

Implication of precision atomic isotope shift measurements in particle physics

Minoru Tanaka (Osaka U)

in collaboration with K. Mikami (Osaka U) and Y.Yamamoto (Yonsei U)

Beyond Standard Model and the Early Universe 25-27 Oct. 2017, Tohoku U, Sendai, Japan

Precision and low-energy frontiers Neutrinoless ββ decay, Cosmic neutrinos Dark matter search: WIMP, axion, ... Electric dipole moment search: atoms, molecules

Exotic force:

fifth force, short range gravity (extra dim.)... Millicharge search: neutrality of atoms

Temporal variation of fundamental constants

 α , m_e/m_p using atomic clock

Yb⁺: $\delta \nu / \nu \sim 10^{-18}$, $\delta \nu \sim \text{sub Hz}$

Hunteman et al. (PTB) 2016

Isotope shift new neutron-electron interaction

Isotope shift (IS)

Transition frequency difference between isotopes

 $h\nu_{A} = E_{A}^{i} - E_{A}^{f} \qquad |i\rangle \longrightarrow \gamma$ $IS = \nu_{A'A} := \nu_{A'} - \nu_{A} \qquad |f\rangle \longrightarrow \nu^{\gamma}$

No IS for infinitely heavy and point-like nuclei IS = MS + FS

Mass shift: finite mass of nuclei (reduced mass) $MS \propto \mu_{A'} - \mu_A$ (dominant for small Z)

Field shift: finite size of nuclei

 ${
m FS} \propto r_{A'}^2 - r_A^2$ (dominant for large Z) Theoretical calculation of IS: not easy ${
m IS} \sim O({
m GHz}) \sim O(10 \ \mu{
m eV})$

King's linearity King, 1963 IS of two transitions: $\ell = 1, 2$ $\nu_{A'A}^{\ell} = K_{\ell} \,\mu_{A'A} + F_{\ell} \,r_{A'A}^2 \qquad \qquad \begin{array}{l} \mu_{A'A} \coloneqq \mu_{A'} - \mu_A \\ r_{A'A}^2 \coloneqq \langle r^2 \rangle_{A'} - \langle r^2 \rangle_A \end{array}$ Modified IS: $\tilde{\nu}_{A'A}^{\ell} := \nu_{A'A}^{\ell} / \mu_{A'A}$ $\tilde{\nu}_{A'A}^{\ell} = K_{\ell} + F_{\ell} r_{A'A}^2 / \mu_{A'A}$ nuclear factor electronic factors King's linearity eliminating the nuclear factor $\tilde{\nu}_{A'A}^2 = K_{21} + \frac{F_2}{F_1} \tilde{\nu}_{A'A}^1$ $K_{21} := K_2 - \frac{F_2}{F_1}K_1$ $(\tilde{\nu}_{A'A}^1, \tilde{\nu}_{A'A}^2)$ on a straight line, King's plot

IS data of Yb⁺

Line 1: 369 nm Martensson-Pendrill et al. PRA49, 3351 (1994) ${}^{2}P_{1/2}(4f)^{14}(6p) - {}^{2}S_{1/2}(4f)^{14}(6s) \quad \delta\nu_{A'A}^{1} \sim O(1) \text{ MHz}$ Line 2: 935nm Sugiyama et al. CPEM2000 ${}^{3}D[3/2]_{1/2}(4f)^{13}(5d)(6s) - {}^{2}D_{3/2}(4f)^{14}(5d) \\ \delta\nu_{A'A}^{2} \sim O(10) \text{ MHz}$ Isotope pairs: (172, 170), (174, 172), (176, 172) Yb⁺ modified IS [THz amu]

King's plot linear within errors

Frequency shifts by particle exchange (Yb⁺ g.s.) $|\Delta \nu| \sim \begin{cases} 10^{-4} \text{ Hz} & \text{Higgs (SM)} \\ 400 \text{ Hz} & \text{Higgs (LHC bound)} \\ 800 \text{ Hz} & Z \\ 10 \text{ MHz} & X_{17} \text{ 17 MeV vector boson} \end{cases}$ << theoretical uncertainties

Breakdown of the linearity by PS

Delaunay et al. arXiv:1601.05087v2

IS = MS + FS + PS

PS by new neutron-electron interaction $\nu_{A'A}^{\ell} = K_{\ell} \mu_{A'A} + F_{\ell} r_{A'A}^2 + X_{\ell} (A' - A)$

Generalized King's relation $\tilde{\nu}_{A'A}^2 = K_{21} + F_{21}\tilde{\nu}_{A'A}^1 + \varepsilon A'A$ nonlinearity probe into new physics

PS nonlinearity

$$\varepsilon_{\rm PS} = X_1 \left(\frac{X_2}{X_1} - \frac{F_2}{F_1} \right) \qquad X_\ell \propto \frac{g_n g_e}{m^2} \text{ as } m \to \infty$$

Heavy particle limit

 $ma_B \gg Z$, $a_B = \text{Bohr radius} \sim (4 \text{ keV})^{-1}$ $F_{\ell}, X_{\ell} \propto |\psi_{i_{\ell}}(0)|^2 - |\psi_{f_{\ell}}(0)|^2 \lim_{m \to \infty} \left(\frac{X_2}{X_1} - \frac{F_2}{F_1}\right) = 0$

Asymptotic behavior of PS

$$\int d^3r |\psi(r)|^2 \frac{e^{-mr}}{r} = \frac{1}{m^2} \sum_{k=0}^{\infty} (2+2l+k)! \frac{\xi_k^l}{m^{2l+k}} + \cdots$$

$$l = \text{angular momentum}$$

 $\xi_1^0 = 0$ for nucl. charge distribution without cusp

$$\frac{X_2}{X_1} - \frac{F_2}{F_1} \sim O\left(\frac{1}{m^2}\right) \longrightarrow \varepsilon_{\rm PS} \sim O\left(\frac{1}{m^4}\right)$$

less sensitive to heavier particles

cf. Berengut et al. arXiv:1704.05068 $\ arepsilon_{
m PS} \propto 1/m^3$

Wavefunction inside the nucleus is relevant. p state dominant: Ca⁺ 4p,Yb⁺ 6p $\varepsilon_{\rm FS} = Z |\psi'_{np}(0)|^2 \frac{d}{dA} \langle r^4 \rangle_A + \cdots$ Present constraint and future prospect Data fitting with $\tilde{\nu}_{A'A}^2 = K_{21} + F_{21}\tilde{\nu}_{A'A}^1 + \varepsilon A'A$

Comparison to other constraints: vector

Minoru TANAKA

Comparison to other constraints: scalar

Minoru TANAKA

Summary and outlook Isotope shift and King's linearity IS=MS+FS, $\tilde{\nu}_{A'A}^2 = K_{21} + F_{21} \tilde{\nu}_{A'A}^1$ Linear relation of modified IS of two lines Nonlinearity $\tilde{\nu}_{A'A}^2 = K_{21} + F_{21}\tilde{\nu}_{A'A}^1 + \varepsilon A'A$ $\varepsilon = \varepsilon_{\rm PS} + \varepsilon_{\rm FS}$ Particle shift nonlinearity: $\varepsilon_{\rm PS} \sim O(1/m^4)$ sensitive for lighter particles, $m \ll 100 \text{ MeV}$ Other nonlinearities: more study needed Yb⁺ ion trap project by Sugiyama et al. (Kyoto) $\delta \nu < 1 \text{ kHz}$ with in a few years

Backup

Evaluation of PS nonlinearity

Single electron approximation

$$X_{\ell} = \frac{g_n g_e}{4\pi} \int r^2 dr \frac{e^{-mr}}{r} \left[R_{i_{\ell}}^2(r) - R_{f_{\ell}}^2(r) \right]$$

Wavefunction

non relativistic (not bad for m<<100 MeV) Thomas-Fermi model semiclassical, statistical, selfconsistent field exact in large Z limit