values we know the Wilson coe⇤cient C l
X in each new

physics dominated case. Therefore based on these knowledge, we can predict the other

measurable quantities such as the polarizations and q2 distributions. For more detail, we

consider the three particular situations:

14

Three situations

R(D)

R
(D

� )

0.2 0.4 0.6 0.8 1.00.1

0.2

0.3

0.4

0.5
T V2V1

S1

S2

R(D)

R
(D

� )

0.2 0.4 0.6 0.8 1.00.1

0.2

0.3

0.4

0.5
T V2V1

S1

S2

R(D)

R
(D

� )

0.2 0.4 0.6 0.8 1.00.1

0.2

0.3

0.4

0.5
T V2V1

S1

S2

(a) (b) (c)

・ ・
・

FIG. 6: Three particular situations in the light of the discrimination of the new physics contribution:
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this relations, but these correlations are particular predictions in the scalar type operators

dominated case.

The Wilson coe⇤cient of SM-like operator OV1 in B̄ � D(�)⇥ �̄ and of the right-handed

quark current OV2 in B̄ � D⇥ �̄ does not a�ect the polarizations by definition. Then these

relations in Fig. 5 are the typical prediction in the case that the vector type operator is

dominated.

The operator OV2 in B̄ � D�⇥ �̄ and the tensor operator OT in both processes have no

such a specific relation, but the covered regions in these cases are partly distinguishable.

We conclude that this analysis predict the typical correlations between the decay rate and

the polarizations in each new physics operator dominated cases, but we can not completely

distinguish the e�ect of the new physics operator from the others only by this analysis.

IV. MODEL-INDEPENDENT IDENTIFICATION OF NEW PHYSICS

In this section, we illustrate how to distinguish the new physics e�ect from the others

by use of the set of two relations we have previously shown and the q2 distribution of

the decay rate. It is natural that we at first know the values of R(D) and R(D�) by

experiment. And then, from these values we know the Wilson coe⇤cient C l
X in each new

physics dominated case. Therefore based on these knowledge, we can predict the other

measurable quantities such as the polarizations and q2 distributions. For more detail, we

consider the three particular situations:
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S2, V2, or T

Use pols. S2 V2 T

P� (D) 0.32 0.33 0.34

P� (D�) �0.25 �0.50 �0.41

PD� 0.55 0.46 0.40

TABLE I: The predictions of the polarizations in the situation as in Fig. 6(b).

• We can identify the type of new physics as OS2 , as in Fig. 6(a).

• We can limit the type of new physics to OS2 ,OV2 , or OT as in Fig. 6(b).

• We can limit the type of new physics to OS1 ,OS2 , or OV2 as in Fig. 6(c).

First, we suppose the situation that the measured values of R(D) and R(D�) are in the

point within the distinguishable region. For example, as in Fig. 6(a), it is the case of OS2

dominated. Under such a situation, the prediction in Fig. 5 is helpful to confirm that this

deviation from the values predicted by SM comes from the contribution of S2 type scalar

operator. We can also judge our assumption imposed in the previous section; the only one

new physics operator is dominated.

Second, we suppose the situation when we can partly distinguish the type of the new

physics that contributes to R(D) and R(D�), as in Fig. 6(b). This is the case that OS2 ,OV2 ,

or OT is dominant. Under this situation, the polarization is a powerful tool to divide this

degeneracy. From the measured values of R(D) and R(D�), we know the value of each

Wilson coe⇤cient to be CS2 ⇤ �1.3 + i 0.7, CV2 ⇤ �0.06 + i 0.31, CT ⇤ �0.015 + i 0.036

in this example. Then, we can predict the polarizations as in Table. I and find that the

predicted value is di�erent in each case.

Finally, the situation as in Fig. 6(c). This seems to be similar to the second situation, but

under this situation we cannot distinguish the contribution of OS1 from that of OS2 . This

is because the polarizations correlate to the decay rate, as shown in Eq. (47) and Eq. (48).

The predictions on this example is in Table. II. Under such a situation, the q2 distribution is

useful to divide the degeneracy ofOS1 andOS2 . Because the Wilson coe⇤cients translated by

the measured R(D) and R(D�) are di�erent, as CS1 ⇤ �0.69+ i 1.28 and CS2 ⇤ 0.21+ i 0.77

under this situation, the q2 distribution gets the di�erent shape as in Fig. 7.
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this relations, but these correlations are particular predictions in the scalar type operators

dominated case.

The Wilson coe⇤cient of SM-like operator OV1 in B̄ � D(�)⇥ �̄ and of the right-handed

quark current OV2 in B̄ � D⇥ �̄ does not a�ect the polarizations by definition. Then these

relations in Fig. 5 are the typical prediction in the case that the vector type operator is

dominated.

The operator OV2 in B̄ � D�⇥ �̄ and the tensor operator OT in both processes have no

such a specific relation, but the covered regions in these cases are partly distinguishable.

We conclude that this analysis predict the typical correlations between the decay rate and

the polarizations in each new physics operator dominated cases, but we can not completely

distinguish the e�ect of the new physics operator from the others only by this analysis.

IV. MODEL-INDEPENDENT IDENTIFICATION OF NEW PHYSICS

In this section, we illustrate how to distinguish the new physics e�ect from the others

by use of the set of two relations we have previously shown and the q2 distribution of

the decay rate. It is natural that we at first know the values of R(D) and R(D�) by

experiment. And then, from these values we know the Wilson coe⇤cient C l
X in each new

physics dominated case. Therefore based on these knowledge, we can predict the other

measurable quantities such as the polarizations and q2 distributions. For more detail, we

consider the three particular situations:

14

S1, S2, or V2

S1,2 V2

P� (D) 0.62 0.33

P� (D�) �0.50 �0.50

PD� 0.46 0.43

TABLE II: The predictions of the polarizations in the situation as in Fig. 6(c).
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FIG. 7: The w distribution of the decay rate of B̄ ⇥ D⌅ ⇥̄ and B̄ ⇥ D�⌅ ⇥̄. The (red) line,

(magenta) dashed line, and (light gray) dot–dashed line represent the distribution in the case that

OS1 ,OS2 and OV2 is dominated respectively as in Fig. 6(c).

V. MODEL ANALYSIS

In this section, we consider some new physics models which a�ect B̄ ⇥ D(�)⇥ �̄ and apply

our analysis to them.

Type I Type II TypeX TypeY

⇤d cot2 � tan2 � �1 �1

⇤u � cot2 � 1 1 � cot2 �

TABLE III: The parameters in each type of the 2HDM [53–56].
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OS1 ,OS2 and OV2 is dominated respectively as in Fig. 6(c).

V. MODEL ANALYSIS

In this section, we consider some new physics models which a�ect B̄ ⇥ D(�)⇥ �̄ and apply

our analysis to them.

Type I Type II TypeX TypeY

⇤d cot2 � tan2 � �1 �1

⇤u � cot2 � 1 1 � cot2 �

TABLE III: The parameters in each type of the 2HDM [53–56].
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A. 2HDM and MSSM

As known well, the charged Higgs in the Two-Higgs-Doublet-Model(2HDM) can a�ect

these processes and its e�ect may be enhanced depending on the value of the parameter.

In order to forbid the tree level flavor changing neutral current, Z2 symmetry is generally

imposed on the Higgs doublets. As a result, there are four 2HDMs of the distinct type. We

can summarize such a e�ect into the e�ective Lagrangian written as [53–56],

L2HDM
e� = 2

⌃
2GFVcb

�
m�mb

m2
H±

⌅d c̄LbR +
m�mc

m2
H±

⌅u c̄RbL

⇥
⌃̄R⇤L , (49)

where ⌅d and ⌅u are parameters which stand for the ratio of two Higgs vacuum expectation

values. The detailed form is represented as in Table. III, and mH± is the mass of the charged

Higgs boson. The Wilson coe⌅cients we have defined in Eq. (4) are as follows;

C�
S1

= �mbm�

m2
H±

⌅d , (50)

C�
S2

= �mcm�

m2
H±

⌅u . (51)

It is easy to find that the charged Higgs e�ect on the decay rate can be enhanced if ⌅d or ⌅u

have a large value. Then, the case that ⌅u = 1 or ⌅d = �1 is not suitable to explain the recent

experimental data since the required value of the charged Higgs mass is too small. The case

that ⌅u = � cot2 � or ⌅d = cot2 � with cot2 � ⇥ 1 is also unnatural since the top Yukawa

coupling becomes unperturbativity. The bound from this requirement results in tan� � 0.4

[53]. Therefore, ⌅d = tan � is only available and natural case to have a large value, that is,

only C�
S1

in 2HDM of type II can be enhanced. However this enhancement is again not

suitable to explain the recent experimental result, because of the negative interference with

the SM contribution. The parameter ⌅d is real positive in the 2HDM of type II, and then

in terms of the e�ective Lagrangian it corresponds to C�
S1

with its phase ⇥S1 = ⇧. As shown

in Fig. 1, this feature does not match the di�erence between SM prediction and the recent

experimental result. The recent experimental study in Ref. [64] suggest that this model has

been ruled out with a 99.8% confidence level for any parameter region. In our analysis using

the combined experimental value, the best fit p–value in this model is O(10�4). Therefore

we also suggest that it seems to be ruled out.

The contribution of the minimal supersymmetric standard model(MSSM) to B̄ ⇤ D(⇥)⌃ ⇤̄

corresponds to that of the 2HDM of type II at tree level, and one find that C�
S1

and C�
S2
,
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2HDMs

model (MSSM) is the THDM with a supersymmetric rela-
tion [2] among the parameters of the Higgs sector, whose
Yukawa interaction is of type II, in which only a Higgs
doublet couples to up-type quarks and the other couples to
down-type quarks and charged leptons. On the other hand,
a TeV-scale model to try to explain neutrino masses, dark
matter, and baryogenesis has been proposed in Ref. [7]. In
this model the Higgs sector is the two Higgs doublet with
extra scalar singlets, and the Yukawa interaction corre-
sponds to the type-X THDM, in which only a Higgs
doublet couples to quarks and the other couples to leptons.
Therefore, in order to select the true model from various
new physics candidates that predict THDMs (and their
variations with singlets), it is important to experimentally
determine the type of Yukawa interaction.

There have been many studies for the phenomenological
properties of the type-II THDM, often in the context of the
MSSM [2]. On the contrary, there have been fewer studies
for the other types of Yukawa interactions in the THDM.
The purpose of this paper is to clarify phenomenological
differences among these types of Yukawa interactions in
the THDM at the LHC and the International Linear
Collider (ILC) [15]. We first study the decay rates and
the decay branching ratios of the CP-even (h and H) and
CP-odd (A) neutral Higgs bosons and the charged Higgs
bosons (H!) in various types of Yukawa interactions. It is
confirmed that there are large differences in the Higgs
boson decays among these types of Yukawa interactions
in the THDM. In particular, in the case where the CP-even
Higgs boson h is approximately SM-like, H and A decay
mainly into !þ!# in the type-X scenario for the wide range
of parameter space, while they decay mainly into b !b in the
type-II scenario. We then summarize constraints on the
mass of H! from current experimental bounds in various
types of Yukawa interactions. In addition to the lower
bounds on the mass (mH!) from CERN LEP and
Tevatron direct searches [16,17], mH! can also be con-
strained by the B-meson decay data such as B ! Xs" [18–
21] and B ! !# [22,23], depending on the model of
Yukawa interaction. The B ! Xs" results give a severe
lower bound, mH! * 295 GeV, at the next-to-next-to-
leading order (NNLO) in the (nonsupersymmetric) type-
II THDM and the type-Y THDM [20,21], but provide no
effective bound in the type-I (type-X) THDM for tan$ *
2, where tan$ is the ratio of the vacuum expectation values
(VEVs) of the CP-even Higgs bosons. We also discuss the
experimental bounds on the charged Higgs sector from
purely leptonic observables ! ! % !## [24] and the muon
anomalous magnetic moment [25,26].

We finally discuss the possibility of discriminating be-
tween the types of Yukawa interactions at the LHC and
also at the ILC. We mainly study collider phenomenology
in the type-X THDM in the light extra Higgs boson sce-
nario, and see differences from the results in the MSSM
(the type-II THDM). We discuss the signal of neutral and

charged Higgs bosons at the LHC, which may be useful to
distinguish the type of Yukawa interaction. The feasibility
of the direct production processes from gluon fusion gg !
A (H) and the associated production from pp ! b !bA
(b !bH) is studied, and the difference in the signal signifi-
cance of their leptonic decay channels is evaluated in the
type-X THDM and the MSSM.We also consider the Higgs
boson pair production pp ! AH!,HH!, AH and find that
the leptonic decay modes are also useful to explore the type
of Yukawa interaction. At the ILC, the process eþe# !
AH is useful to examine the type-X THDM, because the
final states are completely different from the case of the
MSSM.
In Sec. II, we give a brief review of the types of Yukawa

interactions in the THDM. In Sec. III, the decay widths and
the branching ratios are evaluated in the four different
types of Yukawa interactions. Section IV is devoted to a
discussion of current experimental constraints on the
THDM in each type of Yukawa interaction. In Sec. V, the
possibility of discriminating the type of Yukawa interac-
tion at the LHC and the ILC is discussed. Conclusions are
given in Sec. VI. The formulas of the decay rates of the
Higgs bosons are listed in the Appendix.

II. TWO HIGGS DOUBLET MODELS UNDER THE
Z2 SYMMETRY

In the THDM with isospin doublet scalar fields "1 and
"2 and a hypercharge of Y ¼ 1=2, the discrete Z2 sym-
metry ("1 ! "1 and "2 ! #"2) may be imposed to
avoid FCNC at the lowest order [10]. The most general
Yukawa interaction under the Z2 symmetry can be written
as

LTHDM
yukawa ¼ # !QLYu

~"uuR # !QLYd"ddR

# !LLY‘"‘‘R þ H:c:; (1)

where "f (f ¼ u, d, or ‘) is either "1 or "2. There are
four independent Z2 charge assignments on quarks and
charged leptons, as summarized in Table I [11,12]. In the
type-I THDM, all quarks and charged leptons obtain their
masses from the VEVof"2. In the type-II THDM, masses
of up-type quarks are generated by the VEV of "2, while
those of down-type quarks and charged leptons are ac-
quired by that of "1. The Higgs sector of the MSSM is a
special THDMwhose Yukawa interaction is of type II. The
type-X Yukawa interaction (all quarks couple to "2 while

TABLE I. Variation in charge assignments of the Z2 symmetry.

"1 "2 uR dR ‘R QL, LL

Type I þ # # # # þ
Type II þ # # þ þ þ
Type X þ # # # þ þ
Type Y þ # # þ # þ

AOKI, KANEMURA, TSUMURA, AND YAGYU PHYSICAL REVIEW D 80, 015017 (2009)

015017-2

Aoki et al., PRD80, 015017(2009)

No FCNC
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Type III 2HDM: allowing FCNC in the up sector
Crivellin et al., PRD86, 054014(2012)

C�
s2
� ⇥tc

2Vcb

vm�

m2
H±

tan� � O(1)

Note that the recent CMS results even welcome a heavy
Higgs (H0, A0, H!) mass around 500 GeV.

B. B ! D!" and B ! D"!"

!d33 contributes to Ccb
R , and thus (as we see from Fig. 1)

cannot simultaneously explainRðDÞ andRðD"Þ. Thus we
are left with !u32, which contributes to B ! D"# and B !
D""# via the Feynman diagram shown in Fig. 2. In Fig. 3
we see the allowed region in the complex !u32, which gives
the correct values for RðDÞ and RðD"Þ within the 1$
uncertainties for tan% ¼ 50 and MH ¼ 500 GeV.

C. B ! !"

In principle, B ! "# can be explained either by using
!d33 (as in 2HDMs with MFV) or by using !u31, or by a
combination of both (see right plot in Fig. 1). However, !d33
alone cannot explain the deviation from the SM without
fine tuning, while !u31 is capable of doing this. We see this
from the right plot in Fig. 3, keeping in mind that !d33
generates Cub

R , while !u31 generates C
ub
L .

D. The quark mass matrix and fine tuning

The naturalness criterion of ’t Hooft states that the
smallness of a quantity is only natural if a symmetry is
gained in the limit in which this quantity is zero. This
means, on the other hand, that large accidental cancella-
tions, which are not enforced by a symmetry, are unnatural
and thus not desirable. Let us apply this reasoning to the
quark masses and CKM elements in the 2HDM. The quark
mass matrices in the 2HDM of type III are given by

mdðuÞ
ij ¼ vdðuÞY

dðuÞ
ij þ vuðdÞ!

dðuÞ
ij : (16)

Diagonalizing these quark mass matrices gives the physi-
cal quark masses and the CKM matrix. Using ’t Hooft’s
naturalness criterion we can demand the absence of fine-
tuned cancellations between vdY

d
ij (vuY

u
ij) and vu!

d
ij

(vd!
u
ij). Thus, we require that the contributions of vu!

d
ij

and vd!
u
ij to the quark masses and CKM matrix not exceed

the physical measured quantities:

jvuðdÞ!
dðuÞ
ij j ' jVijjmax½mdiðuiÞ; mdjðujÞ): (17)

From Fig. 3, we see that ’t Hooft’s naturalness criterion is
satisfied if RðDÞ, RðD"Þ and B ! "# are explained using
!u32 and !

u
31, respectively. However, if B ! "# is explained

using !d33, ’t Hooft’s naturalness criterion is violated either
because the SM contribution to B ! "# is overcompen-
sated or because jvu!

d
33j>mb.

IV. CONCLUSIONS

The decays B ! "#, B ! D"# and B ! D""# are an
excellent probe of physics beyond the SM (complementary
to the direct searches at the LHC), since they are sensitive
to lepton flavor universality violating new physics, e.g.,
Higgs bosons. The BABAR Collaboration recently reported
an excess both in B ! D"# and B ! D""# compared to

FIG. 2. Feynman diagram with a charged Higgs contributing to
B ! "# and B ! Dð"Þ"#. The dot represents the flavor-violating
interaction containing the 2HDM type III parameters !u31 and
!u32, which affect B ! "# and B ! Dð"Þ"#, respectively.

FIG. 3 (color online). Left: Allowed regions in the complex !u32 plane from RðDÞ (blue) and RðD"Þ (yellow) for tan% ¼ 50 and
mH ¼ 500 GeV. Middle: Allowed regions in the complex !u31-plane from B ! "#. Right: Allowed regions in the tan%* !u31 plane
from B ! "# for real values of !u31 and mH ¼ 400 GeV (green), mH ¼ 800 GeV (orange). The scaling of the allowed region for !u32
with tan% and mH is the same as for !u31. !

u
32 and !u31 are given at the matching scale mH.

ANDREAS CRIVELLIN, CHRISTOPH GREUB, AND AHMET KOKULU PHYSICAL REVIEW D 86, 054014 (2012)

054014-4

D

D�

Scalar leptoquark J.P. Lee, PLB526, 61(2002)

LLQ = (�ijQ̄ieRj + ��
ij ūRiLj)SLQ + h.c.

The e↵ective Lagrangian that contains all conceivable four-Fermi operators is written as

�Le↵ = 2
p

2GF Vcb

X

l=e,µ,⌧

⇥
(�l⌧ + C l

V1
)Ol

V1
+ C l

V2
Ol

V2
+ C l

S1
Ol

S1
+ C l

S2
Ol

S2
+ C l

TOl
T

⇤
, (4)

where the four-Fermi operators are defined by

Ol
V1

= c̄L�µbL ⌧̄L�µ⌫Ll , (5)

Ol
V2

= c̄R�µbR ⌧̄L�µ⌫Ll , (6)

Ol
S1

= c̄LbR ⌧̄R⌫Ll , (7)

Ol
S2

= c̄RbL ⌧̄R⌫Ll , (8)

Ol
T = c̄R�µ⌫bL ⌧̄R�µ⌫⌫Ll , (9)

and C l
X (X = V1, V2, S1, S2, T ) denotes the Wilson coe�cient of Ol

X . Here we assume that

the light neutrinos are left-handed. The neutrino flavor is specified by l, and we take all cases

of l = e, µ and ⌧ into account in the contributions of new physics. Since the neutrino flavor

is not observed in the experiments of bottom decays, the neutrino mixing does not a↵ect the

following argument provided that the Pontecorvo-Maki-Nakagawa-Sakata matrix is unitary.

The SM contribution is expressed by the term of �l⌧ in Eq. (4). We note that the tensor

operator with the opposite set of quark chiralities identically vanishes: c̄L�µ⌫bR ⌧̄R�µ⌫⌫Ll = 0.

B. Helicity Amplitudes

The helicity amplitude of B̄ !M⌧ ⌫̄ (M = D, D⇤) is written as

M�⌧ ,�M
l = �l⌧ M�⌧ ,�M

SM +M�⌧ ,�M
V1,l +M�⌧ ,�M

V2,l +M�⌧ ,�M
S1,l +M�⌧ ,�M

S2,l +M�⌧ ,�M
T,l , (10)

where �⌧ is the helicity of the tau lepton, �M = s indicates the amplitude of B̄ ! D⌧ ⌫̄, and

�M = ±1, 0 denote the D⇤ helicities. The amplitudeM�⌧ ,�M
SM represents the SM contribution

and other terms in the right-hand side stand for new physics contributions corresponding

the operators in Eqs. (5)–(9). The SM amplitude is given by [31, 32]

M�⌧ ,�M
SM =

GFp
2
Vcb

X

�

⌘�H
�M
V1,�L

�⌧
�,⌧ , (11)

4

(3,2,7/6)
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SM represents the SM contribution

and other terms in the right-hand side stand for new physics contributions corresponding

the operators in Eqs. (5)–(9). The SM amplitude is given by [31, 32]
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4
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RPV SUSY

which contain one loop correction, are written as,

C⇥
S1

= �mbm⇥

m2
H±

· tan2 �

(1 +�e tan �)(1 +�d tan �)
, (52)

C⇥
S2

= �mcm⇥

m2
H±

· 1

1 +�e tan �
. (53)

where �d (�e) represent the correction that mainly come from gluino and squark (bino

and slepton) contributions [18]. As stated in Sec. III, there is a region for C⇥
S2

to construct

the recent experimental allowed bound. But it is unlikely that OS2 operator is dominant in

MSSM.

B. R parity violation with MSSM

R parity violated superpotential with MSSM can also contribute to these processes. For

simplicity, we consider the following superpotential:

WRPV =
1

2
⇤ijkLiLjE

c
k + ⇤⇥

ijkLiQjD
c
k , (54)

where ⇤ijk and ⇤⇥
ijk are lepton and quark flavor violated couplings. In this model, there are

two kind of diagrams which have impact on B̄ ⇤ D(�)⇧ ⌅̄, that is, the slepton and down

squark exchanging diagrams. The corresponding e⇥ective Lagrangian is written as

LRPV
e� = �

3�

j=1

⇤ij3⇤⇥�
j23

2m2
l̃jL

c̄LbR ⇧̄R⌅
i
L �

3�

j=1

⇤⇥
i3j⇤

⇥�
32j

4m2
d̃jR

c̄L[⇧
c]R [⌅̄c]iRbL , (55)

where ml̃jL
(md̃jR

) is the mass of the slepton (down squark) for j-th generation. Using Fierz

identity the second term in Eq. (55) is transformed into

c̄L[⇧
c]R [⌅̄c]iRbL = �1

4
c̄L⇥

µbL ⌅̄L⇥µ⇧L. (56)

18

（渡邉君の話）

MSSM

C�
S1

= �mbm�

m2
H±

tan2 �

(1 + �e tan�)(1 + �d tan�)

C�
S2

= �mcm�

m2
H±

1
1 + �e tan�

could be large ?
�e tan� � �1
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Summary
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Effective Lagrangian

Models

Observables
R(D(�)), P� (D(�)), PD�

q2dist., etc. C�
X

2HDM’s, MSSM,
RPV, LQ, etc.

input

output

predictionconstraint
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Further study

Expected accuracy at Belle, Belle II

More on models

Better use of distributions
q2 dist.

Combination with other processes
B� � ⇥ �̄, B � X⇥ ⇥̄ , B � X��̄


