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Frontiers in particle physics
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Isotope shift new neutron-electron interaction

Energy frontier: LHC, ILC,…

Intensity frontier: B factory, muon, K, …

Cosmic frontier: CMB,…

Yb+ : �⌫/⌫ ⇠ 10�18, �⌫ ⇠ sub Hz

Temporal variation of fundamental constants
⍺, me/mp using atomic clock

Huntemann et al.  (PTB) 2016

Precision / low energy frontier
0𝝂𝜷𝜷, DM, EDM,…
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Isotope shift (IS)
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No IS for infinitely heavy and point-like nuclei
IS = MS + FS

Theoretical calculation of IS: not easy
IS ⇠ O(GHz) ⇠ O(10 µeV)

IS = ⌫A0A := ⌫A0 � ⌫A

Transition frequency difference between isotopes
h⌫A = Ei

A � Ef
A |ii

|fi
�

⌫

Mass shift:  finite mass of nuclei (reduced mass)
MS / µA0 � µA (dominant for Z<20) 

Field shift:  finite size of nuclei
(dominant for Z>40) FS / hr2iA0 � hr2iA
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Plan of talk
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Introduction (2)
King’s linearity (3)
Nonlinearities (10)

Summary and outlook (1)
Status and prospect (4)
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King’s linearity
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electronic factors
nuclear factor

King, 1963

(⌫̃1A0A, ⌫̃
2
A0A) on a straight line, King’s plot

King’s linearity eliminating the nuclear factor

⌫̃2A0A = K21 +
F2

F1
⌫̃1A0A K21 := K2 �

F2

F1
K1

Modified IS: ⌫̃tA0A := ⌫tA0A/µA0A

⌫̃tA0A = Kt + Ft hr2iA0A/µA0A

IS of two transitions:
µA0A := µA0 � µA

t = 1, 2

⌫tA0A = Kt µA0A + Ft hr2iA0A
hr2iA0A := hr2iA0 � hr2iA
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IS data of Ca+
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Gebert et al.  PRL115, 053003 (2015)

King’s plot
linear within errors

when comparing two different transitions and can be
eliminated in a King plot analysis [28,29] as shown in
Fig. 3 for the two transitions considered here. Each axis
shows the modified isotope shift mδνA;A

0 ¼ δνA;A
0
gA;A

0
,

where gA;A
0 ¼ ð1=mA − 1=mA0Þ−1, for one of the two

transitions. A straight line fit to the three data points
provides linear combinations of the field and mass shift
constants for the two transitions. An important result from
this fit is that there is no evidence for a deviation from a
straight line, confirming that (2) is a good parametrization
of the isotope shift even at the high experimental accuracy
of the measurements presented here.

A comparison of the high resolution results with pre-
vious experimental data based on collinear laser spectros-
copy [10,11] shows systematic deviations, which can be
used to calibrate experimental parameters of this technique.
Following Ref. [12] we performed a three-dimensional
King plot analysis to extract the fitting parameters kMS and
F for the two transitions. Two dimensions are those shown
in Fig. 3. In the third dimension we plot the modified
change in mean-square nuclear charge radius δhr2iA;A0

gA;A
0
,

using the previous values of δhr2i from [30], which are
based on muonic atom spectroscopy and electron scatter-
ing. The three-dimensional King plot constrains the mass
and field-shift constants, and under the assumption that (2)
is correct (i.e., the three data points are connected by a
straight line) can also be used to extract improved values of
δhr2i. To find the parameter estimates and their uncertain-
ties an acceptance-rejection Monte Carlo method was used
to generate samples consistent with the measured values
and associated uncertainties [31]. The measurement dis-
tributions were assumed to be independent uncorrelated
normals. The likelihoods of three randomly generated
points, constrained to be collinear, were used as the
acceptance criterion in the algorithm. The extracted param-
eters are shown in Table II.
The extracted field-shift and mass-shift constants pose a

strong challenge for many-body atomic theory (fourth
column of Table II), where the mass shift in particular
has proven very difficult to calculate even in the “easy” case
of single-valence-electron ions [32,33]. A comparison to
the experimental field and mass shift constants given in
[10,11] proves difficult since the derived uncertainties
depend strongly on the analysis technique and input
parameters for δhr2i. Evaluating the field and mass shift
constant from isotope shifts given in [10,11] using the
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FIG. 3 (color online). Two-dimensional King plot showing the
modified isotope shift of the 866 nm and 397 nm lines. Red
squares, previous experimental data from [10] and [11]; blue
circles, this Letter. The insets show the relevant ranges enlarged
by a factor of approximately 30 to illustrate the quality of the fit.

TABLE II. Parameters of three-dimensional King plot seeded with values of δhr2iA;40 taken from [30]. The units
for the field Fi and mass ki shift constants and the changes in mean square nuclear charge radii δhr2ij;40 are
MHz fm−2, GHz amu, and fm2, respectively. For comparison the second column for the previous data shows results
for the analysis using isotope shift data taken from [10] and [11] analyzed with the methods used in this Letter.

Parameter Previous This work Theory

F397 −283ð6Þa −281ð34Þ −281.8ð7.0Þ −285ð3Þa
−287b

k397 405.1(3.8)a 406.4(2.8) 408.73(40) 359b

427d

F866 79(4)c 80(13) 87.7(2.2) 88a

92b

k866 −1989.8ð4Þc −1990.9ð1.4Þ −1990.05ð13Þ −2207b
−2185d

δhr2i42;40 0.210(7) 0.210(7) 0.2160(49)
δhr2i44;40 0.290(9) 0.290(9) 0.2824(65)
δhr2i48;40 −0.005ð6Þ −0.005ð6Þ −0.0045ð60Þ
aMårtensson-Pendrill et al. [10].
bSafronova and Johnson [32].
cNörtershäuser et al. [11].
dThis work, based on the methods in [33].

PRL 115, 053003 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
31 JULY 2015

053003-4

modified IS

397 nm

86
6 

nm

⌫̃tA0AIS precision ~ O(100) kHz

Isotope pairs: (42, 40), (44,40), (48,40)

transition of the neutral species of the target isotope is
selectively excited using a narrow-linewidth laser [21],
followed by ionization with a second laser. After loading,
the isotopes are identified by the motional normal mode
frequencies ωi;o (i, in phase; o, out of phase) of the two-ion
crystal in the axial trapping potential, given by [22,23],

ω2
i;o ¼ ω2

z

!
1þ μ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μþ μ2

q #
; ð1Þ

where ωz is the axial normal mode frequency of a single
25Mgþ ion, μ ¼ mMg=mCa, and mMg and mCa are the
masses of the two ions in the trap. Following the technique
described in [22], the normal mode frequencies were
measured and fits of the in-phase normal mode frequencies
lead to 1.922(1), 1.889(1), 1.857(1), and 1.795(1) MHz
for a two-ion crystal containing 40Caþ, 42Caþ, 44Caþ, and
48Caþ, respectively. The measured frequencies are in
agreement with the frequencies calculated from (1) for
the measured axial normal mode frequency of a single
25Mgþ of 2.221(1) MHz.
Isotope shift measurements for the 2S1=2 → 2P1=2 tran-

sition of the different Caþisotopes were performed using
the original PRS scheme [8]. The experimental sequence of
the technique is displayed in Fig. 1(a). After Doppler
cooling, we further cool the axial modes of the two-ion
crystal to the motional ground state via sideband cooling on
25Mgþ [20]. Starting from the motional ground state of one
of the axial normal modes of the two-ion crystal, the
spectroscopy laser with a wavelength of 397 nm is applied
in 125 ns short pulses. The laser pulse repetition is matched
to the motion of the two-ion crystal, thus enhancing the
sensitivity through resonant driving and enabling the
detection of around 10 absorbed photons with a signal-
to-noise ratio of 1 [8]. A repump laser at 866 nm resonant
with the 2D3=2 → 2P1=2 transition is applied interleaved
with the spectroscopy laser pulses to prevent populating the
metastable 2D3=2 state. The spectroscopy-repump cycles
are repeated 70 times, obtaining the maximum motional
excitation detectable without saturating the signal. The
residual ground state population is measured using a red
sideband stimulated Raman adiabatic passage (STIRAP)

pulse sequence coupling two ground state hyperfine levels
in 25Mgþ [24]. The sequence consists of one of the Raman
beams being ramped up in intensity, while the other one is
ramped down. This maps the motional excitation efficiently
and independent of the motional state jn > 0i into elec-
tronic excitation of the magnesium ion. The ground- and
excited electronic states in 25Mgþ are distinguished using
the π detection technique [25]. It is based on two electron-
shelving detection pulses with an interspersed state inver-
sion using an rf π pulse. Keeping only anticorrelated
detection events improves the detection fidelity.
We extend the original PRS scheme to measure the

absolute frequency and the isotopic shifts of the open
2D3=2 → 2P1=2 transition in Caþ as shown in Fig. 1(b). The
sequence starts by initializing the Caþ ion in the 2D3=2 state
via optical pumping on the 2S1=2 → 2P1=2 transition and
subsequent sideband cooling on 25Mgþ. Absorption of a
photon on the 2D3=2 → 2P1=2 spectroscopy transition in
Caþ results in a decay to the 2S1=2 ground state with 94%
probability [26], where the ion is lost from the normal
spectroscopy cycle. Starting from the ground state of
motion of one of the ion’s normal modes, absorption of
photons from a pulsed laser tuned to resonance with the
2S1=2 → 2P1=2 transition in Caþ efficiently excites this
motional mode analogously to the original PRS technique
[8]. This corresponds to a first shelving step, since the
excitation of phonons is conditional upon the absorption of
a photon on the spectroscopy transition. Because of the
nonvanishing probability of the ion to decay to the 2D3=2
state the ion is effectively reinitialized in this state after 70
excitation pulses. Repeating the spectroscopy-motional
excitation cycle three times further enhances the motion
of the two-ion crystal to obtain the maximum motional
excitation without reaching saturation. The motional exci-
tation is mapped onto the 25Mgþ ion and detected as before.
Commercially available external cavity diode lasers are

used to excite the transitions of the different Caþ isotopes,
where the laser coupling the 2S1=2 and the 2P1=2 state is
frequency doubled to 397 nm. Both spectroscopy laser
beams are aligned collinear with the axis of the linear Paul
trap spanning a 45° angle with an external magnetic field
required for efficient cooling and detection. The polariza-
tion is aligned perpendicular to the magnetic field to couple
all magnetic substates of the involved transitions. The
frequencies of both lasers are stabilized in the infrared to
the frequency doubled output of a fiber-based optical
frequency comb using an electronic feedback loop. A
relative frequency stability of better than 10−12 is achieved
with respect to the comb for averaging times of a second.
The comb is stabilized to the 10 MHz reference signal
obtained from a hydrogen maser, which is referenced to the
SI second at the German National Metrology Institute.
The lasers are steered to the center frequencies of the

spectroscopy transitions using acousto-optical modulators
in double-pass configuration. We apply the two-point
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FIG. 1 (color online). Experimental sequence for the spectros-
copy on (a) the 2S1=2 → 2P1=2 transition and (b) the 2D3=2 →
2P1=2 transition. A detailed description is given in the text.
(c) Simplified level scheme of Caþ ions.
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Transition 1: 397 nm
Transition 2: 866 nm

2P1/2(4p)�2 S1/2(4s)

2P1/2(4p)�2 D3/2(3d)
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IS data of  Yb+
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Martensson-Pendrill et al.  PRA49, 3351 (1994)Transition 1: 369 nm
2P1/2(4f)

14(6p)�2 S1/2(4f)
14(6s) �⌫1A0A ⇠ O(1) MHz

Transition 2: 935 nm
3D[3/2]1/2(4f)

13(5d)(6s)�2 D3/2(4f)
14(5d)

Sugiyama et al.  CPEM2000

�⌫2A0A ⇠ O(10) MHz

Isotope pairs: (172, 170), (174,172), (176,172)

King’s plot
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Nonlinearities
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Particle shift (PS)
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(Z,A)

e ge

gN

h, Z
new particle 

X17, · · ·

Frequency shifts by particle exchange (Yb+ g.s.)

|�⌫| ⇠

8
>>><

>>>:

10�4 Hz Higgs (SM)

400 Hz Higgs (LHC bound)

800 Hz Z

10 MHz X17 17 MeV vector boson

<< theoretical uncertainties

Yukawa potential

V (r) = (�1)s+1 gNge
4⇡

e�mr

r
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Breakdown of the linearity by PS
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IS = MS + FS+PS

Generalized King’s relation
nonlinearity⌫̃2A0A = K21 + F21⌫̃

1
A0A+ "A0A

probe into new physics 

Delaunay et al.  arXiv:1601.05087v2

PS nonlinearity

"PS = X1

✓
X2

X1
� F2

F1

◆
Xt /

gnge
m2

as m ! 1

PS by new neutron-electron interaction
Xt(A

0 �A)⌫tA0A = Kt µA0A + Ft hr2iA0A+
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Evaluation of PS nonlinearity
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Wave function

r

R(r) point charge
finite size

Single electron approximation

Xt =
gnge
4⇡

Z
r2dr

e�mr

r

⇥
R2

it(r)�R2
ft(r)

⇤

short range force
inside the nucleus, 

nuclear scale

long range force
outside the nucleus, 

atomic scale
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Wave function outside the nucleus
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Non-relativistic (not bad for m<<100 MeV)
Thomas-Fermi model

semiclassical, statistical, self-consistent field
exact in large Z limit

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

x

(x
)

Z = 70, ne = 68

TF function
d

2
�

dx

2
= x

�1/2
�

3/2

�(0) = 1, x0�
0(x0) =

ne

Z

� 1, �(x0) = 0

One-body problem in the TF potential 

VTF(r) = �Z↵

r
�
⇣r
b

⌘
� (Z � ne)↵min

✓
1

r0
,
1

r

◆

b = (9⇡2/27Z)

1/3aB , aB = Bohr radius
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Ca+ EX TF
4p!4s 397 475
4p!3d 866 -1610

Yb+ EX TF
6p!6s 369 380
6s!4f 935 48.6

Table 2: The transition wavelengths for Ca+ and Yb+ in the unit of nm. The columns of EX stand for the experi-
mental values, and those of TF are given by the Thomas-Fermi potential.

where c(x) vanishes at x0, and n is the positive charge of the ion. Since we consider an electron in a singly
charged positive ion, the mean potential is given by the other electrons and the nucleus, namely, n = 2. The
resulting potential energy is

VTF(r) =

(
�Za

r c(x)�n a

r0
0 < x < x0

�n a

r x0 < x
, (D.3)

where x = 4 3
p

2Z/9p

2 mear. The boundary x0 is approximately given by x0 = �8.964+ 7.341Z1/3. The wave-
lengths of the relevant transition evaluated in the Thomas-Fermi potential are shown in Tab. 2 as well as the
corresponding experimental data.

E. Statistics

We use the following formulae in the numerical analysis. The data of the modified isotope shifts of two transitions
are denoted by xa and ya, and their standard deviations are sxa and sya, respectively. The subscript a indicates an
isotope pair. The term violating the linearity is represented by esa. The parameter e stands for the wave function
independent part, e.g., the coupling of the particle shift. The c

2 of the fit function can be written as

c

2 = Â
a

 
(xa � x̂a)2

s

2
xa

+
(ya � f x̂a �g� esa)2

s

2
ya

!
. (E.1)

The parameter x̂a stands for the point on the fit line to evaluate the c

2. The other parameters f , g and e are the
fitting variables. These parameters are chosen to minimize the c

2. The minimization condition for x̂a is given by

∂ c

2

∂ x̂a
=�2

xa � x̂a

s

2
xa

�2 f
ya � f x̂a �g� esa

s

2
ya

= 0, (E.2)

then,

x̂a =
s

2
yaxa + f s

2
xa(ya �g� esa)

s

2
ya + f 2

s

2
xa

. (E.3)

Substituting it to the original c

2, we obtain

c

2 = Â
a

(ya � f xa �g� esa)2

s

2
ya + f 2

s

2
xa

. (E.4)

The stability condition for the rest of the variables are

∂ c

2

∂ f
=�2Â

a

(ya � f xa �g� esa)( f s

2
xa(ya �g� esa)+s

2
yaxa)

(s2
ya + f 2

s

2
xa)

2 = 0, (E.5)

∂ c

2

∂g
=�2Â

a

ya � f xa �g� esa

s

2
ya + f 2

s

2
xa

= 0, (E.6)

∂ c

2

∂e

=�2Â
a

sa
ya � f xa �g� esa

s

2
ya + f 2

s

2
xa

= 0. (E.7)

14

Comparison to experiments

wavelength in nm

good for s and p states

poor for d and f states
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Wave function inside the nucleus
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One-body problem in the nuclear potential


d

dr2
� `(`+ 1)

r2
+ 2me{E � VA(r)}

�
rR(r) = 0

VA(r)

` = angular momentum

Series expansion:

R(r) =
X

i=0

�`
ir

`+i

VA(r) =
X

i=0

vir
i, v1 = 0

�`
1 = 0, �`

2/�
`
0 = mev0/(2`+ 3)
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Nuclear charge distribution
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hr2i = 3

5
(r2A + 5s2), hr4i = 3

7
(r4A + 14r2As

2 + 35s2)

v0 =
3Z↵

2rA

"✓
1� s2

r2A

◆
Erf

✓
rAp
2s

◆
+

r
2

⇡

s

rA
e�r2A/(2s2)

#

Helm distribution

Gaussian smearing of uniform sphere

Helm 1956

v1 = 0 no cusp at the origin

2 4 6 8 10 12 14
r [fm]

0.2

0.4

0.6

0.8

1.0

(r)/ (0)

A=173

⇢A(r) =

Z
d3r0

3

4⇡r3A
✓(rA � r0)

1

(2⇡s2)3/2
e�|r�r0|2/(2s2)

r2A = c2 + 7⇡2a2/3� 5s2, s ' 0.9 fm

a ' 0.52 fm, c ' 1.23A� 0.60 fm Lewin, Smith1996
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Seltzer moment expansion of field shift
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Seltzer 1969

hrniA0A := hrniA0 � hrniA

= Z↵
X

k=0

⇠`k
(2`+ k + 3)(2`+ k + 2)

hr2`+k+2iA0A

Note: ⇠`1 = 0 no cubic term

= Fthr2iA0A + · · · , Ft =
Z↵

6
⇠00

⇢A0A(r) := ⇢A0(r)� ⇢A(r)

⇢if (r) := R2
i (r)�R2

f (r) = r2`
X

k=0

⇠`kr
k, ` = min(`i, `f )

FS = Z↵

Z
d3rN

Z
d3re

⇢A0A(rN )⇢if (re)

|rN � re|
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Heavy particle limit
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maB � Z , aB = Bohr radius ⇠ (4 keV)

�1

⇠01 = 0 for nucl. charge distribution without cusp

less sensitive to heavier particles

"PS ⇠ O

✓
1

m4

◆
X2

X1
� F2

F1
⇠ O

✓
1

m2

◆

Berengut et al.  arXiv:1704.05068cf. "PS / 1/m3

lim
m!1

✓
X2

X1
� F2

F1

◆
= 0Ft, Xt / | it(0)|2 � | ft(0)|2

Asymptotic behavior of PS

Xt /
Z

drr2⇢itft(r)
e�mr

r
=

1

m2

X

k=0

(2`+ k + 1)!
⇠`k

m2`+k
+ · · ·
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Field shift nonlinearity
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One of the sources of nonlinearity in QED

⌫̃2A0A = K21 + F21⌫̃
1
A0A+ "A0A

" = "PS + "FS

FS = F` hr2iA0A+ Gt hr4iA0A

p state dominant: Ca+ 4p, Yb+ 6p
Wave function inside the nucleus is relevant.

"FS / Z| 0
np(0)|2

d

dA
hr4iA + · · ·
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Status and prospect
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Present constraint and future prospect
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⌫̃2A0A = K21 + F21⌫̃
1
A0A+ "A0AData fitting with
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10� error bars

Yb+

" = (�1.26± 1.35) · 10�4

when comparing two different transitions and can be
eliminated in a King plot analysis [28,29] as shown in
Fig. 3 for the two transitions considered here. Each axis
shows the modified isotope shift mδνA;A

0 ¼ δνA;A
0
gA;A

0
,

where gA;A
0 ¼ ð1=mA − 1=mA0Þ−1, for one of the two

transitions. A straight line fit to the three data points
provides linear combinations of the field and mass shift
constants for the two transitions. An important result from
this fit is that there is no evidence for a deviation from a
straight line, confirming that (2) is a good parametrization
of the isotope shift even at the high experimental accuracy
of the measurements presented here.

A comparison of the high resolution results with pre-
vious experimental data based on collinear laser spectros-
copy [10,11] shows systematic deviations, which can be
used to calibrate experimental parameters of this technique.
Following Ref. [12] we performed a three-dimensional
King plot analysis to extract the fitting parameters kMS and
F for the two transitions. Two dimensions are those shown
in Fig. 3. In the third dimension we plot the modified
change in mean-square nuclear charge radius δhr2iA;A0

gA;A
0
,

using the previous values of δhr2i from [30], which are
based on muonic atom spectroscopy and electron scatter-
ing. The three-dimensional King plot constrains the mass
and field-shift constants, and under the assumption that (2)
is correct (i.e., the three data points are connected by a
straight line) can also be used to extract improved values of
δhr2i. To find the parameter estimates and their uncertain-
ties an acceptance-rejection Monte Carlo method was used
to generate samples consistent with the measured values
and associated uncertainties [31]. The measurement dis-
tributions were assumed to be independent uncorrelated
normals. The likelihoods of three randomly generated
points, constrained to be collinear, were used as the
acceptance criterion in the algorithm. The extracted param-
eters are shown in Table II.
The extracted field-shift and mass-shift constants pose a

strong challenge for many-body atomic theory (fourth
column of Table II), where the mass shift in particular
has proven very difficult to calculate even in the “easy” case
of single-valence-electron ions [32,33]. A comparison to
the experimental field and mass shift constants given in
[10,11] proves difficult since the derived uncertainties
depend strongly on the analysis technique and input
parameters for δhr2i. Evaluating the field and mass shift
constant from isotope shifts given in [10,11] using the
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FIG. 3 (color online). Two-dimensional King plot showing the
modified isotope shift of the 866 nm and 397 nm lines. Red
squares, previous experimental data from [10] and [11]; blue
circles, this Letter. The insets show the relevant ranges enlarged
by a factor of approximately 30 to illustrate the quality of the fit.

TABLE II. Parameters of three-dimensional King plot seeded with values of δhr2iA;40 taken from [30]. The units
for the field Fi and mass ki shift constants and the changes in mean square nuclear charge radii δhr2ij;40 are
MHz fm−2, GHz amu, and fm2, respectively. For comparison the second column for the previous data shows results
for the analysis using isotope shift data taken from [10] and [11] analyzed with the methods used in this Letter.

Parameter Previous This work Theory

F397 −283ð6Þa −281ð34Þ −281.8ð7.0Þ −285ð3Þa
−287b

k397 405.1(3.8)a 406.4(2.8) 408.73(40) 359b

427d

F866 79(4)c 80(13) 87.7(2.2) 88a

92b

k866 −1989.8ð4Þc −1990.9ð1.4Þ −1990.05ð13Þ −2207b
−2185d

δhr2i42;40 0.210(7) 0.210(7) 0.2160(49)
δhr2i44;40 0.290(9) 0.290(9) 0.2824(65)
δhr2i48;40 −0.005ð6Þ −0.005ð6Þ −0.0045ð60Þ
aMårtensson-Pendrill et al. [10].
bSafronova and Johnson [32].
cNörtershäuser et al. [11].
dThis work, based on the methods in [33].
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Comparison to other constraints: vector
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 Isotope shift and King’s linearity

Linear relation of modified IS of two lines

⌫̃2A0A = K21 + F21⌫̃
1
A0AIS=MS+FS,

 Nonlinearity ⌫̃2A0A = K21 + F21⌫̃
1
A0A+ "A0A

" = "PS + "FS
Particle shift nonlinearity:

sensitive for lighter particles, m ⌧ 100 MeV

Other nonlinearities: more study needed

"PS ⇠ O(1/m4)

 Yb+ ion trap project by Sugiyama et al. (Kyoto)
�⌫ < 1 Hz ⇠ 100 kHz

possible with proved technique


