

Neutrino Physics with Atomic/Molecular Processes

M.TANAKA Osaka University

Nov. 25, 2014 @ Osaka HET seminar

SPAN project

SPectroscopy with Atomic Neutrino

Okayama U.

- K. Yoshimura, I. Nakano, A. Yoshimi, S. Uetake,
- H. Hara, M. Yoshimura, K. Kawaguchi, J. Tang,
- Y. Miyamoto
- M. Tanaka (Osaka), T. Wakabayashi (Kinki),
- A. Fukumi (Kawasaki), S. Kuma (Riken),
- C. Ohae (ECU), K. Nakajima (KEK), H. Nanjo (Kyoto)

INTRODUCTION

What weakperwapput neutripurameuseand mixing

Masses:

$$\Delta m^2_{21} = 7.54 \times 10^{-5} \ {\rm eV^2} \,, \quad |\Delta m^2_{31(32)}| = 2.47 \ (2.46) \times 10^{-3} \ {\rm eV^2} \,$$
 Fogli et al. (2012)
$$\sum m_{\nu} \leqslant 0.58 \ {\rm eV} \quad {\rm Jarosik\ et\ al.\ (2011)}$$

Mixing:
$$U = V_{\text{PMNS}} P$$
 $V_{\text{PMNS}} =$

$$\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$

$$P = \text{diag.}(1, e^{i\alpha}, e^{i\beta})$$
 Majorana phases

Bilenky, Hosek, Petcov; Doi, Kotani, Nishiura, Okuda, Takasugi; Schechter, Valle

$$s_{12}^2 \simeq 0.31, \, s_{23}^2 \simeq 0.39, \, s_{13}^2 \simeq 0.024$$
 Fogli et al. (2012)

Unknown properties of neutrinos

Absolute mass

$$m_{1(3)} < 0.19 \,\text{eV}$$
, $0.050 \,\text{eV} < m_{3(2)} < 0.58 \,\text{eV}$

Mass type

Dirac or Majorana

Hierarchy pattern normal or inverted

$$m_3$$
 m_2 m_1 m_2 m_2

$$m_1 = m_1 = m_3 = m_3$$

CP violation

one Dirac phase, two Majorana phases α . β

Neutrino experiments

Conventional approach $E \gtrsim O(10 {\rm keV})$ big science

Neutrino oscillation: SK, T2K, reactors,...

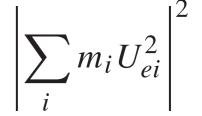
$$\Delta m^2$$
, θ_{ij} , NH or IH, δ

Neutrinoless double beta decays

Dirac or Majorana, effective mass $\sum_{i}^{m_i U_{ei}^2}$

Beta decay endpoint: KATRIN

absolute mass



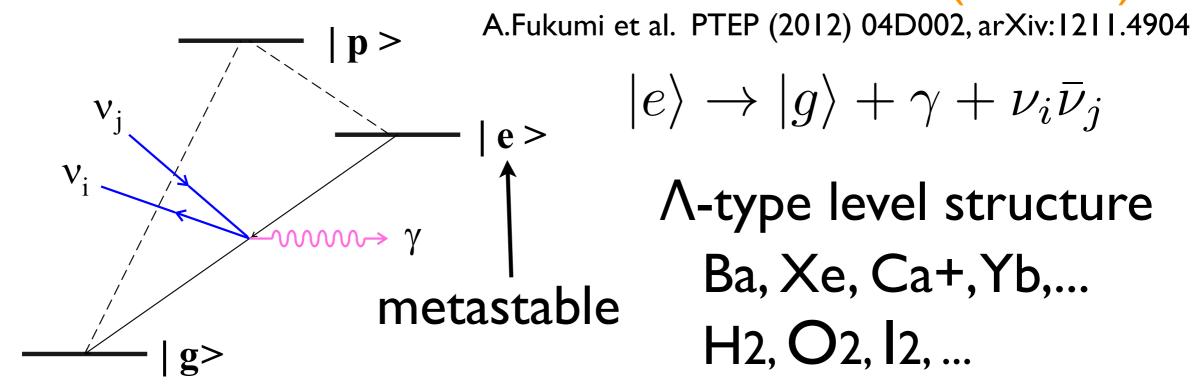
Our approach $E \lesssim O(\text{eV})$ tabletop experiment

Atomic/molecular processes

absolute mass, NH or IH, D or M, δ , α , β

RENP

Radiative Emission of Neutrino Pair (RENP)



Atomic/molecular energy scale ~ eV or less close to the neutrino mass scale

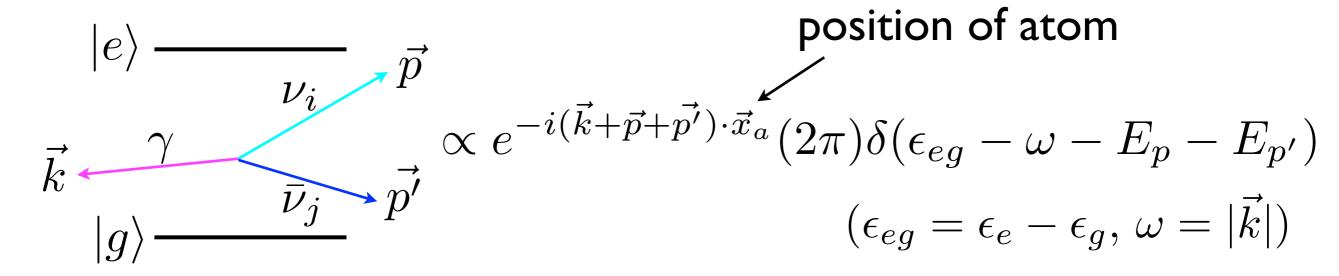
cf. nuclear processes ~ MeV

Rate
$$\sim \alpha G_F^2 E^5 \sim 1/(10^{33} \, \mathrm{s})$$

Enhancement mechanism?

Macrocoherence

Yoshimura et al. (2008)



Macroscopic target of N atoms, volume V (n=N/V)

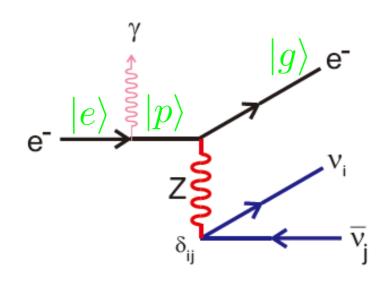
total amp.
$$\propto \sum_a e^{-i(\vec{k} + \vec{p} + \vec{p'}) \cdot \vec{x}_a} \simeq \frac{N}{V} (2\pi)^3 \delta^3(\vec{k} + \vec{p} + \vec{p'})$$

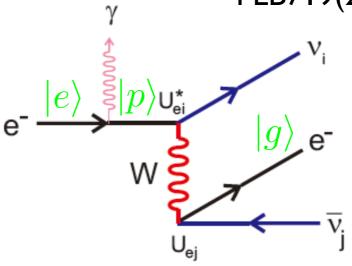
$$d\Gamma \propto n^2 V(2\pi)^4 \delta^4(q - p - p') \qquad q^{\mu} = (\epsilon_{eg} - \omega, -\vec{k})$$

macrocoherent amplification

Neutrino emission from valence electron

D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M. Yoshimura PLB719(2013)154, arXiv:1209.4808





Neutral Current

Charged Current

$$\mathcal{H}_{W} = \frac{G_{F}}{\sqrt{2}} \sum_{i,j} \bar{\nu}_{j} \gamma_{\mu} (1 - \gamma_{5}) \nu_{i} \, \bar{e} \gamma^{\mu} (C_{ji}^{V} - C_{ji}^{A} \gamma_{5}) e$$

$$C_{ji}^{V} = U_{ej}^{*} U_{ei} + (-1/2 + 2 \sin^{2} \theta_{W}) \delta_{ji}, \, C_{ji}^{A} = U_{ej}^{*} U_{ei} - \delta_{ji}/2$$

Atomic matrix element in the NR approximation

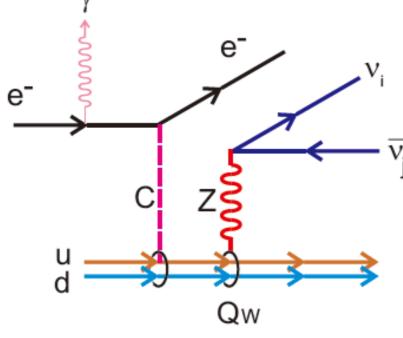
$$\langle g|\bar{e}\gamma^{\mu}e|p\rangle\simeq (\langle g|e^{\dagger}e|p\rangle,\mathbf{0})=0$$

 $\langle g|\bar{e}\gamma^{\mu}\gamma_{5}e|p\rangle\simeq (0,2\langle g|s|p\rangle)$ spin current

Neutral Current

1 from nucleus

M. Yoshimura and N. Sasao, PRD89, 053013(2014), arXiv:1310.6472

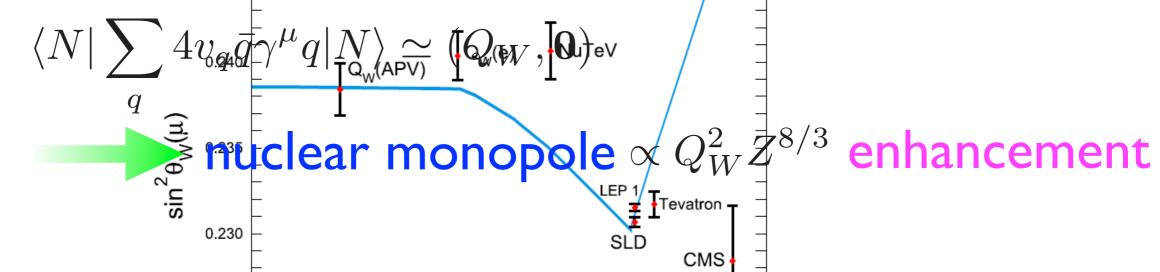


flavor diagonal no PMNS, ng phases

weak charge: $Q_W \simeq -(\# \text{ of neutrons})$

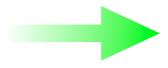
$$\mathcal{H}_W = 4\frac{G_F}{\sqrt{2}}\sum_{i,q}\bar{\nu}_i\gamma_\mu(1-\gamma_5) p_i^{\rm mi} \overline{q} \, \gamma_\mu^{\rm ar}(w_q^{\rm violation}\gamma_5) q$$

Nuclear matrix element in the NR limit



RENP spectrum

Energy-momentum conservation due to the macro-coherence



familiar 3-body decay kinematics

Six (or three) thresholds of the photon energy

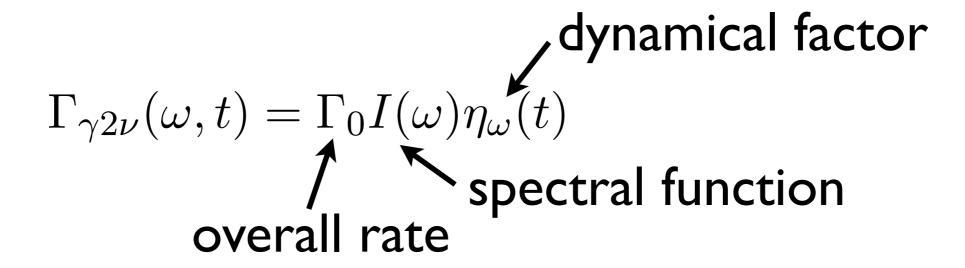
$$\omega_{ij} = \frac{\epsilon_{eg}}{2} - \frac{(m_i + m_j)^2}{2\epsilon_{eg}}$$
 $i, j = 1, 2, 3$

 $\epsilon_{eq} = \epsilon_e - \epsilon_q$ atomic energy diff.

Required energy resolution $\sim O(10^{-6})\,\mathrm{eV}$ typical laser linewidth

$$\Delta \omega_{\rm trig.} \lesssim 1 \, {\rm GHz} \sim O(10^{-6}) \, {\rm eV}$$

RENP rate formula



Overall rate

$$\Gamma_0^{\rm SC} \sim \frac{3n^2VG_F^2\gamma_{pg}\epsilon_{eg}n}{2\epsilon_{pg}^3} \sim 1~{\rm mHz}\,(n/10^{21}{\rm cm}^{-3})^3(V/10^2{\rm cm}^3) \\ \gamma_{pg}:|p\rangle \rightarrow |g\rangle~{\bf rate}$$

$$\Gamma_0^M \sim Q_W^2 Z^{8/3} \times \Gamma_0^S \sim 100~{\rm kHz}$$

Spectral function (spin current)

$$I(\omega) = F(\omega)/(\epsilon_{pg} - \omega)^2$$

$$F(\omega) = \sum_{ij} \Delta_{ij} (B_{ij} I_{ij}(\omega) - \delta_M B_{ij}^M m_i m_j) \theta(\omega_{ij} - \omega)$$

$$\Delta_{ij}^{2} = 1 - 2\frac{m_{i}^{2} + m_{j}^{2}}{q^{2}} + \frac{(m_{i}^{2} - m_{j}^{2})^{2}}{q^{4}} \qquad q^{2} = (p_{i} + p_{j})^{2}$$

$$I_{ij}(\omega) = \frac{q^{2}}{6} \left[2 - \frac{m_{i}^{2} + m_{j}^{2}}{q^{2}} - \frac{(m_{i}^{2} - m_{j}^{2})^{2}}{q^{4}} \right] + \frac{\omega^{2}}{9} \left[1 + \frac{m_{i}^{2} + m_{j}^{2}}{q^{2}} - 2\frac{(m_{i}^{2} - m_{j}^{2})^{2}}{q^{4}} \right]$$

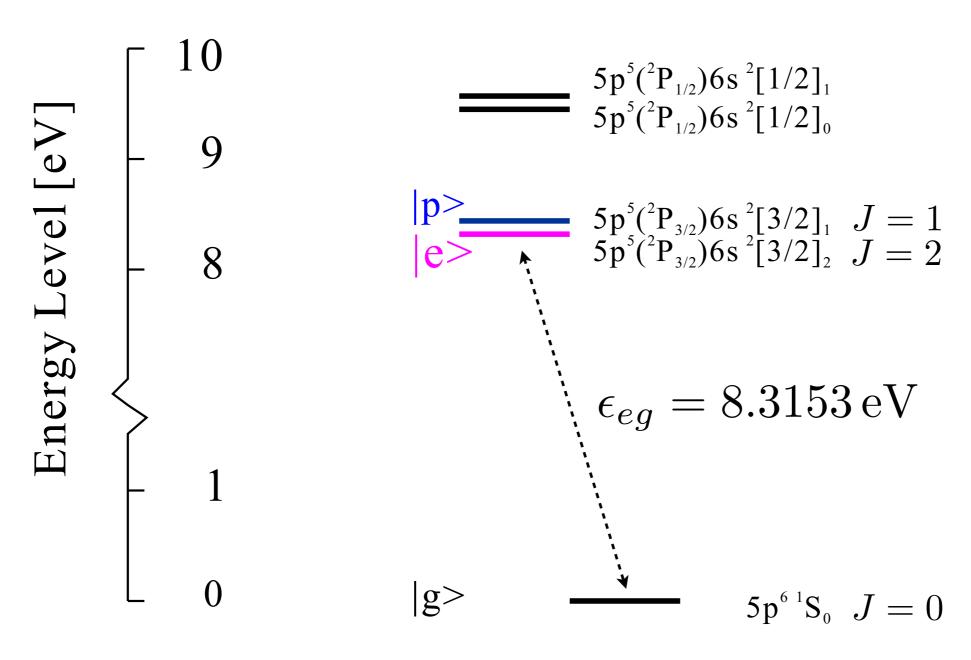
$$\delta_M = 0(1)$$
 for Dirac(Majorana)

$$B_{ij} = |U_{ei}^* U_{ej} - \delta_{ij}/2|^2, B_{ij}^M = \Re[(U_{ei}^* U_{ej} - \delta_{ij}/2)^2]$$

Dynamical factor

$$\sim |\text{coherence} \times \text{field}|^2$$

Xe (gas target)

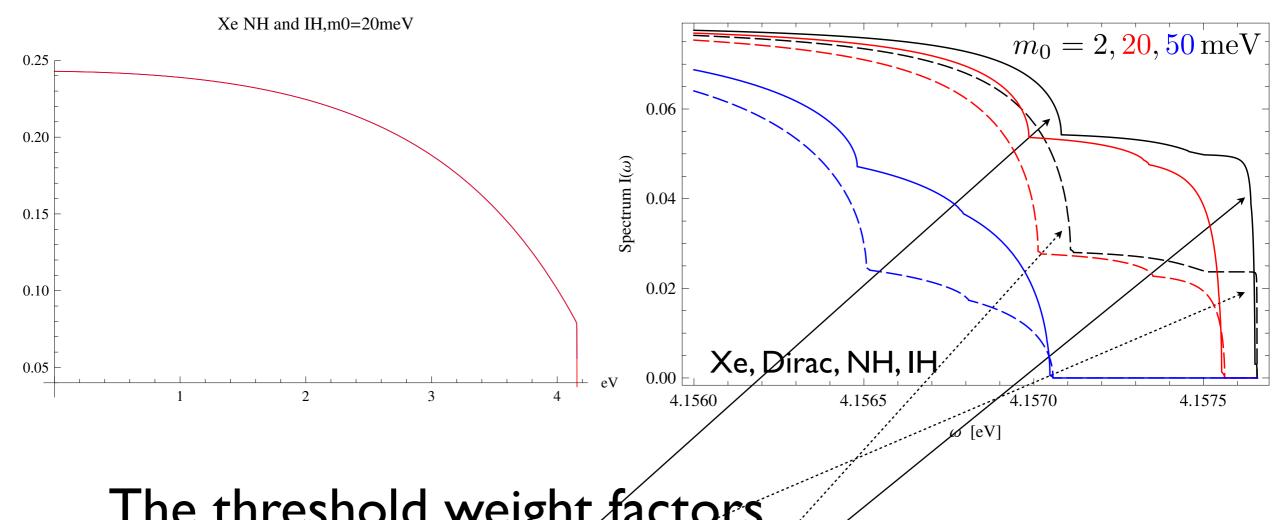


 $|e\rangle \leftrightarrow |p\rangle$ M1

Photon spectrum (spin current)

Global shape

Threshold region



The threshold weight factors

	B_{11}	B_{22}	B_{33}	$B_{12} + B_{21}$	$B_{23} + B_{32}$	$B_{31} + B_{13}$
L	$(c_{12}^2c_{13}^2-1/2)^2$	$(s_{12}^2c_{13}^2-1/2)^2$	$(s_{13}^2 - 1/2)^2$	$2c_{12}^2s_{12}^2c_{13}^4$	$2s_{12}^2c_{13}^2s_{13}^2$	$2c_{12}^2c_{13}^2s_{13}^2$
0.07	0.0311	0.0401	0.227	0.405	0.0144	0.0325

Minor#OFANAKA

Photon spectrum (nuclear monopole)

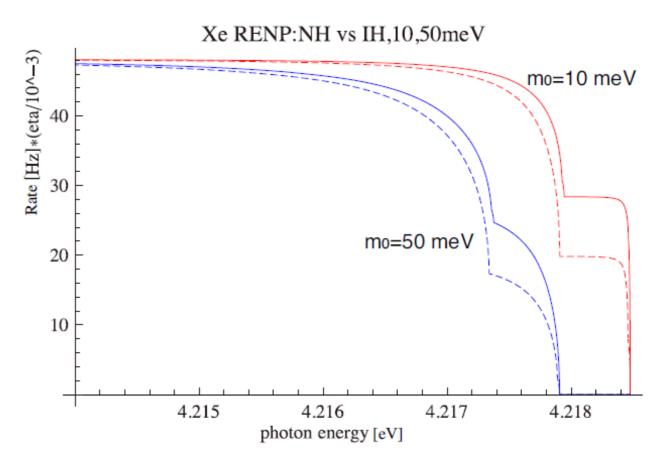
Xe ³P₁ **8.4365** eV

$$n = 7 \times 10^{19} \text{ cm}^{-3}$$
 $V = 100 \text{ cm}^{3}$

Global shape

Xe RENP:NH vs IH,10,50meV THE STATE OF THE

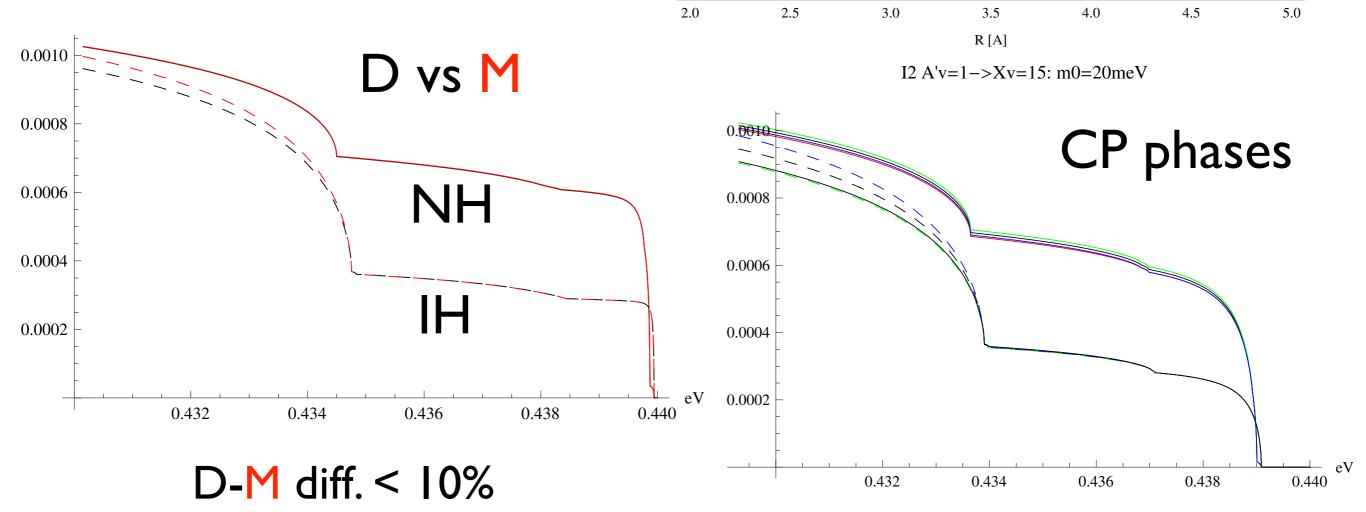
Threshold region



I2 molecule potential curves

$$\epsilon_{eg} \sim 1 \, \mathrm{eV}$$

I2 A'v=1-> Xv=15: m0=5 meV



0.04

0.02

0.5

0.0

-1.0

12 Molecule Potential Curve

4.1570

4.1575

4.1565

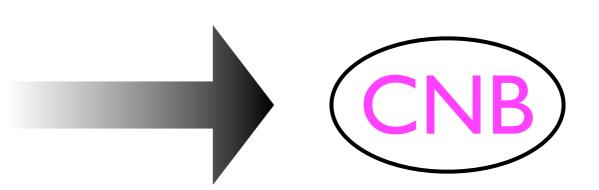
|g
angle

CNB

Cosmic Neutrino Background (CNB)

Big bang cosmology

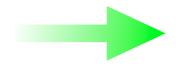
Standard model of particle physics



CNB at present:
$$f(p) = [\exp(|p|/T_{\nu} - \xi) + 1]^{-1}$$

(not) Fermi-Dirac dist. $|p| = \sqrt{E^2 - m_{\nu}^2}$

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \simeq 1.945 \text{ K} \simeq 0.17 \text{ meV}$$



$$n_{\nu} \simeq 6 \times 56 \text{ cm}^{-3}$$
 Detection?

RENP in CNB

M. Yoshimura, N. Sasao, MT, arXiv:1409.3648

$$|e\rangle \rightarrow |g\rangle + \gamma + \nu_i \bar{\nu}_j$$

Pauli exclusion

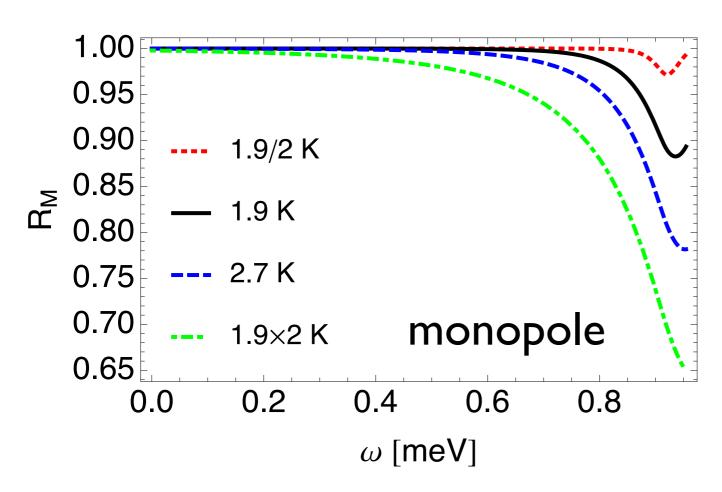
$$d\Gamma \propto |\mathcal{M}|^2 [1 - f_i(p)] [1 - \bar{f}_j(p')]$$

spectral distortion

Distortion factor

$$R_X(\omega) \equiv \frac{\Gamma_X(\omega, T_\nu)}{\Gamma_X(\omega, 0)}$$

$$X = \begin{cases} M & \text{nuclear monopole} & \text{larger rate} & i = j \\ S & \text{valence } e \text{ spin current} \end{cases}$$



level splitting

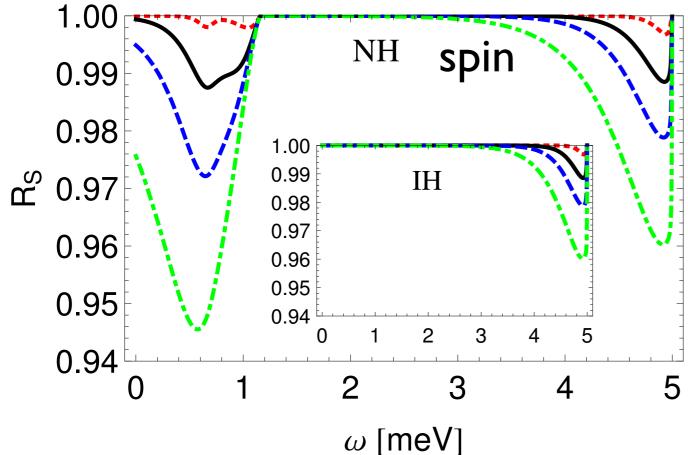
$$\epsilon_{eg} = 11 \text{ meV}$$

smallest neutrino mass

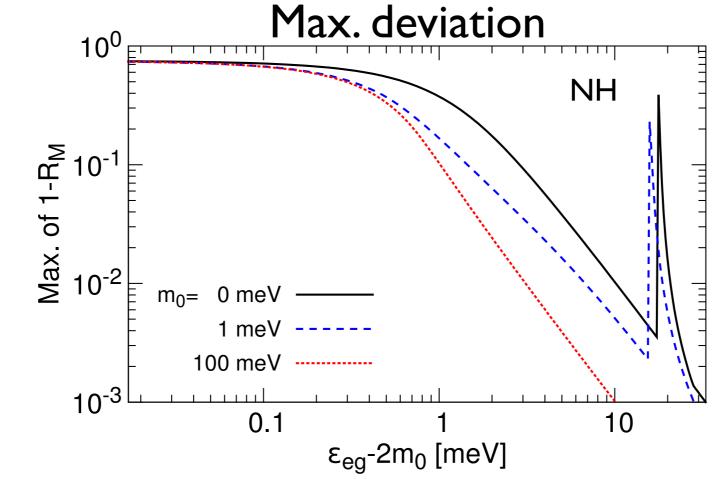
$$m_0 = 5 \text{ meV}$$

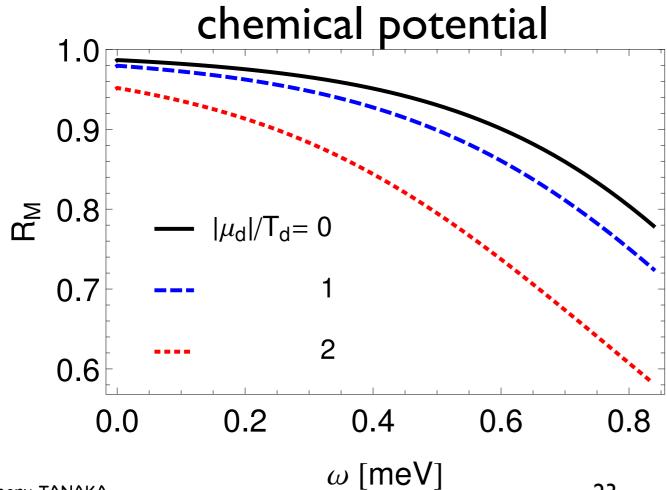
chemical potential

$$\xi_i \equiv \mu_i/T_{\nu} = 0$$



$$\epsilon_{eg} = 1 \text{ meV}$$
 $m_0 = 0.1 \text{ meV}$
 $\xi_i = 0$





$$\epsilon_{eg} = 10T_{\nu} \simeq 1.7 \text{ meV}$$

$$m_0 = 0$$

Minoru TANAKA

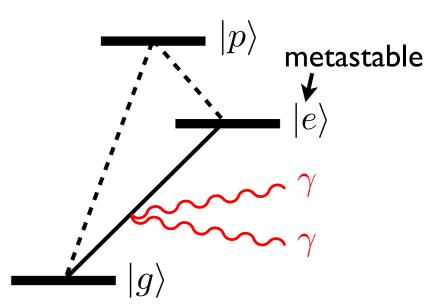
23

PSR

Paired Super-Radiance (PSR)

M. Yoshimura, N. Sasao, MT, PRA86, 013812 (2012)

$$|e\rangle \rightarrow |g\rangle + \gamma + \gamma$$



Prototype for RENP proof-of-concept for the macrocoherence

Preparation of initial state for RENP coherence generation ρ_{eg} dynamical factor $\eta_{\omega}(t)$

Theoretical description to be tested Maxwell-Bloch equation

PSR equation

Effective two-level interaction Hamiltonian

$$|g\rangle, |e\rangle, |p\rangle$$
 $\mathcal{H}_{I} = \begin{pmatrix} \alpha_{ee} & \alpha_{ge}e^{i\varepsilon_{eg}t} \\ * & \alpha_{gg} \end{pmatrix} E^{2}$

$$\alpha_{ge} = \frac{2d_{pe}d_{pg}}{\epsilon_{pg} + \epsilon_{pe}}, \quad \alpha_{aa} = \frac{2d_{pa}^{2}\epsilon_{pa}}{\epsilon_{pa}^{2} - \omega^{2}}, \quad (a = g, e)$$

 d_{pa} : dipole matrix element

Field (I+I dim.)

$$\omega = \epsilon_{eg}/2$$

L-mover

 $e^{i\omega(t+x)}$

$$e^{i\omega(t-x)}$$

$$\begin{array}{l} \text{R-mover} \\ e^{i\omega(t-x)} \end{array} \sim e^{2i\omega t} = e^{i\epsilon_{eg}t} \\ \text{macrocoherence} \end{array}$$

Bloch equation $\partial_t \rho = i[\rho, \mathcal{H}_I] + \text{relaxation terms}$ density matrix

$$\rho = |\psi\rangle\langle\psi| = \rho_{gg}|g\rangle\langle g| + \rho_{ee}|e\rangle\langle e| + \rho_{eg}|e\rangle\langle g| + \rho_{ge}|g\rangle\langle e|$$

coherence (of an atom) $|\rho_{eg}| \leq 1/2$

Maxwell equation
$$(\partial_t^2 - \partial_x^2)E = -\partial_t^2 P$$

macroscopic polarization
$$P = -\frac{\delta}{\delta E} \mathrm{tr}(\rho \mathcal{H}_I)$$

Rotating wave approximation (RWA) omitting fast oscillation terms

Slowly varying envelope approximation (SVEA)

$$|\partial_{x,t}E_{R,L}| \ll \omega |E_{R,L}|, |\partial_{x,t}R_i^{(0,\pm)}| \ll \omega |R_i^{(0,\pm)}|$$

PSR with spatial gratings

How to populate $|e\rangle$

Raman scattering

$$\omega_0 - \omega_{-1} = \epsilon_{eg}$$

Generated coherence

erated conerence spatial grating
$$\rho_{eg} = \rho_{eg}^{(0)} + \rho_{eg}^{(+)} e^{i\epsilon_{eg}x} + \rho_{eg}^{(-)} e^{-i\epsilon_{eg}x}$$

$$e^{i\omega_p(t-x)}e^{i\omega_{\bar{p}}(t-x)} = e^{i\epsilon_{eg}(t-x)}$$

$$\omega_p + \omega_{\bar{p}} = \epsilon_{eg}$$

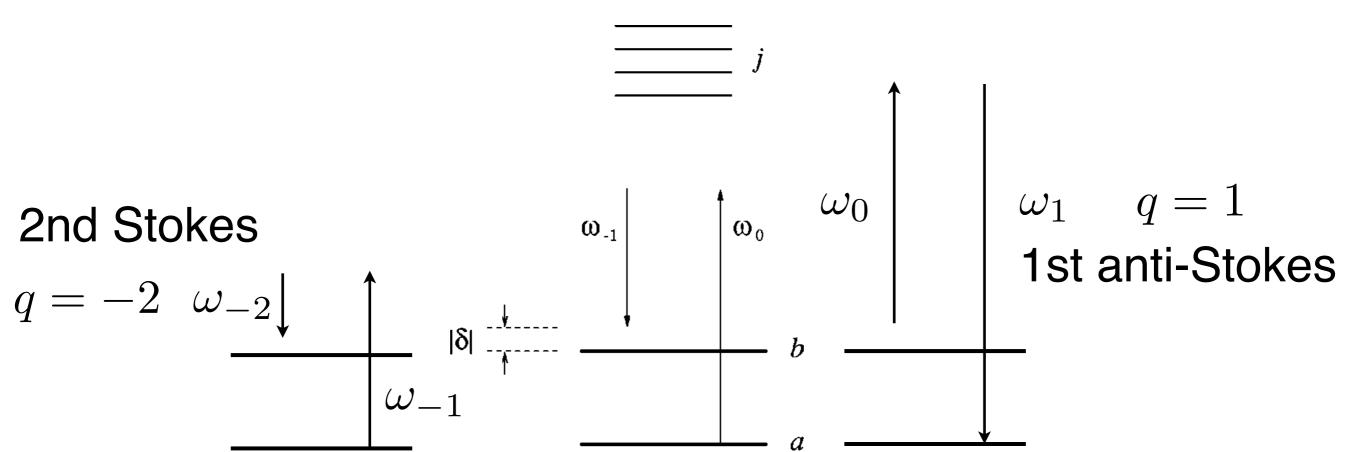
momentum conservation in the macrocoherence

Unidirectional PSR

Raman sideband generation

Harris, Sokolov, Phys. Rev. A55, R4019(1997)

Kien, Liang, Katsuragawa, Ohtsuki, Hakuta, Sokolov, Phys. Rev. A60, 1562(1999)



$$\omega_q = \omega_0 + q(\omega_b - \omega_a - \delta) = \omega_0 + q\omega_m$$

$$q \ge q_{\min} \quad \text{the lowest Stokes}$$

Hamiltonian

$$H_{\text{int}} = -\sum_{j} E(\mu_{ja}\sigma_{ja} + \mu_{aj}\sigma_{aj} + \mu_{jb}\sigma_{jb} + \mu_{bj}\sigma_{bj})$$

$$\mu_{\alpha\beta} = \langle \alpha | d | \beta \rangle \quad \sigma_{\alpha\beta} = |\alpha\rangle\langle\beta|$$

$$E = \frac{1}{2} \sum_{q} (E_{q}e^{-i\omega_{q}\tau} + E_{q}^{*}e^{i\omega_{q}\tau})$$

Effective Hamiltonian

 $|j\rangle$ far off-resonance \longrightarrow two-level system

$$H_{ ext{eff}} = -\hbar egin{bmatrix} \Omega_{aa} & \Omega_{ab} \ \Omega_{ba} & \Omega_{bb} - \delta \end{bmatrix}$$

Stark shifts

$$\Omega_{aa} = \frac{1}{2} \sum_{q} a_{q} |E_{q}|^{2} \qquad a_{q} = \frac{1}{2\hbar^{2}} \sum_{j} \left(\frac{|\mu_{ja}|^{2}}{\omega_{j} - \omega_{a} - \omega_{q}} + \frac{|\mu_{ja}|^{2}}{\omega_{j} - \omega_{a} + \omega_{q}} \right)
\Omega_{bb} = \frac{1}{2} \sum_{q} b_{q} |E_{q}|^{2} \qquad b_{q} = \frac{1}{2\hbar^{2}} \sum_{j} \left(\frac{|\mu_{jb}|^{2}}{\omega_{j} - \omega_{b} - \omega_{q}} + \frac{|\mu_{jb}|^{2}}{\omega_{j} - \omega_{b} + \omega_{q}} \right)$$

Two-photon Rabi freq.

$$\Omega_{ab} = \Omega_{ba}^* = \frac{1}{2} \sum_{q} d_{q} E_{q} E_{q+1}^* \qquad d_{q} = \frac{1}{2\hbar^2} \sum_{j} \left(\frac{\mu_{aj} \mu_{jb}}{\omega_{j} - \omega_{b} - \omega_{q}} + \frac{\mu_{aj} \mu_{jb}}{\omega_{j} - \omega_{a} + \omega_{q}} \right)$$

Adiabatic eigenstate

$$|+\rangle = \cos\frac{\theta}{2}e^{i\varphi/2}|a\rangle + \sin\frac{\theta}{2}e^{-i\varphi/2}|b\rangle \xrightarrow{E \to 0} |a\rangle$$

$$\tan\theta = \frac{2|\Omega_{ab}|}{\Omega_{aa} - \Omega_{bb} + \delta} \quad \Omega_{ab} = |\Omega_{ab}|e^{i\varphi}$$

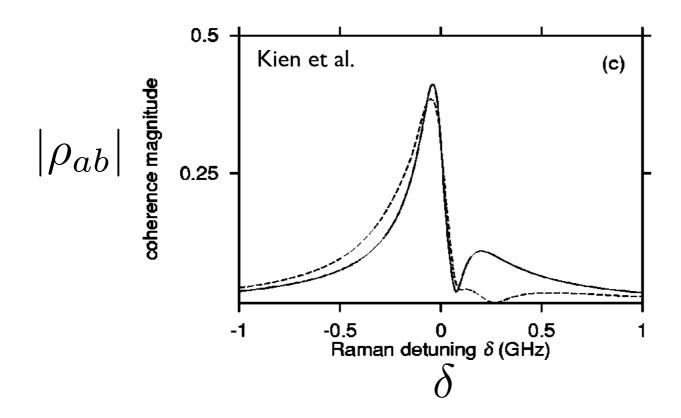
Wave propagation

$$(\partial_t + \partial_z)E_q = in\hbar\omega_q \left(a_q\rho_{aa}E_q + b_q\rho_{bb}E_q + d_{q-1}\rho_{ba}E_{q-1} + d_q^*\rho_{ab}E_{q+1}\right)$$

Coherence
$$\rho_{ab} = \frac{1}{2} \sin \theta e^{i\varphi}$$

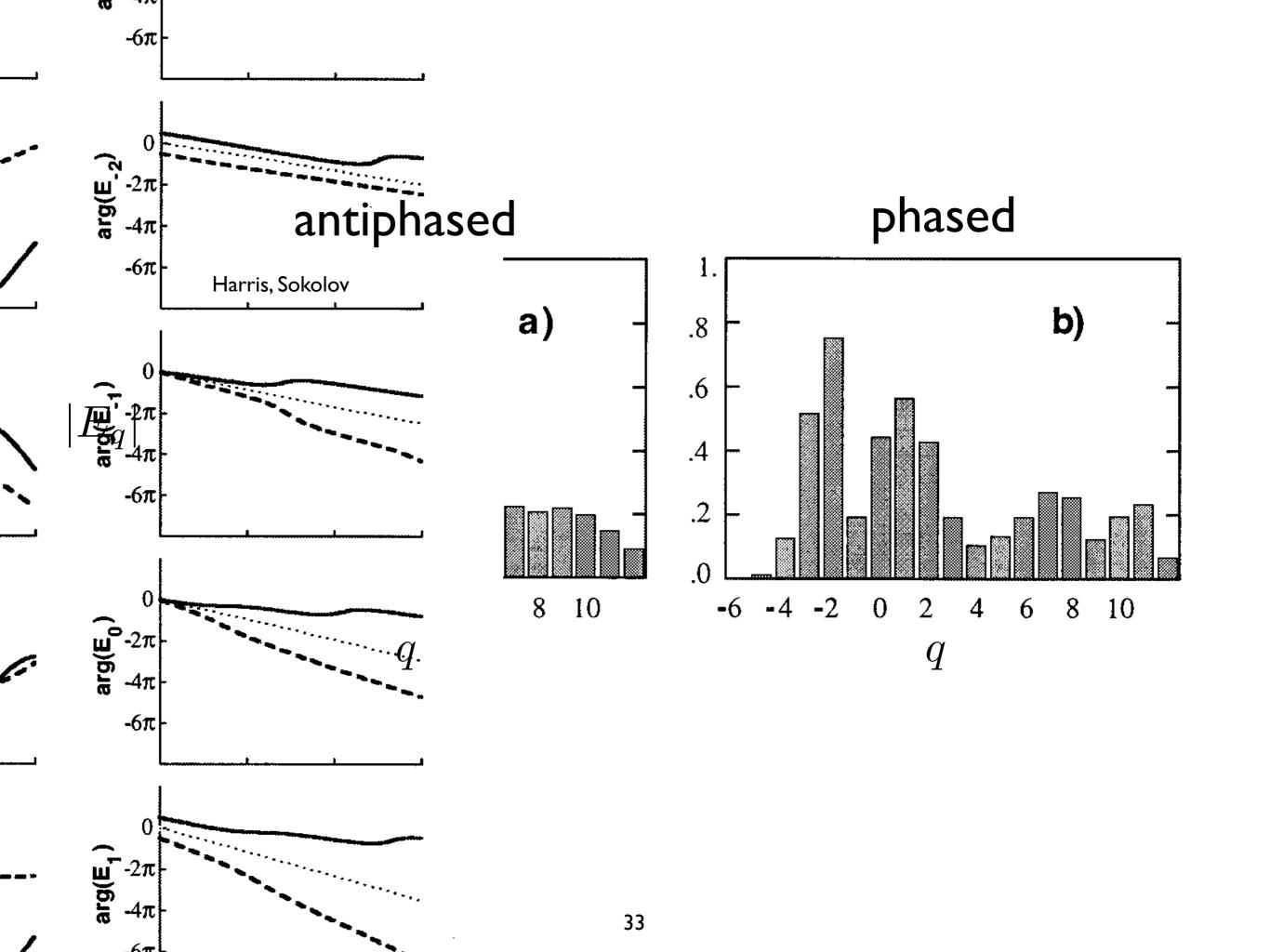
molecular system of far off-resonance

$$\Omega_{aa} \simeq \Omega_{bb} \quad \tan \theta \simeq 2|\Omega_{ab}|/\delta \qquad \qquad |\rho_{ab}| \simeq 1/2$$



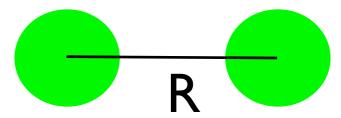
$$\delta > 0$$
, $\sin \theta > 0$
phased state

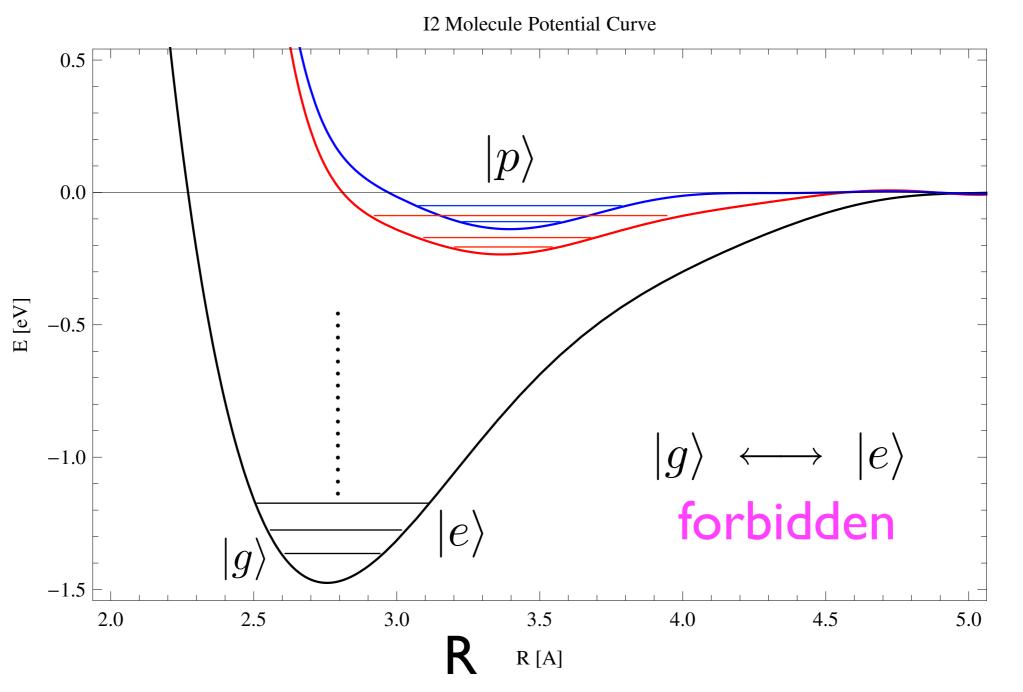
$$\delta < 0\,, \, \sin \theta < 0$$
 antiphased state



Homonuclear diatomic molecule

Potential curves





Para-hydrogen gas PSR experiment

@ Okayama U

to be published in PTEP

vibrational transition of p-H2

$$|e\rangle = |Xv = 1\rangle \longrightarrow |g\rangle = |Xv = 0\rangle$$

two-photon decay: $\tau_{2\gamma} \sim 10^{12} \ \mathrm{s}$

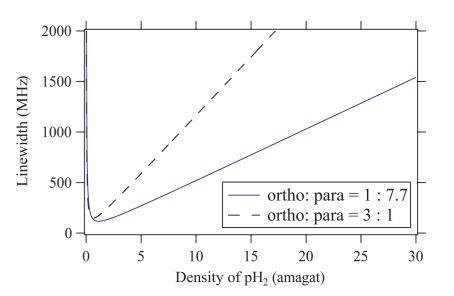
p-H2: nuclear spin=singlet smaller decoherence

$$1/T_2 \sim 130 \; {\rm MHz}$$

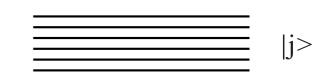
coherence production

adiabatic Raman process

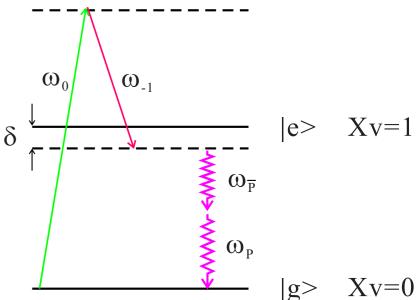
$$\Delta\omega = \omega_0 - \omega_{-1}$$
 0.52
$$= \epsilon_{eg} - \delta_{-1}$$
 detuning 0.00



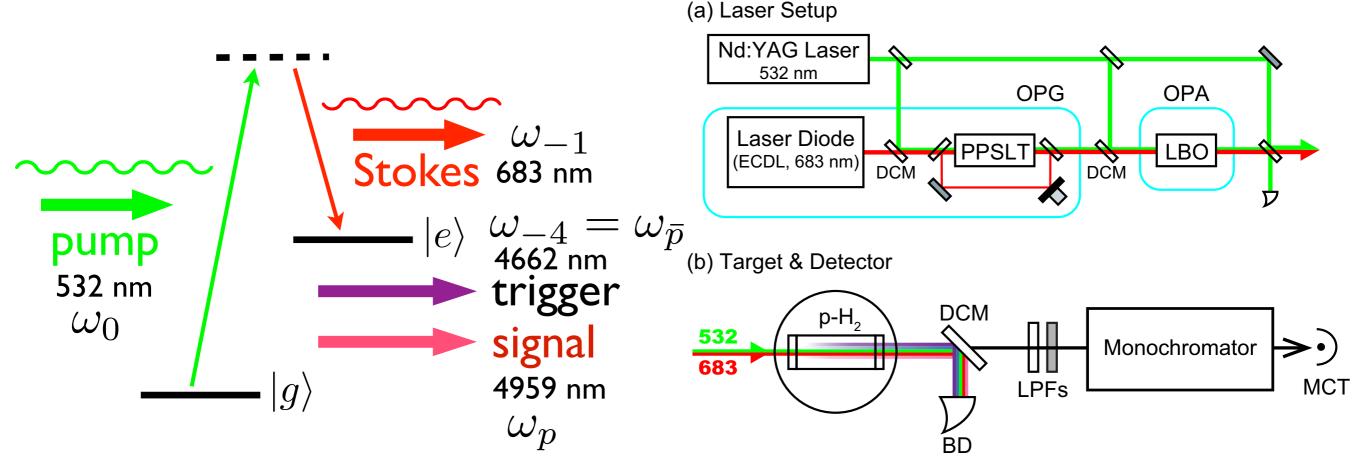
Y. Miyamoto et al., arXiv:1406.2198,



E [eV]



Experimental setup



4th Stokes (q=-4) as trigger (internal trigger)

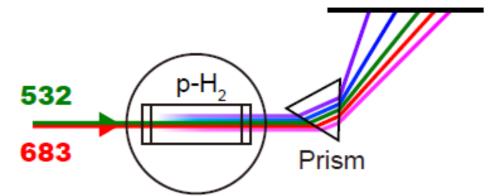
Target cell: length 15cm, diameter 2cm, 78K, 60kPa

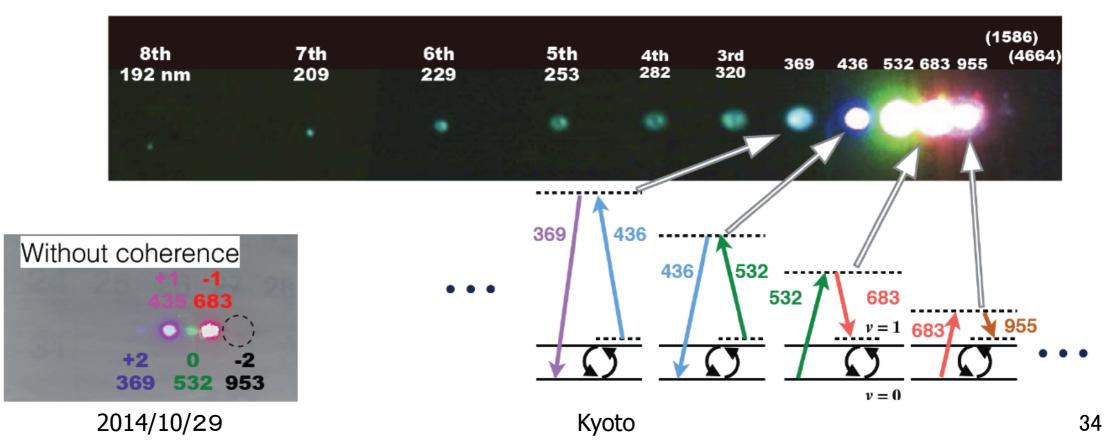
$$n = 5.6 \times 10^{19} \text{ cm}^{-3}$$
 $1/T_2 \sim 130 \text{ MHz}$

Driving lasers: 5 mJ, 6 ns, $w_0 = 100 \ \mu \text{m} \ (5 \ \text{GW/cm}^2)$

Ultra-broadband Raman sidebands

- Raman sidebands, from 192 to 4662nm, are observed: >24
- Evidence of large coherence





N. Sasao

Screen

Generated coherence

Maxwell-Bloch eq.

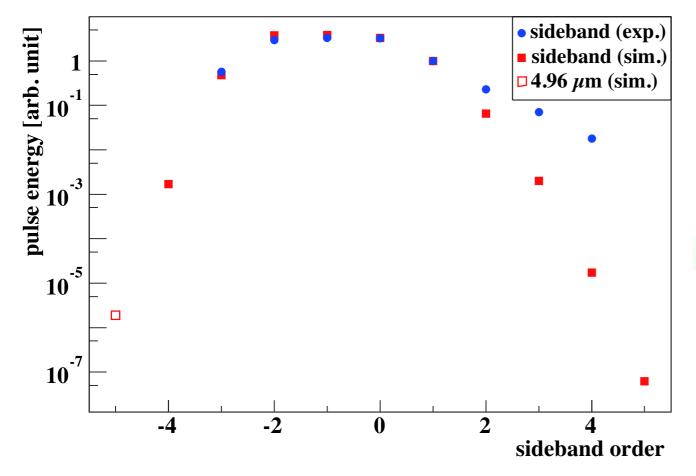
$$\frac{\partial \rho_{gg}}{\partial \tau} = i \left(\Omega_{ge} \rho_{eg} - \Omega_{eg} \rho_{ge} \right) + \gamma_{1} \rho_{ee},$$

$$\frac{\partial \rho_{ee}}{\partial \tau} = i \left(\Omega_{eg} \rho_{ge} - \Omega_{ge} \rho_{eg} \right) - \gamma_{1} \rho_{ee},$$

$$\frac{\partial \rho_{ge}}{\partial \tau} = i \left(\Omega_{gg} - \Omega_{ee} + \delta \right) \rho_{ge} + i \Omega_{ge} \left(\rho_{ee} - \rho_{gg} \right) - \gamma_{2} \rho_{ge},$$

$$\frac{\partial E_{q}}{\partial \xi} = \frac{i \omega_{q} n}{2c} \left\{ \left(\rho_{gg} \alpha_{gg}^{(q)} + \rho_{ee} \alpha_{ee}^{(q)} \right) E_{q} + \rho_{eg} \alpha_{eg}^{(q-1)} E_{q-1} + \rho_{ge} \alpha_{ge}^{(q)} E_{q+1} \right\},$$

$$\frac{\partial E_{p}}{\partial \xi} = \frac{i \omega_{p} n}{2c} \left\{ \left(\rho_{gg} \alpha_{gg}^{(p)} + \rho_{ee} \alpha_{ee}^{(p)} \right) E_{p} + \rho_{eg} \alpha_{ge}^{(p\overline{p})} E_{\overline{p}}^{*} \right\}.$$

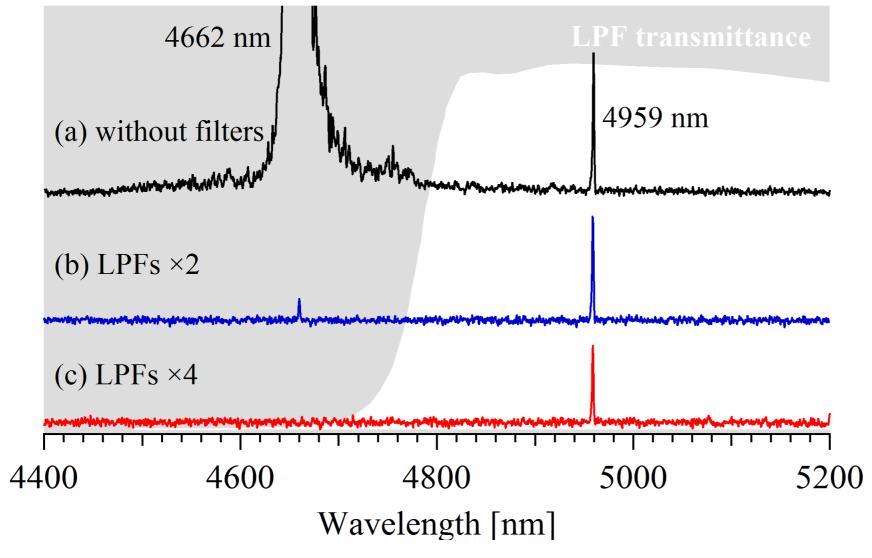


coherence estimation

$$|\rho_{eg}| \simeq 0.032$$

(6% of max.)

Observed two-photon spectrum



of observed photons

 $4.4 \times 10^7 / \mathrm{pulse}$ Estimated spontaneous rate

$$1.6 \times 10^{-8}$$

 $O(10^{15})$ (or more) enhancement!

SUMMARY

Neutrino Physics with Atoms/Molecules

RENP spectra are sensitive to unknown neutrino parameters.

Absolute mass, Dirac or Majorana, NH or IH, CP

- * RENP spectra are sensitive to the cosmic neutrino background.

 temperature, chemical potential.
- * Macrocoherent rate amplification is essential. demonstrated by a QED process, PSR.

A new approach to neutrino physics