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特に断らぬ限り，𝑇 は系の温度，𝑆 はエントロピー，𝑝 は系の圧力，𝑉 は系の体積，𝜇は化学ポテンシャル，𝑛

は物質量，𝑈 は内部エネルギーを表す．

小テスト： 複数の成分の流体からなる系の Gibbs 自由エネルギーは，各成分の物質量を 𝑛𝑖 として，
𝐺 (𝑇, 𝑝, 𝑛1, 𝑛2, 𝑛3, ...) の形を持つ．その完全微分は，各成分の流体の化学ポテンシャルを 𝜇𝑖 として 𝑑𝐺 =

−𝑆𝑑𝑇 +𝑉𝑑𝑝 +∑
𝑖 𝜇𝑖𝑑𝑛𝑖 である．

(1) Gibbsの自由エネルギーは示量変数である．この事実を式で書き表せ．
(2) (1)の式から 𝐺 =

∑
𝑖 𝜇𝑖𝑛𝑖 を導け．

(2) Gibbs-Duhemの関係式 𝑆𝑑𝑇 −𝑉𝑑𝑝 +∑
𝑖 𝑛𝑖𝑑𝜇𝑖 = 0を導け．

———————————————-ここまで小テスト———————————————-

問題 1：体積 𝑉A と 𝑉B の二つの部分に仕切られた容器が断熱環境下におかれている．仕切り壁は，理想気体 A
だけを通す半透膜 A，理想気体 Bだけを通す半透膜 Bを重ねて作られており，仕切りの左に理想気体 Aが物
質量 𝑛A，右側には理想気体 Bが物質量 𝑛B 入っており，両者は共通の温度 𝑇 の熱平衡状態に達している．こ
れを状態 1とする．以下では，混合理想気体の性質として，(a)内部エネルギーが，各成分が単独で存在して
いるときの内部エネルギーの和で表されること，(b)圧力が各成分が単独で存在しているときの圧力の和で表
されることを仮定して考えよ．

(1) 状態 1からはじめて，半透膜 Aを左端まで準静的に移動し，同時に半透膜 Bを右端まで移動する準静
的混合過程を考える．この過程を温度 𝑇 の等温環境下でおこなうとき，系に与えられた仕事を求めよ．

(2) (1)の準静的等温混合過程で系に与えられた熱を求めよ．
(3) 状態 1からはじめて，断熱環境下で仕切り壁を除去する非準静的断熱混合過程を考える．この過程の終
状態の温度が，状態 1の温度に等しいことを示せ．つまり，この過程の終状態は，(1)の準静的等温混
合過程の終状態と同じである．

(4) (2), (3)の結果に注意して，(3)の非準静的断熱混合過程によるエントロピーの変化 Δ𝑆 を求め，これが
正であることを確認せよ．

問題 2：一成分流体系に対して，ごく一般に Gibbs-Duhemの関係式 𝑆𝑑𝑇 − 𝑉𝑑𝑝 + 𝑛𝑑𝜇 = 0が成り立つ．以下
では二つの相（𝑖 = 1, 2で区別する）が共存して熱平衡状態に達している場合を考えよう．

(1) 単位物質量当たりのエントロピーと体積をそれぞれの相に対し 𝑠𝑖，𝑣𝑖 として，各相の化学ポテンシャル
の無限小変化 𝑑𝜇𝑖 を 𝑠𝑖，𝑣𝑖，𝑑𝑇，𝑑𝑝 を用いて書き下せ．

(2) 二相が共存しているときには 𝜇1 = 𝜇2 であることに注意し，(𝑇, 𝑝) 平面上の相図で，二つの相の境界を
表す曲線 𝑝 = 𝑝v (𝑇) について，

𝑑𝑝v

𝑑𝑇
=

𝑠2 − 𝑠1

𝑣2 − 𝑣1

が成り立つことを示せ．これを Clausius–Clapeyronの式と呼ぶ．

—————————裏へ続く—————————



問題 3：温度 𝑇 の大気中に一成分気体が入った球形の風船が浮いており，熱平衡状態に達している（重力の影
響は無視する）．風船の膜は薄く，物質は通さないが熱を通す素材でできており，その面積に比例する力学的
エネルギーを蓄える性質を持つとする．つまり，風船の体積が 𝑉 であるとき，風船内の空気と風船の膜を合わ
せた複合系の Helmholtzの自由エネルギー 𝐹 (𝑇,𝑉) を，風船内の気体の Helmholtz自由エネルギー 𝐹air (𝑇,𝑉)
と正の定数 𝑘 を使って，𝐹 (𝑇,𝑉) = 𝐹air (𝑇,𝑉) + 𝑘𝑉2/3 と表せる．

(1) 大気圧 𝑝ex と風船内の空気の圧力 𝑝in の差は，

𝑝in − 𝑝ex = 𝐵𝑉𝑏 · · · · · · ( あ )

の形になる．𝐵 と 𝑏 を求めよ．上式は，息を吹き込んでゴム風船を膨らませるとき，はじめは苦しい
が，膨らむにつれて楽になることに対する説明を与える．
ヒント：−(𝜕𝐹/𝜕𝑉)𝑇,𝑛 と −(𝜕𝐹air/𝜕𝑉)𝑇,𝑛 が表す「圧力」の意味を考えよ．

温度 𝑇 の水蒸気中に球形の水滴が浮いており，熱平衡状態に達している（重力の影響は無視する）．水滴の表
面には水滴表面積に比例した力学的エネルギーが蓄えられるため（表面張力），この系は先ほど考えた風船の
系と類似したものになる．つまり，水滴の体積を 𝑉，液滴内の水の圧力を 𝑝L，水蒸気の圧力を 𝑝G とすれば，
圧力差 𝑝L − 𝑝G に対して，式 (あ)がそのまま成り立つ．違いは水滴中の水と水蒸気の間に物質のやり取りが
あるため，水と水蒸気の化学ポテンシャル 𝜇L，𝜇G に対し，次式が成り立つことである．

𝜇L = 𝜇G · · · · · · · · · ( い )

(2) 体積 𝑉 の水滴ができているときの飽和蒸気圧は，式 (あ)と (い)を連立させ，𝑝G について解くことで
求まる．ここでは温度 𝑇 が一定だから，この解を 𝑝G = 𝑝G (𝑉) と書こう．問題 2(1)の結果と 𝑑𝑇 = 0か
ら，ここでは，

𝑑𝜇G = 𝑣G𝑑𝑝G

𝑑𝜇L = 𝑣L𝑑𝑝L

が成り立つ．ただし，𝑣L と 𝑣G は単位物質量当たりの水および水蒸気の体積である．以上のことから，
𝑝G (𝑉) が従う微分方程式を導け．𝑣L/𝑣G ≪ 1に注意し，結果は 𝑣L/𝑣G の一次近似で書き表せ．

(3) 𝑣L を圧力によらない定数とみなし，𝑣G は理想気体の状態方程式 𝑣G = 𝑅𝑇/𝑝G に従うとする（𝑅：気体定
数）．(2)で導いた微分方程式を解いて，体積 𝑉 の水滴ができているときの飽和蒸気圧 𝑝G (𝑉) を 𝑉 , 𝑅𝑇 ,
𝑣L, 𝑝∞ を用いて表せ．ただし，𝑝∞ = lim𝑉→+∞ 𝑝G (𝑉) は水と水蒸気の境界面が平面になっているときの
（つまり通常の意味での）飽和蒸気圧である．


