Stable Higgs Boson as Dark Matter

Minoru TANAKA (Osaka Univ.)

Okayama, Feb. 3, 2010

Y. Hosotani, P. Ko, MT (PLB680, 179) & Y. Hosotani, N. Uekusa, MT (in progress)

Introduction

Two big issues in particle physics

Electro-Weak Symmetry Breaking

Higgs mechanism:

Not seen yet.

Naturalness and the hierarchy problem:

 $\Lambda \sim M_{\rm Pl} \sim 10^{18} \,{\rm GeV}$ vs $M_{\rm weak} \sim 10^3 \,{\rm GeV}$

Radiative corrections to Higgs mass

 $\sim O((10^{18} \,\mathrm{GeV})^2) - O((10^{18} \,\mathrm{GeV})^2) \sim O((10^3 \,\mathrm{GeV})^2)$

An alternative solution:

Gauge-Higgs unification

Dark Matter

Rotation curves of galaxies: DM in galactic halo.

Other evidences:

cluster gas, gravitational lensing, colliding clusters

Cosmic microwave background: $\label{eq:cosm} {\rm WMAP} \qquad \Omega_{\rm CDM} h^2 = 0.1131 \pm 0.0034$

How particle physics explains the dark matter? Supersymmetry Neutralino Gauge-Higgs unification ?

Stable Higgs as Dark Matter (Dark Higgs scenario)

Yomiuri newspaper, the front page on Jan. 5, 2010. Questions on the dark Higgs scenario How is it realized? a gauge-Higgs unification model Does it explain the relic abundance? a constraint on Higgs mass How do we confirm it? collider phenomenology

Gauge-Higgs Unification

Gauge field in higher dimensions Five-dimensional space-time: $x^{M} = (x^{\mu}, y)$ $x^{\mu} = (x^0, x^1, x^2, x^3)$ Gauge field: $A_M = (A_\mu), (A_y)$ 4D vector 4D scalar \ni Higgs **5D** gauge inv. Massless A_M

A potential solution to the naturalness problem!

Dynamical symmetry breaking 4D Higgs field: Wilson line (AB) phase $M^4 \times S^1$ (multiply connected) $y = 2\pi R$ y = 0 $\hat{\theta}_H(x) \sim g \int_0^{2\pi R} A_y \, dy$

 $\langle \hat{\theta}_H \rangle \neq 0$ at quantum level. Nontrivial $V_{\text{eff}}(\hat{\theta}_H)$ at I-loop.

Hosotani mechanism, 1983

Gauge symmetry is dynamically broken.

Flat space and warped space

An SO(5)xU(1) model on RS warped space

Agashe, Contino, Pomarol, 2005. Hosotani, Sakamura, 2006. Medina, Shah, Wagner, 2007. Hosotani, Oda, Ohnuma, Sakamura, 2008.

 $h_0(y) = h_0(-y)$

Discrete symmetries EWSB by Hosotani mechanism 4D Higgs field: Wilson line (AB) phase, $\theta_H(x)$ Periodicity: $\mathcal{L}(\hat{\theta}_H) = \mathcal{L}(\hat{\theta}_H + 2\pi)$ Bulk fermions: vectors (and/or tensors) of SO(5), no spinors. Reduction of period: $\mathcal{L}(\hat{\theta}_H) = \mathcal{L}(\hat{\theta}_H + \pi)$ Mirror reflection symmetry $y \to -y, A_y \to -A_y, \Psi \to \gamma_5 \Psi$ Parity: $\mathcal{L}(\hat{\theta}_H) = \mathcal{L}(-\hat{\theta}_H)$

Effective Lagrangian at the Weak Scale $\mathcal{L}_{eff} = -V_{eff}(\hat{\theta}_H) - \sum_f m_f(\hat{\theta}_H) \bar{f}f$ $+ m_W^2(\hat{\theta}_H) W^{+\mu} W^{-}_{\mu} + \frac{1}{2} m_Z^2(\hat{\theta}_H) Z^{\mu} Z \mu$

Symmetry implications:

$$V_{\text{eff}}(\hat{\theta}_H + \pi) = V_{\text{eff}}(\hat{\theta}_H) = V_{\text{eff}}(-\hat{\theta}_H),$$

$$m_{W,Z}^2(\hat{\theta}_H + \pi) = m_{W,Z}^2(\hat{\theta}_H) = m_{W,Z}^2(-\hat{\theta}_H),$$

$$m_f(\hat{\theta}_H + \pi) = -m_f(\hat{\theta}_H) = m_f(-\hat{\theta}_H).$$

Effective Interactions

Integrating out KK modes,

$$m_W(\hat{\theta}_H) \sim \cos \theta_W m_Z(\hat{\theta}_H) \sim \frac{1}{2} g f_H \sin \hat{\theta}_H ,$$

$$m_a^F(\hat{\theta}_H) \sim \lambda_a \sin \hat{\theta}_H ,$$

$$\mathcal{L}_{\text{int}} = -\frac{m_W^2}{f_H^2} H^2 W^{+\mu} W_{\mu}^- - \frac{m_Z^2}{2f_H^2} H^2 Z^{\mu} Z_{\mu} + \sum_f \frac{m_f}{2f_H^2} H^2 \bar{f} f + \cdots .$$

No odd powers of H. Higgs is STABLE!

A good candidate for WIMP DM.

Dark Higgs

Direct Detection $HN \rightarrow HN$

Collider Signals

total cross section for $m_H = 70 \,\mathrm{GeV}$

 Z_L violates the unitarity unless $s/m_{\rm KK}^2 \ll 1$. $m_{\rm KK} \sim 1.5 \,{
m TeV}$ $\sqrt{s} = 500 \,{
m GeV}$ in the following.

LC with polarizations Ideal case: $e_L^+ e_R^- \to Z_L H H$, $Z_L \nu \bar{\nu}$ $\sigma_{\rm signal} \simeq 0.12 \, {\rm fb}$ vs $\sigma_{\rm BG} \simeq 0.42 \, {\rm fb}$ $|\cos \theta| < 0.6$ is applied. Significance: $S \equiv \frac{N_{\text{signal}}}{\sqrt{N_{\text{signal}} + N_{\text{BG}}}}$

 $S = 1.4 \sqrt{L/100} \, \text{fb}^{-1}$

A few (or more) ab^{-1} is required!

LHC

Signal: Weak boson fusion

Background: Wjj, Zjj, jjj

Similar as invisible Higgs search

Signal cross section at LHC

Summary

***** Stable Higgs in gauge-Higgs unifiction is a viable candidate of dark matter.

Dark Higgs scenario

- $\star m_H \sim 70 \,\mathrm{GeV}$ is predicted.

Direct detection is likely. Exp. limits depend on the local DM density, ho_0 . $\rho_0 \simeq 0.04 \sim 0.6 \,\mathrm{GeV/cm^3}$

***** We need a few ab^{-1} or more.

both for LHC and LC.

***** Signals in KK mode production should be studied. $m_{\rm KK} \sim 1.5 \,{\rm TeV}$ Higher energy colliders? Lowering KK mass?

Backup Slides

Spin-Independent Cross Section

Uncertainties in the direct detection

Local density of CDM (not measured) $\rho_0 = 0.3 \, {\rm GeV/cm^3}$ assumed in the experiments. $\rho_0 = 0.2 \sim 0.6 \, {\rm GeV/cm^3}$ reasonable for smooth halo. $\rho_0 \sim 0.04 \, {\rm GeV/cm^3}$ (Kamionkowski and Koushiappas) possible for non-smooth halo. Effective Higgs coupling HHffmay be altered in more general models.

Minoru TANAKA