National Center for Theoretical Sciences Physics Division 國家理論科學研究中心 物理組 のSAKA UNIVERSITY

原子スペクトルの同位体シフトにおける 一般化キング線形性を用いた新物理探索

素粒子物理学の進展2022、基研、2022/08/30

田中実(阪大理)

共同研究者 山本康裕(NCTS), 小野滉貴(京大理), 肥後本隼也(京大理), 斎藤優冴(京大理), 石山泰樹(京大理), 高須洋介(京大理), 高野哲至(京大理), 高橋義朗(京大理)

Light new particle search

Direct search Visible decay, e.g. $X \rightarrow e^+e^-$: direct search Invisible decay, e.g. $X \rightarrow \nu \bar{\nu}$: missing E/p Stable: missing E/p, dark matter?

Indirect search

cf. weak interaction $\sim -\frac{c}{2}$

$$\propto \frac{g^2}{m^2}$$

$$\frac{g_Z^2}{n_Z^2} \sim \frac{0.5}{(100 \text{ GeV})^2} = \frac{0.5 \times 10^{-10}}{(1 \text{ MeV})^2}$$

Precision frontier

原子時計("秒"の定義,周波数標準) ¹³³Cs ground state hyperfine splitting $\nu \sim 9 \text{ GHz}, \ \delta \nu / \nu \sim 10^{-15}$

Huntsman et al. PRL116,063001 (2016)

З

Sr: $\delta \nu / \nu \sim 10^{-18}$

Ground test of General Relativity $\sim 10^{-5}$

Takamoto et al., Nat. Photon. 14, 411 (2020)

Minoru TANAKA

同位体シフト(Isotope shift, IS)

Level-splitting difference between isotopes $h\nu_A = E_A^i - E_A^f, \ h\nu_{A'} = E_{A'}^i - E_{A'}^f$ $IS = \nu_{A'A} := \nu_{A'} - \nu_A$ Mass shift: finite mass of nuclei (reduced mass) $MS \propto 1/m_{A'} - 1/m_A$ (dominant for Z<20) Field shift: finite size of nuclei $FS \propto \langle r^2 \rangle_{A'} - \langle r^2 \rangle_A$ (dominant for Z>40)

- No IS for infinitely heavy and point-like nuclei \rightarrow IS = MS + FS
- Theoretical calculation of IS: Not easy IS $\sim O(\text{GHz}) \sim O(10 \ \mu \text{eV})$

IS of two transitions: t = 1, 2

$$\nu_{A'A}^{(t)} = K_t \mu_{A'A} + F_t \langle r^2 \rangle_{A'A} \qquad \mu_{A'A} := 1/m_{A'} - 1/m_A$$
mass shift (MS) field shift (FS) $\langle r^2 \rangle_{A'A} := \langle r^2 \rangle_{A'} - \langle r^2 \rangle_A$
lodified IS: $\tilde{\nu}_{A'A}^{(t)} := \nu_{A'A}^{(t)} / \mu_{A'A} = K_t + F_t \langle r^2 \rangle_{A'A} / \mu_{A'A}$
electronic factors nuclear factor

M

King linearity: eliminating the nuclear factor $\tilde{\nu}_{A'A}^{(2)} = K_{21} + F_{21} \tilde{\nu}_{A'A}^{(1)}$

King, 1963

$$K_{21} := K_2 - F_{21}K_1, \ F_{21} := F_2/F_1$$

Ex.Yb⁺ K. Mikami, MT, Y. Yamamoto EPJC77:896 (2017) (Z=70, A=168, 170, 171, 172, 173, 174, 176)

Transition 1:369 nm Martensson-Pendrill et al. PRA49, 3351 (1994) $^{2}P_{1/2}(4f)^{14}(6p) - ^{2}S_{1/2}(4f)^{14}(6s)$ Transition 2:935 nm

 ${}^{3}\mathrm{D}[3/2]_{1/2}(4\mathrm{f})^{13}(5\mathrm{d})(6\mathrm{s}) - {}^{2}\mathrm{D}_{3}$

Isotope pairs (172, 170), (174, 172), (176, 172)

(s)
$$\delta \nu_{A'A}^1 \sim O(1)$$
 MHz

Sugiyama et al. CPEM2000

$$_{3/2}(4f)^{14}(5d) \quad \delta \nu_{A'A}^2 \sim O(10) \text{ MHz}$$

Yb⁺ modified IS [THz amu]

IS by new neutron-electron interaction Delaunay et al. arXiv:1601.05087v2 $\underbrace{\begin{array}{ccc} g_e & e \\ & & V_{A'A}^{(t)} = K_t \mu_{A'A} + F_t \langle r^2 \rangle_{A'A} + X_t (A' - A) \\ & & \\$

Nonlinearity due to subleading FS $FS = F_t \langle r^2 \rangle_{A'A} + F'_t [\langle r^2 \rangle_{A'A}]^2 + G_t \langle r^4 \rangle_{A'A} + \cdots$ quadratic FS higher moment

 $[\langle r^2 \rangle_{A'A}]^2 := (\langle r^2 \rangle_{A'A_0})^2 - (\langle r^2 \rangle_{AA_0})^2$

Minoru TANAKA

 $V(r) = (-1)^{s+1} \frac{g_N g_e}{4\pi} \frac{e^{-mr}}{r}$

Ex.Yb⁺

MT, Y. Yamamoto PTEP 103B02 (2020)

一般化線形件

 $\nu_{A'A}^{(t)} = K_t \mu_{A'A} + F_t \langle r^2 \rangle_{A'A}$ 3 transitions: t=1, 2, 3 $\left(\nu_{A}^{(1)},\nu_{A}^{(2)},\nu_{A}^{(3)},\nu_{A}^{(3)}\right)/\mu_{A'A}$

K. Mikami, MT, Y. Yamamoto EPJC77:896 (2017)

$$+ F'_t [\langle r^2 \rangle_{A'A}]^2 + X_t (A' - A)$$
QFS PS

 $\begin{pmatrix} \nu_{A'A}^{(1)} - X_1(A' - A) \\ \nu_{A'A}^{(2)} - X_2(A' - A) \\ \nu_{A'A}^{(3)} - X_3(A' - A) \end{pmatrix} = \begin{pmatrix} K_1 & F_1 & F_1' \\ K_2 & F_2 & F_2' \\ K_3 & F_3 & F_3' \end{pmatrix} \begin{pmatrix} \mu_{A'A} \\ \langle r^2 \rangle_{A'A} \\ [\langle r^2 \rangle_{A'A}]^2 \end{pmatrix} =: M \begin{pmatrix} \mu_{A'A} \\ \langle r^2 \rangle_{A'A} \\ [\langle r^2 \rangle_{A'A}]^2 \end{pmatrix}$

 $(M^{-1})_{11}\nu_{A'A}^{(1)} + (M^{-1})_{12}\nu_{A'A}^{(2)} + (M^{-1})_{13}\nu_{A'A}^{(3)}$ $- \{(M^{-1})_{11}X_1 + (M^{-1})_{12}X_2 + (M^{-1})_{13}X_3\}(A' - A) = \mu_{A'A}$

on a plane if $X_t = 0$

n transitions and n+1 IS pairs - NP search with n-2 NL's removed

実験の進展: Yb+イオン

3 transitions, 4 IS pairs

K. Ono, MT et al. PRX 12, 021033 (2022)

Yb⁺ ${}^{2}S_{1/2}(6s) - {}^{2}D_{5/2}(5d) \; {}^{2}S_{1/2}(6s) - {}^{2}D_{3/2}(5d) \; \delta\nu \sim O(100) \text{ Hz}$

一般化線形性を用いた新物理探索(世界初)

2D analysis

3D analysis (170, 174) -2 În B amu) (168, 170) amu) ΗZ НИ (172, 174) -2 $\Delta \bar{\nu}_{lpha}(10^7$ $\Delta ar{
u}_lpha$ (10⁷ 0 ЧЧ $\Delta ar{
u}_{lpha}$ (10⁷ 0 -1 0 1 2 2 $\Delta \bar{\nu}_{\beta}$ (10⁷ Hz amu) 2 2 -3 -2 -1 0 1 $\Delta \bar{\nu}_{\beta}$ (10⁷ Hz amu) 12 -3 -2 -1 0 amu) $\Delta \bar{\nu}_{\beta}$ (10⁷ Hz amu) 2.0 1.8 문 (174, 176) -2 to $ar{
u}_{\gamma}(10^{13}$ 1.6 HZ 1.4 3.25 multiple 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.75 3.0022.4 2.6 2.8 3.0 $\overline{\mathcal{I}}_{\alpha}(10^{13}Hzamu)$ 3.2 2 -1 0 $\Delta \bar{\nu}_{\beta}$ (10⁷ Hz amu) 2.25 $\chi^2 / dof = 15/3$ two or more NL sources

Nonlinearity sources and new physics bound One of NL sources is eliminated in 3D analysis.

+PS: Inconsistent with the existing constraints of PS

Minoru TANAKA

Yb⁺ Hur et al. PRL 128, 163201 (2022) ${}^{2}S_{1/2}(4f)^{14}(6s) - {}^{2}F_{7/2}(4f)^{13}(6s)^{2}$ $\delta \nu \sim 500 \text{ Hz}$

3D analysis ???

Consistent with our result

Yb Figueroa et al. PRL 128, 073001 (2022) ${}^{1}S_{0}(6s)^{2} - {}^{1}D_{2}(6s5d) \quad \delta\nu \sim O(100) \text{ Hz}$

3D analysis: reduced significance

まとめと展望

Isotope shift and King linearity $\tilde{\nu}_{A'A}^{(2)} = K_{21} + F_{21} \tilde{\nu}_{A'A}^{(1)}$ IS=MS+FS, linear relation of mIS of two transitions Nonlinearities: New physics and/or SM higher order ■ 一般化線形性 (generalized linearity) ■高精度Yb IS測定実験 Yb+イオン O(100) Hz, Yb原子 O(1) Hz Ybで複数のO(1) Hzも近い将来可能 ■データ解析 Yb, Yb+イオンで5つの遷移データを総合(準備中)

参考文献:日本物理学会誌 vol. 77, No. 6, 355

- SM nonlinearity removed, improved sensitivity to new physics