

Neutrino Physics with Atomic/Molecular Processes

Minoru TANAKA Osaka University

"Beyond the Standard Model in Okinawa"@OIST, Mar. 4, 2016

SPAN project

SPectroscopy with Atomic Neutrino

Okayama U.

K. Kawaguchi, H. Hara, T. Masuda, Y. Miyamoto, I. Nakano, N. Sasao, J. Tang, S. Uetake, A. Yoshimi, K. Yoshimura, M. Yoshimura

Other institute

M.T. (Osaka), T. Wakabayashi (Kinki), A. Fukumi (Kawasaki), S. Kuma (Riken), C. Ohae (ECU), K. Nakajima (KEK), H. Nanjo (Kyoto)

INTRODUCTION

 $\underset{V_{\rm PMNS}}{\text{Mixing:}} U = V_{\rm PMNS} P$

 $P = \text{diag.}(1, e^{i\alpha}, e^{i\beta})$ Majorana phases

Bilenky, Hosek, Petcov; Doi, Kotani, Nishiura, Okuda, Takasugi; Schechter, Valle

$$\sin^2 \theta_{12} \simeq 0.30, \ \sin^2 \theta_{23} \simeq 0.45(58), \ \sin^2 \theta_{13} \simeq 0.022$$

NuFIT (2014)

Unknown properties of neutrinos

Absolute mass

 $m_{1(3)} < 71(66) \text{ meV}, 50 \text{ meV} < m_{3(2)} < 87(82) \text{ meV}$ Mass type Dirac or Majorana

Hierarchy pattern normal or inverted

Beta decay endpoint: KATRIN absolute mass **Our approach** $E \lesssim O(eV)$ **tabletop experiment** Atomic/molecular processes absolute mass, NH or IH, D or M, δ , α , β Minoru TANAKA 6

Conventional approach $E \gtrsim O(10 \text{keV})$ **big science**

Neutrino oscillation: SK, T2K, reactors,... $\Delta m^2, \ \theta_{ij}, \ NH \text{ or IH, } \delta$

Neutrinoless double beta decays

Dirac or Majorana, effective mass

$$\left|\sum_{i} m_{i} U_{ei}^{2}\right|^{2}$$

Plan of talk

Introduction

Radiative Emission of Neutrino Pair (RENP) Paired Super-Radiance (PSR) Experiment Summary

RENP

Radiative Emission of Neutrino Pair (RENP)

A.Fukumi et al. PTEP (2012) 04D002, arXiv:1211.4904

 $|e\rangle \rightarrow |g\rangle + \gamma + \nu_i \bar{\nu}_j$

Λ-type level structure Ba, Xe, Ca+,Yb,... H2, O2, I2, ...

Atomic/molecular energy scale ~ eV or less close to the neutrino mass scale cf. nuclear processes ~ MeV Rate ~ $\alpha G_F^2 E^5 \sim 1/(10^{33} \text{ s})$ Enhancement mechanism?

R.H. Dicke, Rate enhancement by coherence Phys. Rev. 93, 99 (1954) An ensemble of N atoms in a small volume L^3 $L \ll \text{wave length} \implies e^{-ikx} \sim 1$ **Density matrix** $\rho = \rho_{gg} |g\rangle \langle g| + \rho_{ee} |e\rangle \langle e| + \rho_{eg} |e\rangle \langle g| + \rho_{ge} |g\rangle \langle e|$ Fully excited state: $|e\rangle^N = |e\rangle \cdots |e\rangle$, $\rho_{eq} = 0$ deexcitation: $\left(\sum |g\rangle\langle e|\right)\prod |e\rangle$ $= |g\rangle|e\rangle \cdots |e\rangle + |e\rangle|g\rangle \cdots |e\rangle + \cdots + |e\rangle|e\rangle \cdots |g\rangle$ $\Gamma = N\Gamma_0$ incoherent Fully coherent state: $\left[(|g\rangle + |e\rangle)/\sqrt{2} \right]^N$, $\rho_{eg} = 1/2$ $\xrightarrow{} [|g\rangle(|g\rangle + |e\rangle) \cdots (|g\rangle + |e\bar{\rangle})$ $+(|g\rangle+|e\rangle)|g\rangle\cdots(|g\rangle+|e\rangle)+\cdots]/\sqrt{2^{N}}$ $\Gamma = N(N+1)\Gamma_0/4 \propto N^2$ coherent

Macroscopic target of N atoms, volume V (n=N/V)

total amp.
$$\propto \sum_{a} e^{-i(\vec{k}+\vec{p}+\vec{p'})\cdot\vec{x}_{a}} \simeq \frac{N}{V} (2\pi)^{3} \delta^{3}(\vec{k}+\vec{p}+\vec{p'})$$

$$d\Gamma \propto n^2 V(2\pi)^4 \delta^4(q-p-p') \qquad q^\mu = (\epsilon_{eg} - \omega, -\vec{k})$$

macrocoherent amplification

RENP spectrum

D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M. Yoshimura PLB719(2013)154, arXiv:1209.4808

Energy-momentum conservation due to the macrocoherence

familiar 3-body decay kinematics

Six thresholds of the photon energy

 $\omega_{ij} = \frac{\epsilon_{eg}}{2} - \frac{(m_i + m_j)^2}{2\epsilon_{eg}} \qquad i, j = 1, 2, 3$ $\epsilon_{eq} = \epsilon_e - \epsilon_q \quad \text{atomic energy level splitting}$

Required energy resolution $\sim O(10^{-6}) \,\mathrm{eV}$ typical laser linewidth $\Delta \omega_{\mathrm{trig.}} \lesssim 1 \,\mathrm{GHz} \sim O(10^{-6}) \,\mathrm{eV}$

Photon spectrum (spin current)

Global shape

Threshold region

PSR EXPERIMENT

Paired Super-Radiance (PSR)

M. Yoshimura, N. Sasao, MT, PRA86, 013812 (2012)

 $|e\rangle \rightarrow |g\rangle + \gamma + \gamma$

Prototype for RENP proof-of-concept for the macrocoherence

Preparation of initial state for RENP coherence generation ρ_{eg} dynamical factor $\eta_{\omega}(t)$

Theoretical description to be tested Maxwell-Bloch equation Para-hydrogen gas PSR experiment @ Okayama U Y. Miyamoto et al. PTEP113C01(2014), vibrational transition of p-H2 PTEP081C01(2015) $|e\rangle = |Xv = 1\rangle \longrightarrow |g\rangle = |Xv = 0\rangle$ 2000 1500 Jinewidth (MHz) two-photon decay: $\tau_{2\gamma} \sim 10^{11}$ s 1000 500 ortho: para = 1:7.7p-H2: nuclear spin=singlet ortho: para = 3 : 1 5 10 25 15 20 30 smaller decoherence Density of pH₂ (amagat) E [eV] $1/T_2 \sim 130 \text{ MHz}$ |j> coherence production adiabatic Raman process ω_{-1} ω_{0} $\Delta \omega = \omega_0 - \omega_{-1}$ 0.52 Xv=1 $|e\rangle$ δ $= \epsilon_{eg} - \delta_{\checkmark}$ $= \omega_p + \omega_{\bar{p}}$ $\omega_{\overline{p}}$ detuning $\omega_{\rm P}$ 0.00 $X_V=0$ |g>

18

Target rollid.sells cmp. 4. 2 icomic **78** rK, **60** kHarence D: External Casit & East O Dio an InSb: 1η/diugn AntiBon MpHato **norm Tellurium ehotosof 2.584** Monochro.: Monochromator, OPG , OPA: Optical Parametric Amplification, SHG:5Second Harmonic -detector Trigger: 4587 nm 150 μJ, 2 ns

Minoru TANAKA

20

SUMMARY

Neutrino Physics with Atoms/Molecules

- RENP spectra are sensitive to unknown neutrino parameters. Absolute mass, Dirac or Majorana, NH or IH, CP
- Macrocoherent rate amplification is essential.
 Demonstrated by a QED process, PSR.
- Background-free RENP

M. Yoshimura, N. Sasao, M. T., PTEP (2015) 053B06

Waveguide (photonic crystals)

M. Yoshimura, N. Sasao, M.T., K. Tsumura, work in progress

A new approach to neutrino physics