ゲージヒッグス統一模型に
 おける安定なヒッグスボソン
 田中実
 大阪大学
 於 富山大学，2010／12／10

Y．Hosotani，P．Ko，MT（PLB680，I79）
Y．Hosotani，MT，N．Uekusa（arXiv：1010．6135v2，and in progress）

Introduction

Two big issues in particle physics

Electro-Weak Symmetry Breaking

Higgs mechanism:
Not seen yet.

Naturalness and the hierarchy problem:

$$
\Lambda \sim M_{\mathrm{Pl}} \sim 10^{18} \mathrm{GeV} \quad \text { vs } \quad M_{\text {weak }} \sim 10^{3} \mathrm{GeV}
$$

Radiative corrections to Higgs mass

$$
\begin{aligned}
& \quad m_{0}^{2}+\cdots \Lambda^{2} \\
& \sim O\left(\left(10^{18} \mathrm{GeV}\right)^{2}\right)-O\left(\left(10^{18} \mathrm{GeV}\right)^{2}\right) \sim O\left(\left(10^{3} \mathrm{GeV}\right)^{2}\right)
\end{aligned}
$$

A possible solution: Supersymmetry

An alternative solution:

Gauge-Higgs unification

Dark Matter

Rotation curves of galaxies: DM in galactic halo.

Other evidences:
cluster gas, gravitational lensing, colliding clusters

Cosmic microwave background:

$$
\text { WMAP } \quad \Omega_{\mathrm{CDM}} h^{2}=0.1131 \pm 0.0034
$$

How particle physics explains the dark matter?

Supersymmetry
Gauge-Higgs unification

Neutralino

Stable Higgs as Dark Matter (Dark Higgs scenario)

Questions on the dark Higgs scenario
How is it realized?
a gauge-Higgs unification model
Does it explain the relic abundance?
a constraint on Higgs mass
How do we confirm it?
collider phenomenology

Gauge-Higgs Unification

Gauge field in higher dimensions

Five-dimensional space-time: $x^{M}=\left(x^{\mu}, y\right)$

$$
x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)
$$

Gauge field: $\left.A_{M}=\left(A_{\mu}\right), A_{y}\right)$

4D vector 4D scalar \ni Higgs

5D gauge inv.
Massless A_{M}

A potential solution to the naturalness problem!

Dynamical symmetry breaking

4D Higgs field: Wilson line (AB) phase
$M^{4} \times S^{1} \quad$ (multiply connected)

$$
\hat{\theta}_{H}(x) \sim g \int_{0}^{2 \pi R} A_{y} d y
$$

$\left\langle\hat{\theta}_{H}\right\rangle \neq 0$ at quantum level.
Nontrivial $V_{\text {eff }}\left(\hat{\theta}_{H}\right)$ at I-loop.
Hosotani mechanism, 1983
Gauge symmetry is dynamically broken.

Flat space and warped space

$$
M^{4} \times\left(S^{1} / Z_{2}\right)
$$

Randall-Sundrum

$$
d s^{2}=d x_{\mu} d x^{\mu} \nvdash d y^{2}
$$

Y. Hosotani

$$
\begin{equation*}
d s^{2}=e^{-2 k|y|} d x_{\mu} d x^{\mu}+d y^{2} \tag{5}
\end{equation*}
$$

Two fixed points: $y=0, y=\pi R \rightarrow$ Two branes. RS warped space

Realistic spectrum

An SO(5)xU(I) model on RS warped space

Agashe, Contino,Pomarol, 2005. Hosotani, Sakamura, 2006. Medina, Shah,Wagner, 2007. Hosotani, Oda, Ohnuma, Sakamura, 2008.

Y. Hosotani, ICFP2009, 25 September 2009-5

Origin of the Higgs doublet

$$
\underbrace{S O(4) \simeq S U(2)_{L} \times S U(2)}_{S O(5) \rightarrow\left(\begin{array}{lllll}
-1 & & & & \\
& -1 & & & \\
& & -1 & & \\
& & & -1 & \\
& & & & +1
\end{array}\right)}
$$

Y. Hosotani, ICFP2009, 25 September 2009-6

$$
A_{y}\left(x^{\mu}, y\right) \sim \hat{\theta}_{H}\left(x^{\mu}\right) h_{0}(y) \hat{T}^{4}+\cdots
$$

$$
h_{0}(y)=h_{0}(-y)
$$

SO（5）xU（1）Model on RS

YH，Oda，Ohnuma，Sakamura 2008 （YH，Noda，Uekusa 2009）

At low energies $\quad \gamma, \underset{H}{\boldsymbol{H}}, \boldsymbol{Z} \quad\binom{t_{L}}{b_{L}} \quad \begin{array}{llll}t_{R}^{\prime} & b_{R}^{\prime} & \cdots\end{array}$

Y．Hosotani，物理学会， 12 September 2009－2

Discrete symmetries

EWSB by Hosotani mechanism
4D Higgs field: Wilson line (AB) phase, $\hat{\theta}_{H}(x)$
Periodicity: $\mathcal{L}\left(\hat{\theta}_{H}\right)=\mathcal{L}\left(\hat{\theta}_{H}+2 \pi\right)$
Bulk fermions: vectors (and/or tensors) of SO(5), no spinors.
\rightarrow Reduction of period: $\mathcal{L}\left(\hat{\theta}_{H}\right)=\mathcal{L}\left(\hat{\theta}_{H}+\pi\right)$
Mirror reflection symmetry

$$
y \rightarrow-y, A_{y} \rightarrow-A_{y}, \Psi \rightarrow \gamma_{5} \Psi
$$

Parity: $\mathcal{L}\left(\hat{\theta}_{H}\right)=\mathcal{L}\left(-\hat{\theta}_{H}\right)$

Effective Lagrangian at the Weak Scale

$\mathcal{L}_{\text {eff }}=-V_{\text {eff }}\left(\hat{\theta}_{H}\right)-\sum_{f} m_{f}\left(\hat{\theta}_{H}\right) \bar{f} f$

$$
+m_{W}^{2}\left(\hat{\theta}_{H}\right) W^{+\mu} W_{\mu}^{-}+\frac{1}{2} m_{Z}^{2}\left(\hat{\theta}_{H}\right) Z^{\mu} Z \mu
$$

Symmetry implications:

$$
\begin{aligned}
& V_{\mathrm{eff}}\left(\hat{\theta}_{H}+\pi\right)=V_{\mathrm{eff}}\left(\hat{\theta}_{H}\right)=V_{\mathrm{eff}}\left(-\hat{\theta}_{H}\right) \\
& m_{W, Z}^{2}\left(\hat{\theta}_{H}+\pi\right)=m_{W, Z}^{2}\left(\hat{\theta}_{H}\right)=m_{W, Z}^{2}\left(-\hat{\theta}_{H}\right), \\
& m_{f}\left(\hat{\theta}_{H}+\pi\right)=-m_{f}\left(\hat{\theta}_{H}\right)=m_{f}\left(-\hat{\theta}_{H}\right)
\end{aligned}
$$

EWSB

Vacuum: Minimize $V_{\text {eff }}\left(\theta_{H}\right)$ 0.si gauge

$$
\begin{aligned}
& \begin{array}{l}
\theta_{H}=\pi / 2 .
\end{array} \\
& \hat{\theta}_{H}(x)=\frac{\pi}{2}+\frac{H(x)}{f_{H}} . \\
& f_{H}=246 \mathrm{GeV}\left(\Leftarrow m_{W}=g f_{H} / 2\right)
\end{aligned}
$$

A new dynamical parity, H-parity,

$$
\begin{gathered}
\frac{\pi}{2}+\frac{H}{f_{H}} \xrightarrow[\hat{\theta} \rightarrow-\hat{\theta}]{ }-\frac{\pi}{2}-\frac{H}{f_{H}} \xrightarrow[\hat{\theta} \rightarrow \hat{\theta}+\pi]{ } \frac{\pi}{2}-\frac{H}{f_{H}} \\
H(x) \longrightarrow-H(x) .
\end{gathered}
$$

Effective Interactions

Integrating out KK modes,

$$
\begin{aligned}
& m_{W}\left(\hat{\theta}_{H}\right) \sim \cos \theta_{W} m_{Z}\left(\hat{\theta}_{H}\right) \sim \frac{1}{2} g f_{H} \sin \hat{\theta}_{H}, \\
& m_{a}^{F}\left(\hat{\theta}_{H}\right) \sim \lambda_{a} \sin \hat{\theta}_{H} \\
& \mathcal{L}_{\text {int }}=-\frac{m_{W}^{2}}{f_{H}^{2}} H^{2} W^{+\mu} W_{\mu}^{-}-\frac{m_{Z}^{2}}{2 f_{H}^{2}} H^{2} Z^{\mu} Z_{\mu} \\
&+\sum_{f} \frac{m_{f}}{2 f_{H}^{2}} H^{2} \bar{f} f+\cdots .
\end{aligned}
$$

No odd powers of H.

Higgs is STABLE!

A good candidate for WIMP DM.

Dark Higgs

Relic Abundance

Kolb and Turner, 1989

Annihilation processes:

Relic Abundance

$$
\begin{array}{c|ccc}
10^{-27} \mathrm{~cm}^{3} / \mathrm{s} & b \bar{b} & W^{(*)} W^{(*)} & Z^{(*)} Z^{(*)} \\
\hline\left.\sigma v\right|_{v \rightarrow 0} & 7.3 & 11 & 1.5
\end{array}
$$

Direct Detection $H N \rightarrow H N$

$$
\begin{aligned}
\mathcal{L}_{H N} & \simeq \frac{2+7 f_{N}}{9} \frac{m_{N}}{2 f_{H}^{2}} H^{2} \bar{N} N \\
f_{N} & =\sum_{q=u, d, s}\langle N| m_{q} \bar{q} q|N\rangle / m_{N} \simeq 0.1 \sim 0.3
\end{aligned}
$$

Spin-Independent Cross Section

CDMS II

 arXiv:09|2.3592Local DM density $\rho_{0}=0.3 \mathrm{GeV} / \mathrm{cm}^{3}$ assumed in exps.

For $m_{H}=70 \mathrm{GeV}$
Exp. bound:

$$
\sigma_{\mathrm{SI}} \lesssim 3.8 \times 10^{-44} \mathrm{~cm}^{2}
$$

$$
90 \% \text { CL }
$$

Dark Higgs
Prediction: $\sigma_{\text {SI }} \simeq(1.2-2.7) \times 10^{-43} \mathrm{~cm}^{2}$

Collider Signals

Higgs pair production at Linear Collider

Signal: $e^{+} e^{-} \rightarrow Z H H$

H's are missing.

 total cross section for $m_{H}=70 \mathrm{GeV}$

$\sqrt{s}(\mathrm{GeV})$
Z_{L} violates the unitarity unless $s / m_{\mathrm{KK}}^{2} \ll 1$. $m_{\mathrm{KK}} \sim 1.5 \mathrm{TeV}$
$\sqrt{s}=500 \mathrm{GeV}$
in the following.

LC background $e^{+} e^{-} \rightarrow Z \nu \bar{\nu}$

Diagrams by MadGraph

BG cross section with $M_{\text {miss }} \geq 120 \mathrm{GeV}$ $\sigma_{\mathrm{BG}} \simeq 311 \mathrm{fb}$

Need polarizations!
beams and Z

LC with polarizations

Ideal case: $e_{L}^{+} e_{R}^{-} \rightarrow Z_{L} H H, Z_{L} \nu \bar{\nu}$

$$
\sigma_{\text {signal }} \simeq 0.12 \mathrm{fb} \text { vs } \sigma_{\mathrm{BG}} \simeq 0.42 \mathrm{fb}
$$

$$
|\cos \theta|<0.6 \text { is applied. }
$$

Significance: $\mathcal{S} \equiv \frac{N_{\text {signal }}}{\sqrt{N_{\text {signal }}+N_{\mathrm{BG}}}}$

$$
\mathcal{S}=1.4 \sqrt{L / 100 \mathrm{fb}^{-1}}
$$

A few (or more) ab^{-1} is required!

Higgs pair production at LHC

Signal: Weak boson fusion

Background: Wij, Zjj, jij
Similar as invisible Higgs search

Signal cross section at LHC

$$
\frac{d \sigma_{H H}}{d m_{H H}^{2}}=\left.\frac{\bar{\beta}_{f}}{32 \pi^{2} v^{2}} \sigma_{h}\right|_{m_{h}^{2}=m_{H H}^{2}}
$$

in the SM

$$
\begin{gathered}
\sigma_{H H} \sim 1.5 \mathrm{fb} \\
\\
\sigma_{B G} \simeq 167 \mathrm{fb}
\end{gathered}
$$

$$
\mathcal{S} \sim 1.2 \sqrt{L / 100 \mathrm{fb}^{-1}}
$$

Éboli, Zeppenfeld

$$
\begin{aligned}
& p_{T}^{j}>40 \mathrm{GeV}, \quad\left|\eta_{j}\right|<5.0, \\
& \left|\eta_{j 1}-\eta_{j 2}\right|>4.4, \quad \eta_{j 1} \cdot \eta_{j 2}<0, \\
& p_{T}>100 \mathrm{GeV} . \\
& M_{j j}>1200 \mathrm{GeV}, \quad \phi_{j j}<1 .
\end{aligned}
$$

More on H parity

$$
\begin{aligned}
& A_{M}=\sum_{I=1}^{10} A_{M}^{I} T^{I}=\sum_{a_{L}=1}^{3} A_{M}^{a_{L}} T^{a_{L}}+\sum_{a_{R}=1}^{3} A_{M}^{a_{R}} T^{a_{R}}+\sum_{\hat{a}=1}^{4} A_{M}^{\hat{a}} T^{\hat{a}} \\
& {\left[T^{a_{L}}, T^{b_{L}}\right]=i \epsilon^{a b c} T^{c_{L}}, \quad\left[T^{a_{R}}, T^{b_{R}}\right]=i \epsilon^{a b c} T^{c_{R}}, \quad\left[T^{a_{L}}, T^{b_{R}}\right]=0} \\
& {\left[T^{\hat{a}}, T^{\hat{b}}\right]=\frac{i}{2} \epsilon^{a b c}\left(T^{c_{L}}+T^{c_{R}}\right),} \\
& {\left[T^{\hat{a}}, T^{b_{L}}\right]=-\frac{i}{2} \delta^{a b} T^{\hat{4}}+\frac{i}{2} \epsilon^{a b c} T^{\hat{c}}, \quad\left[T^{\hat{a}}, T^{b_{R}}\right]=+\frac{i}{2} \delta^{a b} T^{\hat{4}}+\frac{i}{2} \epsilon^{a b c} T^{\hat{c}}} \\
& {\left[T^{a_{L}}, T^{\hat{4}}\right]=-\frac{i}{2} T^{\hat{a}}, \quad\left[T^{a_{R}}, T^{\hat{4}}\right]=+\frac{i}{2} T^{\hat{a}}, \quad\left[T^{\hat{a}}, T^{\hat{4}}\right]=\frac{i}{2}\left(T^{a_{L}}-T^{a_{R}}\right)} \\
& (a, b, c=1 \sim 3) .
\end{aligned}
$$

Invariant under $\Omega_{H}=\operatorname{diag}(1,1,1,-1,1) \in O(5)$

$$
\left\{T^{a_{L}}, T^{a_{R}}, T^{\hat{a}}, T^{\hat{4}}\right\} \longrightarrow\left\{T^{a_{R}}, T^{a_{L}}, T^{\hat{a}},-T^{\hat{4}}\right\}
$$

Typical mode expansion

5D mode func.

$\tilde{A}_{\mu}(x, z)=\sum_{n=\lambda}^{\infty}{ }^{d} W_{\mu}^{(n)}\left\{N_{W}\left(\lambda_{n}\right) \frac{T^{-L}+T^{-R}}{2}+\cos \theta_{H} N_{W}\left(\lambda_{n}\right) \frac{T^{-L}-T^{-R}}{2}\right.$
field
$\left.-\frac{\sin \theta_{H}}{\sqrt{2}} D_{W}\left(\lambda_{n}\right) T^{\llcorner }\right\}+$h.c.

$$
\begin{aligned}
& \quad+\sum_{n=1}^{\infty} W_{\mu}^{\prime(n)}\left\{-\cos \theta_{H} N_{W^{\prime}}\left(\lambda_{n}\right) \frac{T^{-L}+T^{-R}}{2}+N_{W^{\prime}}\left(\lambda_{n}\right) \frac{T^{-L}-T^{-R}}{2}\right\}+\text { h.c. } \\
& \quad+\sum_{n=0}^{\infty} s A_{\mu}^{\gamma(n)} h_{\gamma}\left(\lambda_{n}\right)\left(T^{3_{L}}+T^{3 R}\right)+\sum_{n=1}^{\infty} A_{\mu}^{\hat{4}(n)} h_{A}\left(\lambda_{n}\right) T^{4}+\cdots \\
& \tilde{A}_{z}(x, z)=\sum_{n=1}^{\infty} \sum_{a=1}^{3} S^{S^{a(n)} h_{S}^{L R}\left(\lambda_{n}\right) \frac{T^{a_{L}}+T^{a_{R}}}{\sqrt{2}}+\sum_{n=0}^{\infty} H^{s(n)} h_{H}\left(\lambda_{n}\right) T^{4}+\cdots} \\
& \theta_{H}=\pi / 2 \\
& \quad W_{\mu}^{(n)}, A_{\mu}^{\gamma(n)}, S^{a(n)} \quad P_{H} \text { even } \\
& W_{\mu}^{\prime(n)}, A_{\mu}^{\hat{4}(n)}, H^{(n)} \quad P_{H} \text { odd }
\end{aligned}
$$

H-even KK particle production

Model parameters

EW parameters: $k, g_{A}, g_{B}, z_{L}=e^{k L}$
EW inputs: $m_{Z}, \alpha, \sin ^{2} \theta_{W}$

$$
z_{L} \longrightarrow m_{H}
$$

$z_{L}=e^{k L}$	$\sin ^{2} \theta_{W}$	$k(\mathrm{GeV})$	$m_{\mathrm{KK}}(\mathrm{GeV})$	$c_{\text {top }}$	$m_{H}(\mathrm{GeV})$	$m_{W}^{\text {tree }}(\mathrm{GeV})$
10^{15}	0.2312	4.666×10^{17}	1,466	0.432	135	79.82
10^{10}	0.23	3.799×10^{12}	1,194	0.396	108	79.82
10^{5}	0.2285	2.662×10^{7}	836	0.268	72	79.70

Spectrum

Table 14: KK gluon masses $m_{G^{(n)}}$ in unit of GeV .
KK gluon

$z_{L} \backslash n$	1	2	3	4	5
10^{15}	1143.4	2597.79	4060.29	5524.61	6989.61
10^{10}	939.287	2123.35	3313.67	4505.36	5697.54
10^{5}	676.998	1508.23	2342.77	3177.87	4013.1

Table 15: KK W boson masses $m_{W^{(n)}}$ in unit of GeV .

$z_{L} \backslash n$	1	2	3	4	5
10^{15}	1132.69	1799.15	2586.69	3284.74	4049.02
10^{10}	926.031	1468.74	2109.46	2677.61	3299.47
10^{5}	657.626	1038.84	1487.22	1885.54	2320.8

KK Z
Table 16: KK Z boson masses $m_{Z^{(n)}}$ in unit of GeV .

$z_{L} \backslash n$	1	2	3	4	5
10^{15}	1129.49	1802.53	2583.37	3288.13	4045.64
10^{10}	922.087	1472.93	2105.3	2681.86	3295.21
10^{5}	651.946	1045.02	1480.99	1892.00	2314.27

Focus on the first KK Z.

Couplings

Table 25: The couplings of the first KK Z boson with charged leptons, $g_{f I}^{\left(Z_{1}\right)} \sqrt{L} / g_{A}$.

z_{L}	$e L$	μL	τL	$e R$	μR	τR
10^{15}	0.0310237	0.0310238	0.0310529	2.52033	2.42011	2.35629
10^{10}	0.0382222	0.0382244	0.0382616	2.13663	2.03326	1.96297
10^{5}	0.0549348	0.0549354	0.0550174	1.62351	1.53169	1.45818

Table 26: The couplings of the first KK Z boson with left-handed quarks, $g_{f L}^{\left(Z_{1}\right)} \sqrt{L} / g_{A}$.

z_{L}	u	c	t	d	s	b
10^{15}	-0.0399184	-0.0399209	-0.206095	0.0488131	0.048804	-0.558474
10^{10}	-0.0491807	-0.0491842	-0.256412	0.0601393	0.0601274	-0.672188
10^{5}	-0.0706849	-0.0706938	-0.386896	0.0864351	0.0864104	-0.927167

Table 27: The couplings of the first KK Z boson with right-handed quarks, $g_{f R}^{\left(Z_{1}\right)} \sqrt{L} / g_{A}$.

z_{L}	u	c	t	d	s	b
10^{15}	-1.65847	-1.58714	-1.4692	0.829233	0.793569	0.723936
10^{10}	-1.40259	-1.32685	-1.1796	0.701297	0.663427	0.579202
10^{5}	-1.06424	-0.991935	-0.754189	0.532119	0.495967	0.376702

Table 24: The couplings of the first KK W boson with leptons, $g_{f L}^{\left(W_{1}\right)} \sqrt{L} / g_{A}$ and the couplings of the first KK Z boson with neutrinos, $g_{f L}^{\left(Z_{1}\right)} \sqrt{L} / g_{A}$.

z_{L}	$e \nu_{e}$	$\mu \nu_{\mu}$	$\tau \nu_{\tau}$	ν_{e}	ν_{μ}	ν_{τ}
10^{15}	-0.138009	-0.138008	-0.137939	-0.0577078	-0.0577075	-0.0576242
10^{10}	-0.170013	-0.170012	-0.169923	-0.0710978	-0.0710974	-0.0709898
10^{5}	-0.244187	-0.244186	-0.24403	-0.102185	-0.102184	-0.101988

Decay width and BR

Table 28: First KK Z boson decay: the branching fraction and the total width.

z_{L}	10^{15}	10^{10}	10^{5}
$e(\%)$	14.1396	14.18	13.253
$\mu(\%)$	13.0376	12.8416	11.798
$\tau(\%)$	12.3591	11.9693	10.6941
$\nu_{e}+\nu_{\mu}+\nu_{\tau}(\%)$	0.0222139	0.0470403	0.157124
$(u+c) / 2(\%)$	17.6028	17.3854	16.0203
$(d+s+b) / 3(\%)$	3.68474	4.40884	7.27081
$c(\%)$	16.8299	16.4225	14.9003
$b(\%)$	5.58161	7.3338	15.0894
$t(\%)$	14.1818	12.9648	10.2446
$u+d+s+c(\%)$	40.6781	40.6636	38.7638
total width (GeV)	371.761	217.536	95.0912

KK Z at Tevatron: $p \bar{p} \rightarrow Z^{(1)} X \rightarrow e^{-} e^{+} X$

 Background: $p \bar{p} \rightarrow e^{-} e^{+} X$

Significance at Tevatron $\quad L=2.5 \mathrm{fb}^{-1}$

KK Z at LHC: $p p \rightarrow Z^{(1)} X \rightarrow e^{-} e^{+} X$

Background: $p p \rightarrow e^{-} e^{+} X$

Significance at LHC $\quad \sqrt{s}=7 \mathrm{TeV}$

$$
\mathcal{S}=5.1 \sqrt{\frac{L}{10 \mathrm{pb}^{-1}}}
$$

Summary

Stable Higgs in gauge-Higgs unifiction is a viable candidate of dark matter.

Dark Higgs scenario
$m_{H} \sim 70 \mathrm{GeV}$ is predicted.
Direct detection is likely.
Exp. limits depend on the local DM density, ρ_{0}.

$$
\rho_{0} \simeq 0.04 \sim 0.6 \mathrm{GeV} / \mathrm{cm}^{3}
$$

We need a few ab^{-1} or more. both for LHC and LC.

The first KK Z production at Tevatron suggests a larger warp factor. $\quad z_{L} \sim 10^{15}$

Dark Higgs seems difficult at the present model.

$$
m_{H}=135 \mathrm{GeV} \text { for } z_{L}=10^{15}
$$

The first KK Z production may be discovered at LHC with $10 \mathrm{pb}^{-1}$ even for $z_{L}=10^{15}$.

Thank you.

Backup Slides

Spin-Independent Cross Section

Local DM density $\rho_{0}=0.3 \mathrm{GeV} / \mathrm{cm}^{3}$ assumed in exps.

For $m_{H}=70 \mathrm{GeV}$
Prediction: $\quad \sigma_{\text {SI }} \simeq(1.2-2.7) \times 10^{-43} \mathrm{~cm}^{2}$
Exp. bound: $\sigma_{\mathrm{SI}} \lesssim 3.8 \times 10^{-44} \mathrm{~cm}^{2}$

Uncertainties in the direct detection

Local density of CDM (not measured)
$\rho_{0}=0.3 \mathrm{GeV} / \mathrm{cm}^{3}$ assumed in the experiments.
$\rho_{0}=0.2 \sim 0.6 \mathrm{GeV} / \mathrm{cm}^{3}$ reasonable for smooth halo.
$\rho_{0} \sim 0.04 \mathrm{GeV} / \mathrm{cm}^{3}$ (Kamionkowski and Koushiappas) possible for non-smooth halo.

Effective Higgs coupling $H H \bar{f} f$ may be altered in more general models.

Astrophysical Signals

$H H \rightarrow \gamma \gamma, \gamma Z$ in the Galactic halo.
Two (nearly) monochromatic gamma lines.

$$
\begin{aligned}
& E_{\gamma}=m_{H}(\simeq 70 \mathrm{GeV}), m_{H}-m_{Z}^{2} /\left(4 m_{H}\right)(\simeq 40 \mathrm{GeV}) \\
& \left.\sigma_{\gamma \gamma(\gamma Z)} v\right|_{v \rightarrow 0} \simeq 4.3(5.4) \times 10^{-29} \mathrm{~cm}^{3} / \mathrm{s}
\end{aligned}
$$

Stable Higgs as Dark Matter (Dark Higgs scenario)

Yomiuri newspaper, the front page on Jan. 5, 2010.

Table 3: The couplings of Z boson with left-handed quarks, $g_{f L}^{(Z)} \sqrt{L} / g_{A}$.

z_{L}	u	c	t	d	s	b
10^{15}	0.348452	0.348132	0.32172	-0.425887	-0.425887	-0.42639
10^{10}	0.349467	0.349467	0.307934	-0.427336	-0.427336	-0.428457
10^{5}	0.352916	0.352914	0.253315	-0.431553	-0.431553	-0.435986

Table 4: The couplings of Z boson with right-handed quarks, $g_{f R}^{(Z)} \sqrt{L} / g_{A}$.

z_{L}	u	c	t	d	s	b
10^{15}	-0.15643	-0.156388	-0.183737	0.0782151	0.0781938	0.0781582
10^{10}	-0.15765	-0.157568	-0.200882	0.0788248	0.0787836	0.0786987
10^{5}	-0.161498	-0.161279	-0.268141	0.0807492	0.0806393	0.0802678

Table 6: The couplings of Z bosons with charged leptons, $g_{f I}^{(Z)} \sqrt{L} / g_{A}$.

z_{L}	$e L$	μL	τL	$e R$	μR	τR
10^{15}	-0.270677	-0.270677	-0.270674	0.234664	0.234605	0.234569
10^{10}	-0.271598	-0.271598	-0.271594	0.236509	0.236398	0.236324
10^{5}	-0.274278	-0.274278	-0.274267	0.242328	0.242053	0.24183

Table 5: The couplings of W boson with leptons, $g_{f L}^{(W)} \sqrt{L} / g_{A}$ and the couplings of Z boson with neutrinos, $g_{f L}^{(Z)} \sqrt{L} / g_{A}$.

z_{L}	$e \nu_{e}$	$\mu \nu_{\mu}$	$\tau \nu_{\tau}$	ν_{e}	ν_{μ}	ν_{τ}
10^{15}	1.00533	1.00533	1.00533	0.503492	0.503492	0.503492
10^{10}	1.00792	1.00792	1.00792	0.505205	0.505205	0.505206
10^{5}	1.01535	1.01535	1.01534	0.51019	0.51019	0.510191

