New Physics in
 $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$

Minoru Tanaka Osaka U

Based on works with Y.Sakaki, A.Tayduganov and R.Watanabe

Sept. 29,2016@Tohoku U

Introduction

Brief history

1975 M. L. Perl: tau lepton
1977 L. Lederman: bottom quark
1987 ARGUS: $B^{0}-\bar{B}^{0}$ mixing
1989 CLEO: $b \rightarrow u$
1994 CDF, D0: top quark
2002 Belle, BaBar (B factories): $C P$ violation in B decays

2007~2016 Belle, BaBar, LHCb: $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$

$\sim 4 \sigma$ discrepancy

Plan of talk

I. Introduction

2. (Super) B factory
3. Semitauonic B decays
4. Summary

(Super) B factory

B factory experiments: BaBar and Belle

Asymmetric electron-positron colliders

$$
e^{+} e^{-} \rightarrow \Upsilon(4 \mathrm{~S}) \rightarrow B \bar{B} \quad \text { boosted B pairs }
$$

$B^{0} \bar{B}^{0}$ mixing
mixing-induced CP violation time-dependent CP asymmetry decay time \longleftrightarrow decay position

$$
\tau \simeq 1.6 \mathrm{ps} \quad c \tau \sim 500 \mu \mathrm{~m}
$$

PEP-II

KEKB

B Factory	e^{-}beam energy			
$E_{-}(\mathrm{GeV})$	e^{+}beam energy $E_{+}(\mathrm{GeV})$	Lorentz factor $\beta \gamma$	crossing angle $\varphi(\mathrm{mrad})$	
PEP-II	9.0	3.1	0.56	0
KEKB	8.0	3.5	0.425	22

Integrated luminosity of B factories

SuperKEKB/Belle II

	KEKB Achieved	SuperKEKB
Energy $(\mathrm{GeV})(\mathrm{LER} / \mathrm{HER})$	$3.5 / 8.0$	$4.0 / 7.0$
ξ_{y}	$0.129 / 0.090$	$0.090 / 0.088$
$\beta_{y}^{*}(\mathrm{~mm})$	$5.9 / 5.9$	$0.27 / 0.41$
$I(\mathrm{~A})$	$1.64 / 1.19$	$3.60 / 2.62$
Luminosity $\left(10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	2.11	80

x40

Minoru TANAKA

Accelerator Upgrade - SuperKEKB

- 40x increase in luminosity
- "Nano-beam" interaction point
- Increase in current

- First turns achieved Feb 2016!

See: Y. Onishi, ICHEP Highlights 08 Aug 12:10

- Belle II Collaboration: ~700 members, ~100 institutions, 23 countries
- Phase 1 (complete)
- Accelerator commissioning

See: P. Lewis, Detector 05 Aug 09:20

- Phase 2 (2017)
- First collisions
- Partial detector
- Background study
- Physics possible
- Phase 3 ("Run 1")
- Nominal Belle II start
- Ultimate goal: 50 ab- $^{-1}$

Semitauonic B decays

$\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$

$$
\mathrm{Br} \sim 0.7+\mathrm{I} .3 \% \text { in the } \mathrm{SM}
$$

Not rare, but two or more missing neutrinos Data available since 2007 (Belle, BABAR, LHCb)

Theoretical motivation

Type-II 2HDM (SUSY) Yukawa coupling

 $\propto m_{b} m_{\tau} \tan ^{2} \beta$

$$
\begin{aligned}
& R\left(D^{(*)}\right) \equiv \frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right)} \\
& R(D)= 0.421 \pm 0.058 \\
& R\left(D^{*}\right)= 0.337 \pm 0.025 \\
& \sim 3.5 \sigma
\end{aligned}
$$

Y. Sakaki, MT,A.Tayduganov, R.Watanabe

$$
\begin{aligned}
& R(D)= 0.397 \pm 0.040 \pm 0.028 \\
& R\left(D^{*}\right)= 0.316 \pm 0.016 \pm 0.010 \\
& \sim 4.0 \sigma \quad \text { HFAG } \\
& \text { With Belle ICHEP2OI6 } \\
& R\left(D^{*}\right)=0.310 \pm 0.017
\end{aligned}
$$

Standard model predictions

Theoretical uncertainty: form factors data from $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}(\ell=e, \mu)$ +HQET or pQCD + lattice QCD
$R(D)=0.296 \pm 0.016$ (Fajfer, Kamenik, Nisandzic) 0.302 ± 0.015 (Sakaki, MT, Tayduganov,Watanabe) 0.299 ± 0.011 (Bailey et al.) $0.337_{-0.037}^{+0.038} \quad$ (Fan, Xiao,Wang, Li) $0.397 \pm 0.040 \pm 0.028$ (Exp. HFAG)
$R\left(D^{*}\right)=0.252 \pm 0.003$ (Fajfer, Kamenik, Nisandzic) 0.252 ± 0.004 (Sakaki, MT, Tayduganov,Watanabe) $0.269_{-0.020}^{+0.021} \quad$ (Fan, Xiao,Wang, Li)
$0.316 \pm 0.016 \pm 0.010$ (Exp. HFAG)

Charged Higgs boson

predictions of 2HDM II

Charged Higgs excluded at 99.8\% CL

Model-independent approach

MT, R.Watanabe,arXiv I2 I2.I878, PRD87.034028(20I3).
Effective Lagrangian for $b \rightarrow c \tau \bar{\nu}$
all possible $4 f$ operators with LH neutrinos

$$
\begin{aligned}
& \mathcal{O}_{V_{1}}^{l}=\bar{c}_{L} \gamma^{\mu} b_{L} \bar{\tau}_{L} \gamma_{\mu} \nu_{L l}, \quad \text { SM-like, RPV, LQ, W' } \\
& \mathcal{O}_{V_{2}}^{l}=\bar{c}_{R} \gamma^{\mu} b_{R} \bar{\tau}_{L} \gamma_{\mu} \nu_{L l}, \quad \text { RH current } \\
& \mathcal{O}_{S_{1}}^{l}=\bar{c}_{L} b_{R} \bar{\tau}_{R} \nu_{L l}, \\
& \mathcal{O}_{S_{2}}^{l}=\bar{c}_{R} b_{L} \bar{\tau}_{R} \nu_{L l}, \\
& \mathcal{O}_{T}^{l}=\bar{c}_{R} \sigma^{\mu \nu} b_{L} \bar{\tau}_{R} \sigma_{\mu \nu} \nu_{L l} \quad \mathrm{LQ}
\end{aligned}
$$

Allowed regions in complex Cx plane

Leptoquark models

 arXiv:I309.030I;PRD88, 0940I2(20I3)Six of ten types of LQ contribute.

	S_{1}	S_{3}	V_{2}	R_{2}	U_{1}	U_{3}
spin	0	0	1	0	1	1
$F=3 B+L$	-2	-2	-2	0	0	0
$S U(3)_{c}$	3^{*}	3^{*}	3^{*}	3	3	3
$S U(2)_{L}$	1	3	2	2	1	3
$U(1)_{Y=Q-T_{3}}$	$1 / 3$	$1 / 3$	$5 / 6$	$7 / 6$	$2 / 3$	$2 / 3$

$$
C_{V_{1}}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[\frac{g_{1 L}^{k l} g_{1 L}^{23 *}}{2 M_{S_{1}^{1 / 3}}^{2}}-\frac{g_{3 L}^{k l} g_{3 L}^{23 *}}{2 M_{S_{3}^{1 / 3}}^{2}}+\frac{h_{1 L}^{2 l} h_{1 L}^{k 3 *}}{M_{U_{1}^{2 / 3}}^{2 / 3}}-\frac{h_{3 L}^{2 l} h_{3 L}^{k 3 *}}{M_{U_{3}^{2 / 3}}^{2}}\right], \quad \begin{gathered}
\text { constrained by } \\
\bar{B} \rightarrow X_{\mathrm{c}} \nu \bar{\nu}
\end{gathered}
$$

$$
C_{V_{2}}^{l}=0,
$$

$$
C_{S_{1}}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[-\frac{2 g_{2 L}^{k l} g_{2 R}^{23 *}}{M_{V_{2}^{1 / 3}}^{2}}-\frac{2 h_{1 L}^{2 l} h_{1 R}^{k 3 *}}{M_{U_{1}^{2 / 3}}^{2 / 3}}\right] \text {, disfavored }
$$

$$
C_{S_{2}}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[-\frac{g_{1 L}^{k l} L_{1 R}^{23 *}}{2 M_{S_{1}^{1 / 3}}^{2}}-\frac{h_{2 L}^{2 l} h_{2 R}^{k 3 *}}{2 M_{R_{2}^{2 / 3}}^{2 / 3}}\right]
$$

$$
C_{T}^{l}=\frac{1}{2 \sqrt{2} G_{F} V_{c b}} \sum_{k=1}^{3} V_{k 3}\left[\frac{g_{1 L}^{k l} g_{1 R}^{23 *}}{8 M_{S_{1}^{1 / 3}}^{2}}-\frac{h_{2 L}^{2 l} h_{2 R}^{k 3 *}}{8 M_{R_{2}^{2 / 3}}^{2}}\right]
$$

$$
\begin{gathered}
C_{S_{2}}\left(m_{\mathrm{LQ}}\right)= \pm 4 C_{T}\left(m_{\mathrm{LQ}}\right) \\
\\
C_{S_{2}}\left(m_{b}\right)= \pm 7.8 C_{T}\left(m_{b}\right)
\end{gathered}
$$

q2 distribution

Y. Sakaki, MT,A.Tayduganov,R.Watanabe arXiv:I4I2.376I; PRD9I, I4028 (2015)

Several possible NP scenarios (as of 2013)

$$
\begin{aligned}
& V_{1}: C_{V_{1}}=0.16(0.12) \quad(\ldots) 2015 \text { best fits } \\
& V_{2}: C_{V_{2}}=0.01 \pm 0.60 i(0.01 \pm 0.51 i) \\
& S_{2}: C_{S_{2}}=-1.75(-1.67) \\
& T: C_{T}=0.33(0.34) \\
& \mathrm{LQ}_{1}: C_{S_{2}}=7.8 C_{T}=-0.17 \pm 0.80 i(-0.12 \pm 0.69 i) \\
& \mathrm{LQ}_{2}: C_{S_{2}}=-7.8 C_{T}=0.34(0.25)
\end{aligned}
$$

How to discriminate: other observables $A_{F B}, P_{\tau}, P_{D^{*}}$ rather hard to measure $q^{2}=\left(p_{B}-p_{D^{(*)}}\right)^{2} \quad$ easier

Implication of the BABAR q2 data

p value

model	$\bar{B} \rightarrow D \tau \bar{\nu}$	$\bar{B} \rightarrow D^{*} \tau \bar{\nu}$	$\bar{B} \rightarrow\left(D+D^{*}\right) \tau \bar{\nu}$
SM	54%	65%	67%
V_{1}	54%	65%	67%
V_{2}	54%	65%	67%
S_{2}	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ $_{1}$	13%	58%	25%
LQ $_{2}$	21%	72%	42%

S_{2}, T disfavored
$\mathrm{LQ}_{1,2}$ (combinations of S_{2}, T) allowed

Ratio of the q2 distributions

$$
\begin{aligned}
R_{D}\left(q^{2}\right) \equiv & \frac{d \mathcal{B}(\bar{B} \rightarrow D \tau \bar{\nu}) / d q^{2}}{d \mathcal{B}(\bar{B} \rightarrow D \ell \bar{\nu}) / d q^{2}} \frac{\lambda_{D}\left(q^{2}\right)}{\left(m_{B}^{2}-m_{D}^{2}\right)^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2} \\
R_{D^{*}}\left(q^{2}\right) \equiv & \frac{d \mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}\right) / d q^{2}}{d \mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}\right) / d q^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{-2} \\
& \lambda_{D^{(*)}}\left(q^{2}\right)=\left(\left(m_{B}-m_{D^{(*)}}\right)^{2}-q^{2}\right)\left(\left(m_{B}+m_{D^{(*)}}\right)^{2}-q^{2}\right)
\end{aligned}
$$

No Vcb dependence, less form factor uncertainties

Simulated data vs benchmark models

χ^{2} of the binned $R_{D^{(*)}}\left(q^{2}\right)$

Required luminosity to exclude the model

$\mathcal{L}\left[\mathrm{fb}^{-1}\right]$		model						
		SM	V_{1}	V_{2}	S_{2}	T	LQ_{1}	LQ_{2}
	V_{1}	$\begin{aligned} & 1170 \\ & (270) \end{aligned}$		$\begin{aligned} & 10^{6} \\ & (\times) \end{aligned}$	$\begin{aligned} & \hline 500 \\ & (\times) \end{aligned}$	$\begin{aligned} & 900 \\ & (\times) \end{aligned}$	$\begin{gathered} 4140 \\ (\times) \end{gathered}$	$\begin{gathered} \hline 2860 \\ (1390) \end{gathered}$
	V_{2}	$\begin{aligned} & 1140 \\ & (270) \end{aligned}$	$\begin{aligned} & 10^{6} \\ & (\times) \end{aligned}$		$\begin{aligned} & 510 \\ & (\times) \end{aligned}$	$\begin{aligned} & 910 \\ & (\times) \end{aligned}$	$\begin{gathered} 4210 \\ (\times) \end{gathered}$	$\begin{gathered} 3370 \\ (1960) \end{gathered}$
	S_{2}	$\begin{gathered} 560 \\ (290) \end{gathered}$	$\begin{gathered} 560 \\ (13750) \end{gathered}$	$\begin{gathered} 540 \\ (36450) \end{gathered}$		$\begin{aligned} & \hline 380 \\ & (\times) \\ & \hline \end{aligned}$	$\begin{gathered} 1310 \\ (35720) \end{gathered}$	$\begin{gathered} 730 \\ (4720) \end{gathered}$
	T	$\begin{gathered} 600 \\ (270) \end{gathered}$	$\begin{aligned} & 680 \\ & (\times) \end{aligned}$	$\begin{aligned} & 700 \\ & (\times) \end{aligned}$	$\begin{aligned} & 320 \\ & (\times) \end{aligned}$		$\begin{aligned} & 620 \\ & (\times) \end{aligned}$	$\begin{gathered} 550 \\ (1980) \end{gathered}$
	LQ1	$\begin{aligned} & 1010 \\ & (270) \\ & \hline \end{aligned}$	$\begin{gathered} 4820 \\ (\times) \\ \hline \end{gathered}$	$\begin{gathered} 4650 \\ (\times) \\ \hline \end{gathered}$	$\begin{gathered} 1510 \\ (\times) \end{gathered}$	$\begin{aligned} & \hline 800 \\ & (\times) \\ & \hline \end{aligned}$		$\begin{gathered} \hline 5920 \\ (1940) \\ \hline \end{gathered}$
	LQ_{2}	$\begin{aligned} & 1020 \\ & (250) \end{aligned}$	$\begin{gathered} \hline 3420 \\ (1320) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3990 \\ (1820) \end{gathered}$	$\begin{gathered} 1040 \\ (20560) \end{gathered}$	$\begin{gathered} 650 \\ (4110) \end{gathered}$	$\begin{gathered} \hline 5930 \\ (1860) \end{gathered}$	

(...): integrated quantities
$L \lesssim 6 \mathrm{ab}^{-1}$ in most cases
A good target at an earlier stage of Belle II

Belle II sensitivity at 40/ab

Assuming exp. $=\mathrm{SM}$ for $R(D), R\left(D^{*}\right)$

blue $R_{D^{* *}}\left(q^{2}\right)$ red $R\left(D^{(*)}\right)$

$$
M_{\mathrm{NP}} \equiv\left(2 \sqrt{2} G_{F} V_{c b} C_{X}\right)^{-1 / 2}
$$

$$
\gtrsim 5(7), 5(6), 7(10), 5(7), 5(6) \mathrm{TeV}
$$

$$
\begin{array}{llllll}
V_{1,2} & S_{1,2} & T & \mathrm{LQ}_{1} & \mathrm{LQ}_{2}
\end{array}
$$

Other flavor signals of LQ

Scalar LQ $S_{1}\left(\mathbf{3}^{*}, \mathbf{1}, 1 / 3\right) \quad$ Bauer, Neubert PRLII 6,141802 (2016)
Tree: $B \rightarrow X_{s} \nu \bar{\nu}, K^{(*)} \nu \bar{\nu}$

$$
D \rightarrow \mu^{+} \mu^{-}
$$

Loop: $b \rightarrow s \ell \bar{\ell}$

$$
\begin{aligned}
& R_{K}=\frac{\Gamma\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{\Gamma\left(B \rightarrow K e^{+} e^{-}\right)}=0.745_{-0.074}^{+0.090} \pm 0.036 \\
& (g-2)_{\mu}, \tau \rightarrow \mu \gamma
\end{aligned}
$$

Vector LQ $U_{3}(\mathbf{3}, \mathbf{3}, 2 / 3) \quad$ Fajfer, Kosnik PLB755, 270 (2016)
Tree: $B \rightarrow X_{s} \nu \bar{\nu}, K^{(*)} \nu \bar{\nu}$

$$
\begin{aligned}
& b \rightarrow s \ell \bar{\ell}, P_{5}^{\prime}, R_{K} \\
& t \rightarrow b \tau^{+} \nu
\end{aligned}
$$

Search for a scalar LQ at LHC

$$
S_{1}\left(\mathbf{3}^{*}, \mathbf{1}, 1 / 3\right)
$$

Dumont, Nishiwaki, Watanabe PRD94, 03400 I (2016)
Exclusion limit at 95\%CL

Other observables

$\mathcal{A}_{\text {FB }}:$ T forward-backward asymmetry $P_{\tau}:$ T longitudinal polarization $P_{D^{*}}$: D* longitudinal polarization

Belle @ ICHEP2016

$\mathcal{R}\left(\boldsymbol{D}^{*}\right)$ and $\mathcal{P}_{\boldsymbol{\tau}}$ with Had-tag

- $\mathcal{R}\left(D^{*}\right)=0.276 \pm 0.034(\mathrm{stat})_{-0.026}^{+0.029}$ (syst) Preliminary
- 7.1σ significance including systematic uncertainty.
- Consistent with SM prediction and other measurements.
- $\mathcal{P}_{\tau}=-0.44 \pm 0.47$ (stat) ${ }_{-0.17}^{+0.20}$ (syst)

Preliminary

- First \mathcal{P}_{τ} measurements !
- Consistent with SM prediction (-0.497 $\pm 0.014)$ Within unceranal
- Systematics arises mainly from hadronic B bkg, MC statistics.

Model-independent analysis of $\bar{B} \rightarrow \pi \tau \bar{\nu}$

 $\mathrm{Br} \sim 0.007 \%$ in the $S M$MT, R.Watanabe I608.05207

Exp. $\mathcal{B}=(1.52 \pm 0.72 \pm 0.13) \times 10^{-4}$ Belle 2015
Effective Lagrangian for $b \rightarrow u \tau \bar{\nu}$

$$
\begin{aligned}
&-\mathcal{L}_{\mathrm{eff}}=2 \sqrt{2} G_{F} V_{u b}\left[\left(1+C_{V_{1}}\right) \mathcal{O}_{V_{1}}+C_{V_{2}} \mathcal{O}_{V_{2}}+C_{S_{1}} \mathcal{O}_{S_{1}}+C_{S_{2}} \mathcal{O}_{S_{2}}+C_{T} \mathcal{O}_{T}\right] \\
& \mathcal{O}_{V_{1}}=\left(\bar{u} \gamma^{\mu} P_{L} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau}\right) \mathcal{O}_{S_{1}}=\left(\bar{u} P_{R} b\right)\left(\bar{\tau} P_{L} \nu_{\tau}\right) \\
& \mathcal{O}_{V_{2}}=\left(\bar{u} \gamma^{\mu} P_{R} b\right)\left(\bar{\tau} \gamma_{\mu} P_{L} \nu_{\tau}\right) \mathcal{O}_{S_{2}}=\left(\bar{u} P_{L} b\right)\left(\bar{\tau} P_{L} \nu_{\tau}\right) \\
& \mathcal{O}_{T}=\left(\bar{u} \sigma^{\mu \nu} P_{L} b\right)\left(\bar{\tau} \sigma_{\mu \nu} P_{L} \nu_{\tau}\right)
\end{aligned}
$$

$\left|V_{u b}\right|$ and form factors uncertainty

$$
R_{\pi}=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow \pi^{+} \tau^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}\right)}
$$

smaller uncertainty

Form factors

Vector: $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$

$$
\left\langle\pi\left(p_{\pi}\right)\right| \bar{u} \gamma^{\mu} b\left|\bar{B}\left(p_{B}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[\left(p_{B}+p_{\pi}\right)^{\mu}-\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}} q^{\mu}
$$

$\bar{B} \rightarrow \pi \ell \bar{\nu}$ exp. data + lattice Bailey et al. PRD92, 014024 (2015)
Scalar: $f_{S}\left(q^{2}\right)$

$$
\left\langle\pi\left(p_{\pi}\right)\right| \overline{\bar{b}}\left|\bar{B}\left(p_{B}\right)\right\rangle=\left(m_{B}+m_{\pi}\right) f_{S}\left(q^{2}\right)
$$

eq. of motion $f_{S}\left(q^{2}\right)=\frac{m_{B}-m_{\pi}}{m_{b}-m_{u}} f_{0}\left(q^{2}\right)$

$$
m_{b} \simeq 4.2 \mathrm{GeV}
$$

Tensor: $f_{T}\left(q^{2}\right)$

$$
\left\langle\pi\left(p_{\pi}\right)\right| \bar{u} i \sigma^{\mu \nu} b\left|B\left(p_{B}\right)\right\rangle=\frac{2}{m_{B}+m_{\pi}} f_{T}\left(q^{2}\right)\left[p_{B}^{\mu} p_{\pi}^{\nu}-p_{B}^{\nu} p_{\pi}^{\mu}\right]
$$

lattice Bailey et al. PRLII5, I52002 (20|5)

Ratio of branching fraction

$$
R_{\pi}=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow \pi^{+} \tau^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}\right)}
$$

$$
\begin{aligned}
& R_{\boldsymbol{\pi}}^{\exp }=1.05 \pm 0.51 \\
& \mathcal{B}(B \rightarrow \pi \ell \bar{\nu})=(1.45 \pm 0.02 \pm 0.04) \times 10^{-4} \\
& \quad \text { HFAG }
\end{aligned}
$$

$$
R_{\pi}^{\mathrm{SM}}=0.641 \pm 0.016
$$

Pure- to semi- leptonic ratio

$B^{-} \rightarrow \tau^{-} \bar{\nu}$ described by $\mathcal{L}_{\text {eff }}(b \rightarrow u \tau \bar{\nu})$

$$
\begin{aligned}
& \mathcal{B}\left(B \rightarrow \tau \bar{\nu}_{\tau}\right)=\frac{\tau_{B}-G_{F}^{2}\left|V_{u b}\right|^{2} f_{B}^{2}}{8 \pi} m_{B} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2}\left|1+r_{\mathrm{NP}}\right|^{2} \\
& r_{\mathrm{NP}}=C_{V_{1}}-C_{V_{2}}+\frac{m_{B}^{2}}{m_{b} m_{\tau}}\left(C_{S_{1}}-C_{S_{2}}\right)
\end{aligned}
$$

No tensor contribution

Uncertainties: $\left|V_{u b}\right|, f_{B}$
Taking a ratio to eliminate $\left|V_{u b}\right|$

$$
R_{\mathrm{ps}}=\frac{\Gamma\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}_{\ell}\right)}=\frac{\tau_{B^{0}}}{\tau_{B^{-}}} \frac{\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow \pi^{+} \ell^{-} \bar{\nu}_{\ell}\right)}
$$

Fajfer et al. PRLI09, I6I80I(2012)

+ lattice $f_{B}=192.0 \pm 4.3 \mathrm{MeV}$ FLAG 1607.00299

Another ratio

$$
\begin{aligned}
R_{\mathrm{pl}} & =\frac{\mathcal{B}\left(B \rightarrow \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow \mu \bar{\nu}_{\mu}\right)}=\frac{m_{\tau}^{2}}{m_{\mu}^{2}}\left(1-m_{\tau}^{2} / m_{B}^{2}\right)^{2} \\
& \text { practically no uncertainty in the SM prediction }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{B}\left(B \rightarrow \mu \bar{\nu}_{\mu}\right)^{\text {exp. }}<1 \times 10^{-6} \text { at } 90 \% \text { CL } \quad \text { BaBar, Belle } \\
& \mathcal{B}\left(B \rightarrow \mu \bar{\nu}_{\mu}\right)^{\mathrm{SM}}=(0.41 \pm 0.05) \times 10^{-6}
\end{aligned}
$$

likely to be observed at Belle II

Future prospect

Belle II ~50/ab cf. Belle ~ 1/ab

Scaling the present errors as $1 / \sqrt{\mathcal{L}}$ and the central values $=$ SM

NP scenario	$R_{\pi}^{\text {Belle II }}=0.641 \pm 0.071$	$R_{\mathrm{ps}}^{\text {Belle } \mathrm{II}}=0.574 \pm 0.020$	$R_{\mathrm{pl}}^{\text {Belle II }}=222 \pm 47$
$C_{V_{1}}$	$[-0.12,0.11]$	$[-0.08,0.10]$	$[-0.23,0.19]$
$C_{V_{2}}$	$[-0.12,0.11]$	$[-0.10,0.08]$	$[-0.19,0.23]$
$C_{S_{1}}$	$[-0.31,0.17]$	$[-0.02,0.03]$	$[-0.06,0.05]$
$C_{S_{2}}$	$[-0.31,0.17]$	$[-0.03,0.02]$	$[-0.05,0.06]$
C_{T}	$[-0.13,0.10]$	-	-

Summary

Excess of $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$

$$
R(D), R\left(D^{*}\right) \quad \sim 4 \sigma
$$

- Testing NP with the q2 distribution The earlier stage of Belle II $\sim 5-10 / \mathrm{ab}$
\square Other observables $A_{F B}, P_{\tau}, P_{D^{*}}, R\left(X_{c}\right)$ Belle II, LHCb prospect?
- Flavor structure of possible NP

$$
\begin{aligned}
& (\bar{u} b)(\bar{\tau} \nu) \quad B^{-} \rightarrow \tau \bar{\nu}, B \rightarrow \pi \tau \bar{\nu} \\
& \text { MFV Freytsis, Ligeti, Ruderman PRD92, } 054018 \text { (2015) } \\
& \text { U(2) Barbieri et al. EPJC76, } 67 \text { (2016) }
\end{aligned}
$$

