

New Physics in $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$

Minoru Tanaka Osaka U

Based on works with Y.Sakaki, A. Tayduganov and R. Watanabe

Sept. 29, 2016 @ Tohoku U

Introduction

Brief history

1975 M. L. Perl: tau lepton 1977 L. Lederman: bottom quark 1987 ARGUS: $B^0 - \overline{B}^0$ mixing 1989 CLEO: $b \rightarrow u$ 1994 CDF, D0: top quark 2002 Belle, BaBar (B factories): CP violation in B decays

.....

2007~2016 Belle, BaBar, LHCb: $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ ~4 σ discrepancy

Plan of talk

I. Introduction

- 2. (Super) B factory
- 3. Semitauonic B decays
- 4. Summary

(Super) B factory

B factory experiments: BaBar and Belle EPJC74(2014)3026

Asymmetric electron-positron colliders

 $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ boosted B pairs

 $B^0 \overline{B}^0$ mixing mixing-induced CP violation time-dependent CP asymmetry decay time \longleftarrow decay position $\tau \simeq 1.6 \text{ ps}$ $c\tau \sim 500 \ \mu \text{m}$

B Factory	e^- beam energy	e^+ beam energy	Lorentz factor	crossing angle
	E_{-} (GeV)	$E_+ ({ m GeV})$	$eta\gamma$	$\varphi ~({ m mrad})$
PEP-II	9.0	3.1	0.56	0
KEKB	8.0	3.5	0.425	22

Integrated luminosity of B factories

SuperKEKB/Belle II

	KEKB Achieved	SuperKEKB	
Energy (GeV) (LER/HER)	3.5/8.0	4.0/7.0	
ξ_y	0.129/0.090	0.090/0.088	
$\beta_y^* \; (\mathrm{mm})$	5.9/5.9	0.27/0.41	
I(A)	1.64/1.19	3.60/2.62	
Luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	2.11	80	X

9

Accelerator Upgrade – SuperKEKB

Proudly Operated by **Battelle** Since 1965

Current Status and Schedule

Belle II Collaboration: ~700 members, ~100 institutions, 23 countries

Phase 1 (complete)

 Accelerator commissioning
 See: P. Lewis, Detector 05 Aug 09:20

 Phase 2 (2017)

 First collisions
 Partial detector
 Background study
 Physics possible

 Phase 3 ("Run 1")

 Nominal Belle II start

Ultimate goal: 50 ab⁻¹

Belle II Physics / Bryan Fulsom (PNNL) / ICHEP / 2016-08-05

Semitauonic B decays

$\bar{B} \to D^{(*)} \tau \bar{\nu}$

Br ~ 0.7+1.3 % in the SM

Not rare, but two or more missing neutrinos Data available since 2007 (Belle, BABAR, LHCb)

Theoretical motivation

W.S. Hou and B. Grzadkowski (1992)

SM: gauge coupling lepton universality

Type-II 2HDM (SUSY) Yukawa coupling $\propto m_b m_{\tau} \tan^2 \beta$

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell\bar{\nu}_{\ell})}$$

 $R(D) = 0.421 \pm 0.058$ $R(D^*) = 0.337 \pm 0.025$ ~3.5 σ Y. Sakaki, MT, A. Tayduganov, R. Watanabe

 $R(D) = 0.397 \pm 0.040 \pm 0.028$ $R(D^*) = 0.316 \pm 0.016 \pm 0.010$

~4.0 σ HFAG

With Belle ICHEP2016 $R(D^*) = 0.310 \pm 0.017$

Standard model predictions Theoretical uncertainty: form factors data from $\bar{B} \to D^{(*)} \ell \bar{\nu} \ (\ell = e, \mu)$ + HQET or pQCD + lattice OCD $R(D) = 0.296 \pm 0.016$ (Fajfer, Kamenik, Nisandzic) 0.302 ± 0.015 (Sakaki, MT, Tayduganov, Watanabe) 0.299 ± 0.011 (Bailey et al.) $0.337^{+0.038}_{-0.037}$ (Fan, Xiao, Wang, Li) $0.397 \pm 0.040 \pm 0.028$ (Exp. HFAG) $R(D^*) = 0.252 \pm 0.003$ (Fajfer, Kamenik, Nisandzic) 0.252 ± 0.004 (Sakaki, MT, Tayduganov, Watanabe) $0.269^{+0.021}_{-0.020}$ (Fan, Xiao, Wang, Li) $0.316 \pm 0.016 \pm 0.010$ (Exp. HFAG)

Model-independent approach MT, R.Watanabe, arXiv1212.1878, PRD87.034028(2013). Effective Lagrangian for $b \rightarrow c \tau \bar{\nu}$ all possible 4f operators with LH neutrinos $-\mathcal{L}_{\text{eff}} = 2\sqrt{2}G_F V_{cb} \sum \left[(\delta_{l\tau} + C_{V_1}^l)\mathcal{O}_{V_1}^l + C_{V_2}^l \mathcal{O}_{V_2}^l + C_{S_1}^l \mathcal{O}_{S_1}^l + C_{S_2}^l \mathcal{O}_{S_2}^l + C_T^l \mathcal{O}_T^l \right]$ $l=e,\mu,\tau$ $\mathcal{O}_{V_1}^l = \bar{c}_L \gamma^\mu b_L \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ SM-like, RPV, LQ, W' $\mathcal{O}_{V_2}^l = \bar{c}_R \gamma^\mu b_R \, \bar{\tau}_L \gamma_\mu \nu_{Ll} \,,$ **RH** current $\mathcal{O}_{S_1}^l = \bar{c}_L b_R \bar{\tau}_R \nu_{Ll} \,,$ charged Higgs II, RPV, LQ $\mathcal{O}_{S_2}^l = \bar{c}_R b_L \, \bar{\tau}_R \nu_{Ll} \,,$ charged Higgs III, LQ $\mathcal{O}_T^l = \bar{c}_R \sigma^{\mu\nu} b_L \bar{\tau}_R \sigma_{\mu\nu} \nu_{Ll}$ LO

Leptoquark models

Six of ten types of LQ contribute.

	S_1	<i>S</i> ₃	V_2	R_2	U_1	U_3
spin	0	0	1	0	1	1
$\hat{F} = 3B + L$	-2	-2	-2	0	0	0
$SU(3)_c$	3*	3*	3*	3	3	3
$SU(2)_L$	1	3	2	2	1	3
$U(1)_{Y=Q-T_3}$	1/3	1/3	5/6	7/6	2/3	2/3

Buchmueller, Ruckl, Wyler (1987)

 $C_{V_{1}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl}g_{1L}^{23*}}{2M_{S_{1}^{l/3}}^{2}} - \frac{g_{3L}^{kl}g_{3L}^{23*}}{2M_{S_{3}^{l/3}}^{2}} + \frac{h_{1L}^{2l}h_{1L}^{k3*}}{M_{U_{1}^{2/3}}^{2}} - \frac{h_{3L}^{2l}h_{3L}^{k3*}}{M_{U_{2}^{2/3}}^{2}} \right], \quad \text{constrained by}$ $\bar{B} \to X_{s} \nu \bar{\nu}$ $C_{V_{2}}^{l} = 0,$ $C_{S_{1}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[-\frac{2g_{2L}^{kl}g_{2R}^{23*}}{M_{V_{2}^{2}}^{2}} - \frac{2h_{1L}^{2l}h_{1R}^{k3*}}{M_{U_{1}^{2}}^{2}} \right], \quad \text{disfavored}$ $C_{S_{2}}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[-\frac{g_{1L}^{kl}g_{1R}^{23*}}{M_{V_{2}^{2}}^{2}} - \frac{h_{2L}^{2l}h_{2R}^{k3*}}{M_{V_{2}^{2}}^{2}} \right], \quad C_{S_{2}}(m_{LQ}) = \pm 4C_{T}(m_{LQ})$ $C_{T}^{l} = \frac{1}{2\sqrt{2}G_{F}V_{cb}} \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl}g_{1R}^{23*}}{M_{S_{1}^{2}}^{2}} - \frac{h_{2L}^{2l}h_{2R}^{k3*}}{M_{S_{1}^{2}}^{2}} \right], \quad C_{S_{2}}(m_{LQ}) = \pm 4C_{T}(m_{LQ})$

q2 distribution

Y. Sakaki, MT, A. Tayduganov, R. Watanabe arXiv:1412.3761; PRD91, 14028 (2015)

Several possible NP scenarios (as of 2013)

$$V_1 : C_{V_1} = 0.16 \ (0.12) \qquad (\dots) \ 2015 \text{ best fits}$$

$$V_2 : C_{V_2} = 0.01 \pm 0.60i \ (0.01 \pm 0.51i)$$

$$S_2 : C_{S_2} = -1.75 \ (-1.67)$$

$$T : C_T = 0.33 \ (0.34)$$

$$LQ_1 : C_{S_2} = 7.8C_T = -0.17 \pm 0.80i \ (-0.12 \pm 0.69i)$$

$$LQ_2 : C_{S_2} = -7.8C_T = 0.34 \ (0.25)$$

How to discriminate: other observables $A_{FB}, P_{\tau}, P_{D^*}$ rather hard to measure $q^2 = (p_B - p_{D^{(*)}})^2$ easier

Implication of the BABAR q2 data

p value

model	$\overline{B} \to D\tau\overline{\nu}$	$\overline{B} \to D^* \tau \overline{\nu}$	$\overline{B} \to (D+D^*)\tau\overline{\nu}$
SM	54%	65%	67%
V_1	54%	65%	67%
V_2	54%	65%	67%
S_2	0.02%	37%	0.1%
T	58%	0.1%	1.0%
LQ_1	13%	58%	25%
LQ_2	21%	72%	42%

S_2, T disfavored

 $LQ_{1,2}$ (combinations of S_2, T) allowed

Ratio of the q2 distributions

$$R_D(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D\ell\overline{\nu})/dq^2} \frac{\lambda_D(q^2)}{(m_B^2 - m_D^2)^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$$
$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\overline{B} \to D^*\tau\overline{\nu})/dq^2}{d\mathcal{B}(\overline{B} \to D^*\ell\overline{\nu})/dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}.$$
$$\lambda_{D^{(*)}}(q^2) = ((m_B - m_{D^{(*)}})^2 - q^2)((m_B + m_{D^{(*)}})^2 - q^2)$$

No Vcb dependence, less form factor uncertainties

 (q^2)

Simulated data vs benchmark models χ^2 of the binned $R_{D^{(*)}}(q^2)$

Required luminosity to exclude the model

$\mathcal{L} [\mathrm{fb}^{-1}]$		model						
		SM	V_1	V_2	S_2	T	LQ_1	LQ_2
	V	1170		10^{6}	500	900	4140	2860
	<i>v</i> ₁	(270)		(X)	(X)	(X)	(X)	(1390)
	Va	1140	10^{6}		510	910	4210	3370
	V2	(270)	(X)		(X)	(X)	(X)	(1960)
"	Sa	560	560	540		380	1310	730
ata	D_2	(290)	(13750)	(36450)		(X)	(35720)	(4720)
p,	T	600	680	700	320		620	550
		(270)	(X)	(X)	(X)		(X)	(1980)
	LQ ₁	1010	4820	4650	1510	800		5920
		(270)	(X)	(X)	(X)	(X)		(1940)
	IO	1020	3420	3990	1040	650	5930	
	ЪQ2	(250)	(1320)	(1820)	(20560)	(4110)	(1860)	

(...): integrated quantities

99.9 % CL

 $L \lesssim 6 \ {\rm ab}^{-1}$ in most cases

A good target at an earlier stage of Belle II

99.9% CL 0.5 0.2 0.5 0.04 Belle II sensitivity at -02 $\operatorname{Im}[C_{S_1}]$ $\operatorname{Im}[C_{V_2}]$ 0.00 0.0 0.0 -0.04 -0.02 0.00 0.02 0.04 -0.5-0.2Assuming exp. = SM for R(D), R(D)-1.00.00 -0.05 0.05 0.10 -0.8 -0.6 $\operatorname{Re}[C_{V_2}]$

Other flavor signals of LQ Scalar LQ S_1 ($\mathbf{3}^*, \mathbf{1}, 1/3$) Bauer, Neubert PRLII6, 141802 (2016) **Tree:** $B \to X_s \nu \bar{\nu}, K^{(*)} \nu \bar{\nu}$ $D \rightarrow \mu^+ \mu^-$ Loop: $b \to s\ell\ell$ $R_{K} = \frac{\Gamma(B \to K \mu^{+} \mu^{-})}{\Gamma(B \to K e^{+} e^{-})} = 0.745^{+0.090}_{-0.074} \pm 0.036$ $2.6\sigma \text{ LHCb (2014)}$ $(g-2)_{\mu}, \ \tau \to \mu \gamma$ Vector LQ U_3 (3, 3, 2/3) Fajfer, Kosnik PLB755, 270 (2016) **Tree:** $B \to X_s \nu \bar{\nu}, K^{(*)} \nu \bar{\nu}$ $b \to s\ell\ell, P'_5, R_K$ $t \to b \tau^+ \nu$

Other observables

Y. Sakaki, MT, A. Tayduganov, R. Watanabe arXiv: 1309.0301; PRD88, 094012(2013)

\mathcal{A}_{FB} : T forward-backward asymmetry

- P_{τ} : **T** longitudinal polarization
- P_{D^*} : **D**^{*} longitudinal polarization

$\mathcal{R}(\boldsymbol{D}^*)$ and \mathcal{P}_{τ} with Had-tag $\mathcal{R}(D^*) = 0.276 \pm 0.034(\text{stat})^{+0.029}_{-0.026}(\text{syst})$ Preliminary - 7.1σ significance including systematic uncertainty. Consistent with SM prediction and other measurements. $\mathcal{P}_{\tau} = -0.44 \pm 0.47 (\text{stat})^{+0.20}_{-0.17} (\text{syst})$ Preliminary - First \mathcal{P}_{τ} measurements ! M. Tanaka, R. Watanabe, PRD 87, 034028 (2013) - Consistent with SM prediction (-0.497 ± 0.014) within uncertainty. Systematics arises mainly from hadronic *B* bkg, MC statistics. Average at Moriond 2016 ٣ 2σ 0.5 1σ 0 Measured -0.5 SM

Result of $\mathcal{R}(D^*)$ and \mathcal{P}_{τ} Measurements

•

•

Belle @ ICHEP2016

30

10

Y. Sato

$$\begin{array}{l} \mbox{Model-independent analysis of } \bar{B} \rightarrow \pi \tau \bar{\nu} \\ \mbox{MT, R.Watanabe 1608.05207} \\ \mbox{Br ~ 0.007\% in the SM} \\ \mbox{MT, R.Watanabe 1608.05207} \\ \mbox{Exp. } \mathcal{B} = (1.52 \pm 0.72 \pm 0.13) \times 10^{-4} \mbox{ Belle 2015} \\ \mbox{Effective Lagrangian for } b \rightarrow u \tau \bar{\nu} \\ \mbox{-} \mathcal{L}_{\rm eff} = 2\sqrt{2}G_F V_{ub} \Big[(1 + C_{V_1})\mathcal{O}_{V_1} + C_{V_2}\mathcal{O}_{V_2} + C_{S_1}\mathcal{O}_{S_1} + C_{S_2}\mathcal{O}_{S_2} + C_T\mathcal{O}_T \Big] \\ \mbox{O}_{V_1} = (\bar{u}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau}) \\ \mbox{O}_{S_1} = (\bar{u}P_Rb)(\bar{\tau}P_L\nu_{\tau}) \\ \mbox{O}_{V_2} = (\bar{u}\gamma^{\mu}P_Rb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau}) \\ \mbox{O}_{S_2} = (\bar{u}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau}) \\ \mbox{O}_T = (\bar{u}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau}) \\ \mbox{O}_T = (\bar{u}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau}) \\ \mbox{ML} \\ \mbox{R}_{\pi} = \frac{\mathcal{B}(\bar{B}^0 \rightarrow \pi^+ \tau^- \bar{\nu})}{\mathcal{B}(\bar{B}^0 \rightarrow \pi^+ \ell^- \bar{\nu})} \\ \end{array}$$

Form factors

Vector: $f_+(q^2), f_0(q^2)$ $\langle \pi(p_{\pi})|\bar{u}\gamma^{\mu}b|\bar{B}(p_{B})\rangle = f_{+}(q^{2})\left[(p_{B}+p_{\pi})^{\mu} - \frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}}q^{\mu}\right] + f_{0}(q^{2})\frac{m_{B}^{2}-m_{\pi}^{2}}{q^{2}}q^{\mu}$ $B \rightarrow \pi \ell \bar{\nu} \, \exp$. data + lattice Bailey et al. PRD92, 014024 (2015) Scalar: $f_S(q^2)$ $\langle \pi(p_{\pi}) | \bar{u}b | B(p_B) \rangle = (m_B + m_{\pi}) f_S(q^2)$ eq. of motion $f_S(q^2) = \frac{m_B - m_{\pi}}{m_L - m_{\pi}} f_0(q^2)$ $m_b \simeq 4.2 \text{ GeV}$ **Tensor:** $f_T(q^2)$

 $\langle \pi(p_{\pi}) | \bar{u} \, i \sigma^{\mu\nu} \, b | B(p_B) \rangle = \frac{2}{m_B + m_{\pi}} f_T(q^2) \left[p_B^{\mu} p_{\pi}^{\nu} - p_B^{\nu} p_{\pi}^{\mu} \right]$

lattice Bailey et al. PRLII5, I52002 (2015)

Ratio of branching fraction

$$R_{\pi} = \frac{\mathcal{B}(\bar{B}^0 \to \pi^+ \tau^- \bar{\nu})}{\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu})}$$

$$egin{aligned} R_{\pi}^{ ext{exp}} &= 1.05 \pm 0.51 \ && \mathcal{B}(B o \pi \ell ar{
u}) = (1.45 \pm 0.02 \pm 0.04) imes 10^{-4} \ && ext{HFAG} \end{aligned}$$

Pure- to semi- leptonic ratio $B^- \rightarrow \tau^- \bar{\nu}$ described by $\mathcal{L}_{eff}(b \rightarrow u \tau \bar{\nu})$ $\mathcal{B}(B \rightarrow \tau \bar{\nu}_{\tau}) = \frac{\tau_{B^-} G_F^2 |V_{ub}|^2 f_B^2}{8\pi} m_B m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 |1 + r_{NP}|^2$ $r_{NP} = C_{V_1} - C_{V_2} + \frac{m_B^2}{m_b m_{\tau}} (C_{S_1} - C_{S_2})$ No tensor contribution

Uncertainties: $|V_{ub}|, f_B$

Taking a ratio to eliminate $|V_{ub}|$

$$R_{\rm ps} = \frac{\Gamma(B^- \to \tau^- \bar{\nu}_\tau)}{\Gamma(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell)} = \frac{\tau_{B^0}}{\tau_{B^-}} \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell)}$$

Fajfer et al. PRL109, 161801(2012)

+ lattice $f_B = 192.0 \pm 4.3$ MeV FLAG 1607.00299

Minoru TANAKA

Another ratio

$$R_{\rm pl} = \frac{\mathcal{B}(B \to \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to \mu \bar{\nu}_{\mu})} = \frac{m_{\tau}^2}{m_{\mu}^2} \frac{(1 - m_{\tau}^2 / m_B^2)^2}{(1 - m_{\mu}^2 / m_B^2)^2} |1 + r_{\rm NP}|^2 \simeq 222 \, |1 + r_{\rm NP}|^2$$

practically no uncertainty in the SM prediction

 $\mathcal{B}(B \to \mu \bar{\nu}_{\mu})^{\text{exp.}} < 1 \times 10^{-6} \text{ at } 90\% \text{ CL}$ BaBar, Belle $\mathcal{B}(B \to \mu \bar{\nu}_{\mu})^{\text{SM}} = (0.41 \pm 0.05) \times 10^{-6}$ likely to be observed at Belle II Future prospectBelle II ~50/abcf. Belle ~ 1/abScaling the present errors as $1/\sqrt{\mathcal{L}}$ and the central values = SM

NP scenario	$R_{\pi}^{\text{Belle II}} = 0.641 \pm 0.071$	$R_{\rm ps}^{\rm Belle \ II} = 0.574 \pm 0.020$	$R_{\rm pl}^{\rm Belle \ II} = 222 \pm 47$
C_{V_1}	[-0.12, 0.11]	[-0.08, 0.10]	[-0.23, 0.19]
C_{V_2}	[-0.12, 0.11]	[-0.10, 0.08]	[-0.19, 0.23]
C_{S_1}	[-0.31, 0.17]	[-0.02, 0.03]	[-0.06, 0.05]
C_{S_2}	[-0.31, 0.17]	[-0.03, 0.02]	[-0.05, 0.06]
C_T	[-0.13, 0.10]	_	-

Summary

Excess of $\bar{B} \to D^{(*)} \tau \bar{\nu}$ $R(D), R(D^*) \sim 4\sigma$ Testing NP with the q2 distribution The earlier stage of Belle II ~ 5-10 /ab Other observables A_{FB} , P_{τ} , P_{D^*} , $R(X_c)$ Belle II, LHCb prospect? Flavor structure of possible NP $(\bar{u}b)(\bar{\tau}\nu) \quad B^- \to \tau\bar{\nu}, \ B \to \pi\tau\bar{\nu}$ MFV Freytsis, Ligeti, Ruderman PRD92, 054018 (2015) **U(2)** Barbieri et al. EPJC76, 67 (2016)