原子スペクトルの同位体シフトで探る
 素粒子の新しい相互作用

田中実（阪大）

共同研究者：三上恭子（阪大），山本康裕（NCBJ）
Eur．Phys．J．C（2017）77：896，arXiv：I7IO．II443

$$
\begin{gathered}
\text { 第二回琉球大学計算科学シンポジウム } \\
2018 / 10 /|9-2|
\end{gathered}
$$

Introduction

Frontiers in particle physics

Energy frontier: LHC, ILC,...
Intensity frontier: B factory, muon, K, \ldots
Cosmic frontier: CMB,...
Precision / low energy frontier $0 \nu \beta \beta$, DM, EDM, ...

Temporal variation of fundamental constants $\alpha, m_{e} / m_{p}$ using atomic clock

$$
\mathrm{Yb}^{+}: \delta \nu / \nu \sim 10^{-18}, \delta \nu \sim \operatorname{sub~Hz}
$$

Isotope shift new neutron-electron interaction

Isotope shift (IS)

Transition frequency difference between isotopes

$$
\begin{array}{ll}
h \nu_{A}=E_{A}^{i}-E_{A}^{f} & |i\rangle-\downarrow \vec{\sim} \\
\text { IS }=\nu_{A^{\prime} A}:=\nu_{A^{\prime}}-\nu_{A} & |f\rangle
\end{array}
$$

No IS for infinitely heavy and point-like nuclei

$$
\mathrm{IS}=\mathrm{MS}+\mathrm{FS}
$$

Mass shift: finite mass of nuclei (reduced mass) $\mathrm{MS} \propto \mu_{A^{\prime}}-\mu_{A} \quad$ (dominant for $\mathbf{Z}<20$)
Field shift: finite size of nuclei

$$
\left.\mathrm{FS} \propto\left\langle r^{2}\right\rangle_{A^{\prime}}-\left\langle r^{2}\right\rangle_{A} \text { (dominant for } \mathbf{Z}>40\right)
$$

Theoretical calculation of IS: not easy

$$
\mathrm{IS} \sim O(\mathrm{GHz}) \sim O(10 \mu \mathrm{eV})
$$

Plan of talk

Introduction (2)
King's linearity (3)
Nonlinearities (10)
Status and prospect (4)
Summary and outlook (I)

King's linearity

King's linearity

IS of two transitions: $t=1,2$

$$
\begin{aligned}
& \nu_{A^{\prime} A}^{t}=K_{t} \mu_{A^{\prime} A}+F_{t}\left\langle r^{2}\right\rangle_{A^{\prime} A} \mu_{A^{\prime} A} \\
&\left\langle r^{2}\right\rangle_{A^{\prime} A}:=\mu_{A^{\prime}}-\mu_{A} \\
&\left.r^{2}\right\rangle_{A^{\prime}}-\left\langle r^{2}\right\rangle_{A}
\end{aligned}
$$

Modified IS: $\tilde{\nu}_{A^{\prime} A}^{t}:=\nu_{A^{\prime} A}^{t} / \mu_{A^{\prime} A}$

$$
\begin{aligned}
\tilde{\nu}_{A^{\prime} A}^{t}= & K_{t}+\underset{\text { electronic factors }}{F_{t}\left\langle r^{2}\right\rangle_{A^{\prime} A} / \mu_{A^{\prime} A}} \text { nuclear factor }
\end{aligned}
$$

King's linearity eliminating the nuclear factor

$$
\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+\frac{F_{2}}{F_{1}} \tilde{\nu}_{A^{\prime} A}^{1} \quad K_{21}:=K_{2}-\frac{F_{2}}{F_{1}} K_{1}
$$

$\rightarrow\left(\tilde{\nu}_{A^{\prime} A}^{1}, \tilde{\nu}_{A^{\prime} A}^{2}\right)$ on a straight line, King's plot

IS data of Ca^{+}

Transition I: $397 \mathrm{~nm}{ }^{2} \mathrm{P}_{1 / 2}(4 \mathrm{p})-{ }^{2} \mathrm{~S}_{1 / 2}(4 \mathrm{~s})$ Transition 2: $866 \mathrm{~nm}{ }^{2} \mathrm{P}_{1 / 2}(4 \mathrm{p})-{ }^{2} \mathrm{D}_{3 / 2}(3 \mathrm{~d})$ Isotope pairs: $(42,40),(44,40),(48,40)$

IS precision ~ O(I00) kHz
modified IS $\tilde{\nu}_{A^{\prime} A}^{t}$
King's plot
linear within errors

397 nm

IS data of Yb^{+}

Transition I: $369 \mathrm{~nm} \quad$ Martensson-Pendrill et al. PRA49, 335 I (1994)

$$
{ }^{2} \mathrm{P}_{1 / 2}(4 \mathrm{f})^{14}(6 \mathrm{p})-{ }^{2} \mathrm{~S}_{1 / 2}(4 \mathrm{f})^{14}(6 \mathrm{~s}) \quad \delta \nu_{A^{\prime} A}^{1} \sim O(1) \mathrm{MHz}
$$

Transition 2: 935 nm Sugiyama et al. CPEM2000

$$
\begin{aligned}
&{ }^{3} \mathrm{D}[3 / 2]_{1 / 2}(4 \mathrm{f})^{13}(5 \mathrm{~d})(6 \mathrm{~s})-{ }^{2} \mathrm{D}_{3 / 2}(4 \mathrm{f})^{14}(5 \mathrm{~d}) \\
& \delta \nu_{A^{\prime} A}^{2} \sim O(10) \mathrm{MHz}
\end{aligned}
$$

Isotope pairs: (I72, I70), (I74, I72), (I76, I72)
King's plot
linear within errors

Nonlinearities

Particle shift (PS)

Frequency shifts by particle exchange (Yb^{+}g.s.)

$$
|\Delta \nu| \sim \begin{cases}10^{-4} \mathrm{~Hz} & \text { Higgs (SM) } \\ 400 \mathrm{~Hz} & \text { Higgs (LHC bound) } \\ 800 \mathrm{~Hz} & Z \\ 10 \mathrm{MHz} & X_{17} 17 \mathrm{MeV} \text { vector boson }\end{cases}
$$

<< theoretical uncertainties

Breakdown of the linearity by PS

$\mathrm{IS}=\mathrm{MS}+\mathrm{FS}+\mathrm{PS}$
PS by new neutron-electron interaction

$$
\nu_{A^{\prime} A}^{t}=K_{t} \mu_{A^{\prime} A}+F_{t}\left\langle r^{2}\right\rangle_{A^{\prime} A}+X_{t}\left(A^{\prime}-A\right)
$$

Generalized King's relation

$$
\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}+\varepsilon A^{\prime} A \quad \text { nonlinearity }
$$

PS nonlinearity

$$
\varepsilon_{\mathrm{PS}}=X_{1}\left(\frac{X_{2}}{X_{1}}-\frac{F_{2}}{F_{1}}\right) \quad X_{t} \propto \frac{g_{n} g_{e}}{m^{2}} \text { as } m \rightarrow \infty
$$

Evaluation of PS nonlinearity

Single electron approximation

$$
X_{t}=\frac{g_{n} g_{e}}{4 \pi} \int r^{2} d r \frac{e^{-m r}}{r}\left[R_{i_{t}}^{2}(r)-R_{f_{t}}^{2}(r)\right]
$$

Wave function

Wave function outside the nucleus

Non-relativistic (not bad for $\mathrm{m} \ll 100 \mathrm{MeV}$)
Thomas-Fermi model
semiclassical, statistical, self-consistent field exact in large Z limit

$$
\begin{aligned}
& \text { TF function } \\
& \frac{d^{2} \chi}{d x^{2}}=x^{-1 / 2} \chi^{3 / 2} \\
& \chi(0)=1, x_{0} \chi^{\prime}\left(x_{0}\right)=\frac{\substack{\chi_{0}^{0.6} \\
x_{0} \\
0.2 \\
0.0 \\
0.0}}{\substack{n_{e} \\
Z}} \underbrace{{ }^{10}}_{5} \times{ }_{x}^{15}, \chi\left(x_{0}\right)=0
\end{aligned}
$$

One-body problem in the TF potential

$$
\begin{gathered}
V_{\mathrm{TF}}(r)=-\frac{Z \alpha}{r} \chi\left(\frac{r}{b}\right)-\left(Z-n_{e}\right) \alpha \min \left(\frac{1}{r_{0}}, \frac{1}{r}\right) \\
b=\left(9 \pi^{2} / 2^{7} Z\right)^{1 / 3} a_{B}, a_{B}=\text { Bohr radius }
\end{gathered}
$$

Wave function inside the nucleus

One-body problem in the nuclear potential $V_{A}(r)$

$$
\left[\frac{d}{d r^{2}}-\frac{\ell(\ell+1)}{r^{2}}+2 m_{e}\left\{E-V_{A}(r)\right\}\right] r R(r)=0
$$

$$
\ell=\text { angular momentum }
$$

Series expansion: $V_{A}(r)=\sum_{i=0} v_{i} r^{i}, v_{1}=0$

$$
\begin{aligned}
& R(r)=\sum_{i=0} \chi_{i}^{\ell} r^{\ell+i} \\
& \rightarrow \chi_{1}^{\ell}=0, \chi_{2}^{\ell} / \chi_{0}^{\ell}=m_{e} v_{0} /(2 \ell+3)
\end{aligned}
$$

Nuclear charge distribution

Helm distribution Helm 1956

Gaussian smearing of uniform sphere

$$
\begin{gathered}
\rho_{A}(r)=\int d^{3} r^{\prime} \frac{3}{4 \pi r_{A}^{3}} \theta\left(r_{A}-r^{\prime}\right) \frac{1}{\left(2 \pi s^{2}\right)^{3 / 2}} e^{-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|^{2} /\left(2 s^{2}\right)} \\
r_{A}^{2}=c^{2}+7 \pi^{2} a^{2} / 3-5 s^{2}, s \simeq 0.9 \mathrm{fm} \\
a \simeq 0.52 \mathrm{fm}, c \simeq 1.23 A-0.60 \mathrm{fm} \quad \text { Lewin, Smith } 1996
\end{gathered}
$$

$$
\left\langle r^{2}\right\rangle=\frac{3}{5}\left(r_{A}^{2}+5 s^{2}\right),\left\langle r^{4}\right\rangle=\frac{3}{7}\left(r_{A}^{4}+14 r_{A}^{2} s^{2}+35 s^{2}\right)
$$

$$
v_{0}=\frac{3 Z \alpha}{2 r_{A}}\left[\left(1-\frac{s^{2}}{r_{A}^{2}}\right) \operatorname{Erf}\left(\frac{r_{A}}{\sqrt{2} s}\right)+\sqrt{\frac{2}{\pi}} \frac{s}{r_{A}} e^{-r_{A}^{2} /\left(2 s^{2}\right)}\right]
$$

$v_{1}=0 \quad$ no cusp at the origin

Seltzer moment expansion of field shift

$$
\begin{aligned}
\mathrm{FS}= & Z \alpha \int d^{3} r_{N} \int d^{3} r_{e} \frac{\rho_{A^{\prime} A}\left(r_{N}\right) \rho_{i f}\left(r_{e}\right)}{\left|\boldsymbol{r}_{N}-\boldsymbol{r}_{e}\right|} \\
& \rho_{A^{\prime} A}(r):=\rho_{A^{\prime}}(r)-\rho_{A}(r) \\
& \rho_{i f}(r):=R_{i}^{2}(r)-R_{f}^{2}(r)=r^{2 \ell} \sum_{k=0} \xi_{k}^{\ell} r^{k}, \ell=\min \left(\ell_{i}, \ell_{f}\right) \\
= & Z \alpha \sum_{k=0} \frac{\xi_{k}^{\ell}}{(2 \ell+k+3)(2 \ell+k+2)}\left\langle r^{2 \ell+k+2}\right\rangle_{A^{\prime} A} \\
= & F_{t}\left\langle r^{2}\right\rangle_{A^{\prime} A}+\cdots, F_{t}=\frac{Z \alpha}{6} \xi_{0}^{0}
\end{aligned}
$$

Note: $\xi_{1}^{\ell}=0$ no cubic term

Heavy particle limit

$$
\begin{aligned}
& m a_{B} \gg Z, a_{B}=\text { Bohr radius } \sim(4 \mathrm{keV})^{-1} \\
& F_{t}, X_{t} \propto\left|\psi_{i_{t}}(0)\right|^{2}-\left|\psi_{f_{t}}(0)\right|^{2} \rightarrow \lim _{m \rightarrow \infty}\left(\frac{X_{2}}{X_{1}}-\frac{F_{2}}{F_{1}}\right)=0
\end{aligned}
$$

Asymptotic behavior of PS

$$
X_{t} \propto \int d r r^{2} \rho_{i_{t} f_{t}}(r) \frac{e^{-m r}}{r}=\frac{1}{m^{2}} \sum_{k=0}(2 \ell+k+1)!\frac{\xi_{k}^{\ell}}{m^{2 \ell+k}}+\cdots
$$

$\xi_{1}^{0}=0$ for nucl. charge distribution without cusp

$$
\frac{X_{2}}{X_{1}}-\frac{F_{2}}{F_{1}} \sim O\left(\frac{1}{m^{2}}\right) \rightarrow \varepsilon_{\mathrm{PS}} \sim O\left(\frac{1}{m^{4}}\right)
$$

less sensitive to heavier particles
cf. Berengut et al. arXiv: $1704.05068 \quad \varepsilon_{\mathrm{PS}} \propto 1 / m^{3}$

Field shift nonlinearity

One of the sources of nonlinearity in QED

$$
\begin{aligned}
& \mathrm{FS}=F_{\ell}\left\langle r^{2}\right\rangle_{A^{\prime} A}+G_{t}\left\langle r^{4}\right\rangle_{A^{\prime} A} \\
& \tilde{\nu}_{A^{\prime} A}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{\prime}+\varepsilon A^{\prime} A
\end{aligned}
$$

$\Rightarrow \varepsilon=\varepsilon_{\mathrm{PS}}+\varepsilon_{\mathrm{FS}}$
Wave function inside the nucleus is relevant.
p state dominant: $\mathrm{Ca}^{+} 4 \mathrm{p}, \mathrm{Yb}^{+} 6 \mathrm{p}$
$\varepsilon_{\mathrm{FS}} \propto Z\left|\psi_{n p}^{\prime}(0)\right|^{2} \frac{d}{d A}\left\langle r^{4}\right\rangle_{A}+\cdots$

Status and prospect

Present constraint and future prospect

Data fitting with $\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}+\varepsilon A^{\prime} A$

Yb^{+}modified IS [THz amu]

$\varepsilon=(-2.45 \pm 4.05) \cdot 10^{-6}$

au

future prospect $\delta \nu=1 \mathrm{~Hz}$

$$
|\varepsilon|<4.5 \cdot 10^{-11}
$$

$$
\varepsilon=(-1.26 \pm 1.35) \cdot 10^{-4}
$$

future prospect $\delta \nu=1 \mathrm{~Hz}$

$$
|\varepsilon|<4.2 \cdot 10^{-11}
$$

Comparison to other constraints: vector

Comparison to other constraints: scalar

Summary and outlook

Summary and outlook

- Isotope shift and King's linearity

$$
\begin{aligned}
& \mathrm{IS}=\mathrm{MS}+\mathrm{FS}, \quad \tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21^{\prime}} \tilde{\nu}_{A^{\prime} A}^{1} \\
& \text { Linear relation of modified IS of two lines }
\end{aligned}
$$

\square Nonlinearity $\tilde{\nu}_{A^{\prime} A}^{2}=K_{21}+F_{21} \tilde{\nu}_{A^{\prime} A}^{1}+\varepsilon A^{\prime} A$ $\varepsilon=\varepsilon_{\mathrm{PS}}+\varepsilon_{\mathrm{FS}}$
Particle shift nonlinearity: $\varepsilon_{\mathrm{PS}} \sim O\left(1 / m^{4}\right)$ sensitive for lighter particles, $m \ll 100 \mathrm{MeV}$
Other nonlinearities: more study needed

- Yb^{+}ion trap project by Sugiyama et al. (Kyoto)
$\delta \nu<1 \mathrm{~Hz} \sim 100 \mathrm{kHz}$ possible with proved technique

