1 4-dimensional Weyl spinor
e Left moving ¢, @ = 1,2
e Right moving ¢4, & = 1,2

They are related by the complex conjugation. The indices are raised or lowerd by the € tensor as

o= ePyp g =y (1.1)

Then
Vo = €ap¥?s  Ta =gl (1.2)

where
e = -l ep=—€pr, €=+l en=-1, (1.3)

and similar for one with dotted indices.

Inner product

Ux =9 xe VX = Vak® (1.4)

Sigma matrices o 5
a

00:(—1 0),01:(0 1),02:<0 —i),63:(1 0)‘ 0s)
0 -1 10 i 0 0 -1

We also define 6+ 4% := edﬁe“ﬂagﬁ, or ¢’ = 60, 5! = —¢!, (i = 1,2,3). Then they satisfy
ote” + o"at = -2nt", (1.6)
gtaV + gVt = -2pM". (1.7)

Lorentz generators
ot = —(ctc" - 0"3"), otV = %(6"& -a'0") (1.8)
Spinor bilinear
Vol = yal @l Jety = Jae" (19)
Hermitian conjugations

Wt=vx. @ =vx. W'D =xo"y==y5"y, G’ = x5y = -yo'y,
(1.10)



Some useful formulae

vx=xv. Yi=xy. yolyx=-xa"y, Yo"y =-xo"y, ¥y =-ya"y, (1.11)
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1 1 iz oapazr a oz
00" = —2e00, 005 = Seaptd, %0 =200, Bufy = -3

O0O9) = 5O, EDE)) = -3 @O)(). 658605 = ~36000y",
X0" 000?70 = 000" Py, (oM 0)u(o" )y = 700G — Py + 16,
otg” = —npt" + 204", gto” = —pt" + 254", Trlo#5"] = -2n*",
Te{o" o7°] = _%(pr’]va oy — %e,uvpcr’ (123 = 41y,

2 Superspace

Superspace coordinates (x*, 6%, 6%).
A superfiled F(x, 0, 9)

Differential operators

) 0 . U pd .. 9 0% 5+
Q(x ':W - lO'adQ ap’ Qd = _ﬁ + 19 O-adap’
I — o .
D(x ::W + logdH“(?y, DO'( = _ﬁ - le“o‘:daﬂ'

Anti-commutation relations

{Qu> Qi) = 2i0},0),  {Du» Dy} = —2icl, ),

{Qa, Qp} = {Da, Dp} = {Q4, Qp} = {D4, Dy} = 0,
{Qu> Dy} = (Qu» Dp} = {Qu» D} = {Qu» Dy} = 0.
SUSY transformation with parameters &%, £4

S¢F(x,0,0) := (£Q + EQ)F(x, 6, 0).
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3 Chiral superfield

A chiral superfield ®(x, 6, 0) satisfies
D@ = 0. 3.1)

Let us introduce y* := x* + ifo*@. By the superspace coordinates (y, 8, 9), the differential operators are

written as
— 9 N — 9 na _H d N N M
Qa —W, Qd = _ﬁ + 2i0 O-ada_y:u =D+ 2i60 O-ada_y:u’ (3.2)
0 ~. 0 — 0

o =—— + 2i ”.00‘—, g=——". 3.3
D 507 + 2o, g D PYE (3.3)

It is expanded as
(x,0,0) = ¢(y) + V20y (y) + 00F (y) (3.4)

= $(x) + V20 (x) + 00F (x) + i00+00,¢(x) + éeeéaﬂaw(x) + %Geééuqﬁ(x). (3.5)

The complex conjugate of a chiral superfield satisfies D,® = 0 and it is expanded as
— _ - __ _ - - | - _ 1 - -
D(x,0,0) = p(x) + \/Eetﬁ(x) + 00F (x) — i05"00,¢(x) + é@@@a”ﬁyzﬁ(x) + Z@G@@Dqﬁ(x). (3.6)

SUSY transformation

Se¢ = N2&y, 5:¢ = V2&y, 3.7)
Sevha = V2E,F + V2i(0"E) 0,9, 8¢y = V2EF + V2i(5"€)%0,, (3.8)
8¢F = V2iE5"9,y, S8¢F = V2i£519, 9. (3.9)

3.1 Super potential term

Let us consider n chiral superfields ®', i = 1,...,n and their complex conjugates 51, i=1,...,n. A
possible SUSY invariant term is a super potential term.

Lw =W(P)loo + (c.c.), (3.10)
where W (¢) is a holomorphic function of ¢!, ..., ¢", called "super potential." This super potential term
is expanded as

; 1 oo
LW = F’@iW — 56,-8le//’1//] + (C.C.). (311)



3.2 Kaibhler potential term
Another possible SUSY invariant term is the Kéhler potential term.
L = K(®,9)lge55, (3.12)

where K(¢, ¢) is a real function, called "Kihler potential." It is expanded as

Lic =gy (-0 0" - gw"o”amﬁf - SV oy’ + FF)
Y ljkwk ,U¢ aﬂ¢/ Jkl// C’p¢ 9 ¢]

1 .
-3 Ukw YIF - S K YTFE + K,w WG, (3.13)

where

0 0 0 0 -
Kiln-ip]_lu-jq = 6¢i1 e 8¢ip 8¢;J_1 . ad)]_qK(gZS, gb), gij = Kij- (314)

4 Vector superfield

A super field V(x, 0, 0) is called “vector super field” if it is real VT = V. A vector super field is
used to describe a gauge theory. For a U(1) gauge theory the gauge parameter is a chiral super field
A(x, 0, 0_), EdA = 0, and transformation law is

VoV =V+A+A. 4.1)
The following “field strength” is gauge invariant.
1l——
W, = —ZDDZ)QV. 4.2)

This W, is a chiral super field, i.e. DyW, = 0. It is also checked that it satisfied “the reality condition”
DW = DW.

It is convenient to choose “Wess-Zumino gauge", in which V is expanded as
V(x,0,0) = ~00Fu,(x) + 10001(x) ~ 000A(x) + 36000D(x). 43)
It is convenient to rewrite it as
V = —00"G0,(y) + i0067(y) — i6GA(y) + %eeéé(D(y) —i0"0,(y). (4.4)
W, is calculated as

Wy = =ide(y) + 02D (y) — i(6""0)ovyu (y) + 00(" 3 A(Y))ars (4.5)



and the bilinear of W,

1 1 i 1 i - 1 1 i
ZWW = —Zl(y)l(y) - EQA(y)D(y) - EAU’HVQUHV(!]) + 00 (—E)LU"@,,A + ZDZ - gU‘uvU‘uv - g'UHv'UyV >
(4.6)
where 01" = %e’””f’vm. A gauge invariant Lagrangian can be written, with a complex constant 7o =
701 + iT02
—i
Ly =—1oWWlpg + (C.C.) “4.7)
81
=202 —lv ot — i'/10"’8 A - 1166 A+ lD2 L (4.8)
27\ 47" P ) 8 M '
5 N =2 Lagrangian
An N = 2 vector multiplet contains an N = 1 vector multiplet and an N = 1 chiral multiplet.
Wy = —ida(y) + 0.D(y) — i(O'W@)aU#V(y) + 99(0“5;1/1@))[1, (5.1)
A = a(y) + Y20y (y) + 00F (y). (5.2)

Since we do not have potential term for a, we do not have superpotential for A. Thus the generic La-

grangian which preserves N' = 1 SUSY can be written as
— —i
L =K(A A)lggaa + 8—”1'(A)WW|99 + (c.c.), (5.3)
where 7(a) = 71(a) + iy (a) is a holomorphic function of a. Let us see the kinetic terms of the fermions
£ = ga (—1¢aﬂa J - Liarg y/) L2 (—hﬂ@ i-Lis0 /1) T (5.4)
277 HE T 2\ 2700
In order to have N = 2 SUSY, the kinetic term for ¢ and A must be the same. Thus

2

1 _
Gaa = 5 = 4—m.(T(a) - 7(a)). (5.5)
In other words, there is a holomorphic function ¥ (a) which satisfies
1 _
F"(a) = 7(a), K(a,a) = 4—m_(d F'(a) — a F'(a)). (5.6)

If we obtain this holomorphic function ¥ (a), we can completely determine the action.
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