# ゲージヒッグス統一模型に おける安定なヒッグスボソン





#### 於富山大学, 2010/12/10

Y. Hosotani, P. Ko, MT (PLB680, 179) Y. Hosotani, MT, N.Uekusa (arXiv:1010.6135v2, and in progress)

## Introduction

Two big issues in particle physics

**Electro-Weak Symmetry Breaking** 

Higgs mechanism:

Not seen yet.



Naturalness and the hierarchy problem:

 $\Lambda \sim M_{\rm Pl} \sim 10^{18} \,{\rm GeV}$  vs  $M_{\rm weak} \sim 10^3 \,{\rm GeV}$ 

Radiative corrections to Higgs mass



 $\sim O((10^{18} \,\mathrm{GeV})^2) - O((10^{18} \,\mathrm{GeV})^2) \sim O((10^3 \,\mathrm{GeV})^2)$ 



An alternative solution:

Gauge-Higgs unification

### Dark Matter

#### Rotation curves of galaxies: DM in galactic halo.



#### Other evidences: cluster gas, gravitational lensing, colliding clusters

# Cosmic microwave background: $\label{eq:cosm} {\rm WMAP} \qquad \Omega_{\rm CDM} h^2 = 0.1131 \pm 0.0034$



How particle physics explains the dark matter? Supersymmetry Neutralino Gauge-Higgs unification ? Stable Higgs as Dark Matter (Dark Higgs scenario)

Questions on the dark Higgs scenario

How is it realized?

a gauge-Higgs unification model

Does it explain the relic abundance? a constraint on Higgs mass

How do we confirm it?

collider phenomenology

# **Gauge-Higgs Unification**

Gauge field in higher dimensions Five-dimensional space-time:  $x^{M} = (x^{\mu}, y)$  $x^{\mu} = (x^0, x^1, x^2, x^3)$ Gauge field:  $A_M = (A_\mu, A_y)$ 4D vector 4D scalar  $\ni$  Higgs **5D** gauge inv. Massless  $A_M$ 

#### A potential solution to the naturalness problem!

Dynamical symmetry breaking 4D Higgs field: Wilson line (AB) phase  $M^4 \times S^1$  (multiply connected)  $y = 2\pi R$  y = 0 $\hat{\theta}_H(x) \sim g \int_0^{2\pi R} A_y \, dy$ 

 $\langle \hat{\theta}_H \rangle \neq 0$  at quantum level. Nontrivial  $V_{\text{eff}}(\hat{\theta}_H)$  at I-loop.

Hosotani mechanism, 1983

Gauge symmetry is dynamically broken.

#### Flat space and warped space



### An SO(5)xU(1) model on RS warped space

Agashe, Contino, Pomarol, 2005. Hosotani, Sakamura, 2006. Medina, Shah, Wagner, 2007. Hosotani, Oda, Ohnuma, Sakamura, 2008.





 $h_0(y) = h_0(-y)$ 



**Discrete symmetries** EWSB by Hosotani mechanism 4D Higgs field: Wilson line (AB) phase,  $\theta_H(x)$ Periodicity:  $\mathcal{L}(\hat{\theta}_H) = \mathcal{L}(\hat{\theta}_H + 2\pi)$ Bulk fermions: vectors (and/or tensors) of SO(5), no spinors. Reduction of period:  $\mathcal{L}(\hat{\theta}_H) = \mathcal{L}(\hat{\theta}_H + \pi)$ Mirror reflection symmetry  $y \to -y, A_y \to -A_y, \Psi \to \gamma_5 \Psi$ Parity:  $\mathcal{L}(\hat{\theta}_H) = \mathcal{L}(-\hat{\theta}_H)$ 

Effective Lagrangian at the Weak Scale  $\mathcal{L}_{eff} = -V_{eff}(\hat{\theta}_H) - \sum_f m_f(\hat{\theta}_H) \bar{f}f$   $+ m_W^2(\hat{\theta}_H) W^{+\mu} W^{-}_{\mu} + \frac{1}{2} m_Z^2(\hat{\theta}_H) Z^{\mu} Z \mu$ 

#### Symmetry implications:

$$V_{\text{eff}}(\hat{\theta}_H + \pi) = V_{\text{eff}}(\hat{\theta}_H) = V_{\text{eff}}(-\hat{\theta}_H),$$
  

$$m_{W,Z}^2(\hat{\theta}_H + \pi) = m_{W,Z}^2(\hat{\theta}_H) = m_{W,Z}^2(-\hat{\theta}_H),$$
  

$$m_f(\hat{\theta}_H + \pi) = -m_f(\hat{\theta}_H) = m_f(-\hat{\theta}_H).$$





### **Effective Interactions**

#### Integrating out KK modes,

$$m_W(\hat{\theta}_H) \sim \cos \theta_W m_Z(\hat{\theta}_H) \sim \frac{1}{2} g f_H \sin \hat{\theta}_H ,$$
  
$$m_a^F(\hat{\theta}_H) \sim \lambda_a \sin \hat{\theta}_H ,$$

$$\mathcal{L}_{\text{int}} = -\frac{m_W^2}{f_H^2} H^2 W^{+\mu} W_{\mu}^- - \frac{m_Z^2}{2f_H^2} H^2 Z^{\mu} Z_{\mu} + \sum_f \frac{m_f}{2f_H^2} H^2 \bar{f} f + \cdots .$$

# No odd powers of H. Higgs is STABLE!

A good candidate for WIMP DM.

# Dark Higgs





#### **Direct Detection** $HN \rightarrow HN$





# **Collider Signals**





LC with polarizations Ideal case:  $e_L^+ e_R^- \to Z_L H H$ ,  $Z_L \nu \bar{\nu}$  $\sigma_{\rm signal} \simeq 0.12 \, {\rm fb}$  vs  $\sigma_{\rm BG} \simeq 0.42 \, {\rm fb}$  $|\cos \theta| < 0.6$  is applied. Significance:  $S \equiv \frac{N_{\text{signal}}}{\sqrt{N_{\text{signal}} + N_{\text{BG}}}}$ 

 $S = 1.4 \sqrt{L/100} \, \text{fb}^{-1}$ 

A few (or more)  $ab^{-1}$  is required!

Higgs pair production at LHC Signal: Weak boson fusion



### Background: Wjj, Zjj, jjj

Similar as invisible Higgs search

### Signal cross section at LHC



$$\begin{aligned} & \text{More on H parity} \qquad SO(5)/SO(4) \\ & \text{SO(5) algebra} \qquad \stackrel{SU(2)_L}{\downarrow} \qquad \stackrel{SU(2)_L}{\downarrow} \qquad \stackrel{SU(2)_R}{\downarrow} \qquad \stackrel{I}{\downarrow} \\ & A_M = \sum_{I=1}^{10} A_M^I T^I = \sum_{a_L=1}^{3} A_M^{a_L} T^{a_L} + \sum_{a_R=1}^{3} A_M^{a_R} T^{a_R} + \sum_{\hat{a}=1}^{4} A_M^{\hat{a}} T^{\hat{a}} \\ & [T^{a_L}, T^{b_L}] = i\epsilon^{abc} T^{c_L} , \quad [T^{a_R}, T^{b_R}] = i\epsilon^{abc} T^{c_R} , \quad [T^{a_L}, T^{b_R}] = 0 , \\ & [T^{\hat{a}}, T^{\hat{b}}] = \frac{i}{2} \epsilon^{abc} (T^{c_L} + T^{c_R}) , \\ & [T^{\hat{a}}, T^{\hat{b}}] = -\frac{i}{2} \delta^{ab} T^{\hat{4}} + \frac{i}{2} \epsilon^{abc} T^{\hat{c}} , \quad [T^{\hat{a}}, T^{b_R}] = +\frac{i}{2} \delta^{ab} T^{\hat{4}} + \frac{i}{2} \epsilon^{abc} T^{\hat{c}} , \\ & [T^{a_L}, T^{\hat{4}}] = -\frac{i}{2} T^{\hat{a}} , \quad [T^{a_R}, T^{\hat{4}}] = +\frac{i}{2} T^{\hat{a}} , \quad [T^{\hat{a}}, T^{\hat{4}}] = \frac{i}{2} (T^{a_L} - T^{a_R}) \\ & (a, b, c = 1 \sim 3) . \end{aligned}$$

$$\text{Invariant under} \ \Omega_H = \text{diag} (1, 1, 1, -1, 1) \in O(5) \end{aligned}$$

$$\{T^{a_L}, T^{a_R}, T^{\hat{a}}, T^{\hat{4}}\} \longrightarrow \{T^{a_R}, T^{a_L}, T^{\hat{a}}, -T^{\hat{4}}\}$$

$$\begin{aligned} & \text{Typical mode expansion} \\ & \tilde{A}_{\mu}(x,z) = \sum_{n=0}^{\infty} {}^{d} W_{\mu}^{(n)} \left\{ N_{W}(\lambda_{n}) \frac{T^{-L} + T^{-R}}{2} + \cos \theta_{H} N_{W}(\lambda_{n}) \frac{T^{-L} - T^{-R}}{2} \right. \\ & \left. + \cos \theta_{H} N_{W}(\lambda_{n}) \frac{T^{-L} - T^{-R}}{2} + \cos \theta_{H} N_{W}(\lambda_{n}) \frac{T^{-L} - T^{-R}}{2} \right\} + \text{h.c.} \\ & \left. + \sum_{n=1}^{\infty} {}^{s} W_{\mu}^{(n)} \left\{ -\cos \theta_{H} N_{W'}(\lambda_{n}) \frac{T^{-L} + T^{-R}}{2} + N_{W'}(\lambda_{n}) \frac{T^{-L} - T^{-R}}{2} \right\} + \text{h.c.} \\ & \left. + \sum_{n=0}^{\infty} {}^{s} A_{\mu}^{\gamma(n)} h_{\gamma}(\lambda_{n}) (T^{3_{L}} + T^{3_{R}}) + \sum_{n=1}^{\infty} {}^{s} A_{\mu}^{\dot{A}(n)} h_{A}(\lambda_{n}) T^{\dot{A}} + \cdots \right. \\ & \left. \tilde{A}_{z}(x, z) = \sum_{n=1}^{\infty} {}^{s} \sum_{a=1}^{3} S^{a(n)} h_{S}^{LR}(\lambda_{n}) \frac{T^{a_{L}} + T^{a_{R}}}{\sqrt{2}} + \sum_{n=0}^{\infty} {}^{s} H^{(n)} h_{H}^{\wedge}(\lambda_{n}) T^{\dot{A}} + \cdots \right. \\ & \left. \frac{\theta_{H}}{\mu} = \pi/2 \\ & W_{\mu}^{(n)}, A_{\mu}^{\gamma(n)}, S^{a(n)} P_{H} \text{ even} \\ & W_{\mu}^{\prime(n)}, A_{\mu}^{\dot{A}(n)}, H^{(n)} P_{H} \text{ odd} \end{aligned}$$

### H-even KK particle production

Model parameters

EW parameters:  $k, g_A, g_B, z_L = e^{kL}$ EW inputs:  $m_Z, \alpha, \sin^2 \theta_W$ 

# Spectrum KK gluor

Table 14: KK gluon masses  $m_{G^{(n)}}$  in unit of GeV.

|          |                     |           | •        | 9                   |                        |         |
|----------|---------------------|-----------|----------|---------------------|------------------------|---------|
| KK gluon | $z_L \setminus n$   | 1         | 2        | 3                   | 4                      | 5       |
| 0.0.0    | $10^{15}$           | 1143.4    | 2597.79  | 4060.29             | 5524.61                | 6989.61 |
|          | $10^{10}$           | 939.287   | 2123.35  | 3313.67             | 4505.36                | 5697.54 |
|          | $10^{5}$            | 676.998   | 1508.23  | 2342.77             | 3177.87                | 4013.1  |
|          | Table 1             | 5: KK $W$ | boson ma | asses $m_{W^{(r)}}$ | $_{n)}$ in unit $\phi$ | of GeV. |
| KKW      | $z_L \setminus n$   | 1         | 2        | 3                   | 4                      | 5       |
|          | $10^{15}$           | 1132.69   | 1799.15  | 2586.69             | 3284.74                | 4049.02 |
|          | $10^{10}$           | 926.031   | 1468.74  | 2109.46             | 2677.61                | 3299.47 |
|          | $10^{5}$            | 657.626   | 1038.84  | 1487.22             | 1885.54                | 2320.8  |
|          | Table               | 16: KK Z  | boson ma | asses $m_{Z^{(n)}}$ | in unit o              | of GeV. |
| KK 7     | $z_{I} \setminus n$ | 1         | 2        | 3                   | 4                      | 5       |

| KK | Ζ |
|----|---|
|----|---|

| $z_L \setminus n$ | 1       | 2       | 3       | 4       | 5       |
|-------------------|---------|---------|---------|---------|---------|
| $10^{15}$         | 1129.49 | 1802.53 | 2583.37 | 3288.13 | 4045.64 |
| $10^{10}$         | 922.087 | 1472.93 | 2105.3  | 2681.86 | 3295.21 |
| $10^{5}$          | 651.946 | 1045.02 | 1480.99 | 1892.00 | 2314.27 |
|                   |         |         |         |         |         |

#### Focus on the first KK Z.

## Couplings

Table 25: The couplings of the first KK Z boson with charged leptons,  $g_{fI}^{(Z_1)}\sqrt{L}/g_A$ .

|           |           |           |           |         |         | J -     |
|-----------|-----------|-----------|-----------|---------|---------|---------|
| $z_L$     | eL        | $\mu L$   | au L      | eR      | $\mu R$ | au R    |
| $10^{15}$ | 0.0310237 | 0.0310238 | 0.0310529 | 2.52033 | 2.42011 | 2.35629 |
| $10^{10}$ | 0.0382222 | 0.0382224 | 0.0382616 | 2.13663 | 2.03326 | 1.96297 |
| $10^{5}$  | 0.0549348 | 0.0549354 | 0.0550174 | 1.62351 | 1.53169 | 1.45818 |

Table 26: The couplings of the first KK Z boson with left-handed quarks,  $g_{fL}^{(Z_1)}\sqrt{L}/g_A$ .

| $z_L$     | u          | С          | t         | d         | S         | b         |
|-----------|------------|------------|-----------|-----------|-----------|-----------|
| $10^{15}$ | -0.0399184 | -0.0399209 | -0.206095 | 0.0488131 | 0.048804  | -0.558474 |
| $10^{10}$ | -0.0491807 | -0.0491842 | -0.256412 | 0.0601393 | 0.0601274 | -0.672188 |
| $10^{5}$  | -0.0706849 | -0.0706938 | -0.386896 | 0.0864351 | 0.0864104 | -0.927167 |

Table 27: The couplings of the first KK Z boson with right-handed quarks,  $g_{fR}^{(Z_1)}\sqrt{L}/g_A$ .

| $z_L$     | u        | С         | t         | d        | S        | b        |
|-----------|----------|-----------|-----------|----------|----------|----------|
| $10^{15}$ | -1.65847 | -1.58714  | -1.4692   | 0.829233 | 0.793569 | 0.723936 |
| $10^{10}$ | -1.40259 | -1.32685  | -1.1796   | 0.701297 | 0.663427 | 0.579202 |
| $10^{5}$  | -1.06424 | -0.991935 | -0.754189 | 0.532119 | 0.495967 | 0.376702 |

Table 24: The couplings of the first KK W boson with leptons,  $g_{fL}^{(W_1)}\sqrt{L}/g_A$  and the couplings of the first KK Z boson with neutrinos,  $g_{fL}^{(Z_1)}\sqrt{L}/g_A$ .

| $z_L$     | $e u_e$   | $\mu u_{\mu}$ | $	au u_{	au}$ | $ u_e $    | $ u_{\mu}$ | $ u_{	au}$ |
|-----------|-----------|---------------|---------------|------------|------------|------------|
| $10^{15}$ | -0.138009 | -0.138008     | -0.137939     | -0.0577078 | -0.0577075 | -0.0576242 |
| $10^{10}$ | -0.170013 | -0.170012     | -0.169923     | -0.0710978 | -0.0710974 | -0.0709898 |
| $10^{5}$  | -0.244187 | -0.244186     | -0.24403      | -0.102185  | -0.102184  | -0.101988  |

### Decay width and BR

| $z_L$                               | $10^{15}$ | $10^{10}$ | $10^{5}$ |  |
|-------------------------------------|-----------|-----------|----------|--|
| e (%)                               | 14.1396   | 14.18     | 13.253   |  |
| $\mu$ (%)                           | 13.0376   | 12.8416   | 11.798   |  |
| au~(%)                              | 12.3591   | 11.9693   | 10.6941  |  |
| $\nu_e + \nu_\mu + \nu_\tau \ (\%)$ | 0.0222139 | 0.0470403 | 0.157124 |  |
| $(u+c)/2 \ (\%)$                    | 17.6028   | 17.3854   | 16.0203  |  |
| $(d+s+b)/3 \ (\%)$                  | 3.68474   | 4.40884   | 7.27081  |  |
| c~(%)                               | 16.8299   | 16.4225   | 14.9003  |  |
| $b \ (\%)$                          | 5.58161   | 7.3338    | 15.0894  |  |
| t (%)                               | 14.1818   | 12.9648   | 10.2446  |  |
| $u + d + s + c \ (\%)$              | 40.6781   | 40.6636   | 38.7638  |  |
| total width (GeV)                   | 371.761   | 217.536   | 95.0912  |  |

Table 28: First KK Z boson decay: the branching fraction and the total width.

KK Z at Tevatron:  $p\bar{p} \rightarrow Z^{(1)}X \rightarrow e^-e^+X$ Background:  $p\bar{p} \rightarrow e^-e^+X$ 









Significance at Tevatron 
$$L = 2.5 \,\mathrm{fb}^{-1}$$
  

$$\frac{z_L}{|\mathcal{S}||} \frac{10^5 \quad 10^{10} \quad 10^{15}}{|121|} \frac{10^2 \quad 4}{|\mathcal{I}||}$$

$$\frac{10^5 \quad 121 \quad 22 \quad 4}{|\mathcal{I}||}$$
disfavored





### Significance at LHC $\sqrt{s} = 7 \,\mathrm{TeV}$

$$\mathcal{S} = 5.1 \sqrt{\frac{L}{10 \,\mathrm{pb}^{-1}}}$$

# Summary

 Stable Higgs in gauge-Higgs unifiction is a viable candidate of dark matter.
 Dark Higgs scenario

- \*  $m_H \sim 70 \,\mathrm{GeV}$  is predicted.
- \* Direct detection is likely. Exp. limits depend on the local DM density,  $ho_0 \cdot 
  ho_0 \simeq 0.04 \sim 0.6 \,\mathrm{GeV/cm^3}$
- \* We need a few  $ab^{-1}$  or more. both for LHC and LC.

- \* The first KK Z production at Tevatron suggests a larger warp factor.  $z_L \sim 10^{15}$
- \* Dark Higgs seems difficult at the present model.  $m_H = 135 \,\text{GeV}$  for  $z_L = 10^{15}$
- **\*** The first KK Z production may be discovered at LHC with  $10 \text{ pb}^{-1}$  even for  $z_L = 10^{15}$ .

Thank you.

# **Backup Slides**

#### Spin-Independent Cross Section



Uncertainties in the direct detection

Local density of CDM (not measured)  $\rho_0 = 0.3 \, {\rm GeV/cm^3}$ assumed in the experiments.  $\rho_0 = 0.2 \sim 0.6 \, {\rm GeV/cm^3}$ reasonable for smooth halo.  $ho_0 \sim 0.04 \, {
m GeV/cm^3}$  (Kamionkowski and Koushiappas) possible for non-smooth halo. Effective Higgs coupling HHffmay be altered in more general models.



Minoru TANAKA

#### Stable Higgs as Dark Matter (Dark Higgs scenario)



Yomiuri newspaper, the front page on Jan. 5, 2010.

Table 3: The couplings of Z boson with left-handed quarks,  $g_{fL}^{(Z)}\sqrt{L}/g_A$ .

| $z_L$     | u        | С        | t        | d         | s         | b         |
|-----------|----------|----------|----------|-----------|-----------|-----------|
| $10^{15}$ | 0.348452 | 0.348132 | 0.32172  | -0.425887 | -0.425887 | -0.42639  |
| $10^{10}$ | 0.349467 | 0.349467 | 0.307934 | -0.427336 | -0.427336 | -0.428457 |
| $10^{5}$  | 0.352916 | 0.352914 | 0.253315 | -0.431553 | -0.431553 | -0.435986 |

Table 4: The couplings of Z boson with right-handed quarks,  $g_{fR}^{(Z)}\sqrt{L}/g_A$ .

|           |           |           |           |           | J 10      | •         |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| $z_L$     | u         | С         | t         | d         | S         | b         |
| $10^{15}$ | -0.15643  | -0.156388 | -0.183737 | 0.0782151 | 0.0781938 | 0.0781582 |
| $10^{10}$ | -0.15765  | -0.157568 | -0.200882 | 0.0788248 | 0.0787836 | 0.0786987 |
| $10^{5}$  | -0.161498 | -0.161279 | -0.268141 | 0.0807492 | 0.0806393 | 0.0802678 |

Table 6: The couplings of Z bosons with charged leptons,  $g_{fI}^{(Z)}\sqrt{L}/g_A$ .

| $z_L$     | eL        | $\mu L$   | au L      | eR       | $\mu R$  | au R     |
|-----------|-----------|-----------|-----------|----------|----------|----------|
| $10^{15}$ | -0.270677 | -0.270677 | -0.270674 | 0.234664 | 0.234605 | 0.234569 |
| $10^{10}$ | -0.271598 | -0.271598 | -0.271594 | 0.236509 | 0.236398 | 0.236324 |
| $10^{5}$  | -0.274278 | -0.274278 | -0.274267 | 0.242328 | 0.242053 | 0.24183  |

Table 5: The couplings of W boson with leptons,  $g_{fL}^{(W)}\sqrt{L}/g_A$  and the couplings of Z boson with neutrinos,  $g_{fL}^{(Z)}\sqrt{L}/g_A$ .

| $z_L$     | $e\nu_e$ | $\mu u_{\mu}$ | $	au u_{	au}$ | $ u_e $  | $ u_{\mu}$ | $ u_{	au}$ |
|-----------|----------|---------------|---------------|----------|------------|------------|
| $10^{15}$ | 1.00533  | 1.00533       | 1.00533       | 0.503492 | 0.503492   | 0.503492   |
| $10^{10}$ | 1.00792  | 1.00792       | 1.00792       | 0.505205 | 0.505205   | 0.505206   |
| $10^{5}$  | 1.01535  | 1.01535       | 1.01534       | 0.51019  | 0.51019    | 0.510191   |