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What is the index of Dirac operators?

D¢ p— O D = Y'u(a,u + iAIJ) we consider

U(1) or SU(N) group

Index theorem

P - E-B
ny —n- = 39,2 d4x€”Vthr(Fﬂvag)
N\ Topological charge

#sol with + chirality #sol with - chirality

Very important both in physics and mathematics to understand
gauge field topology, which is nonperturbative.



Physicist-friendly index project in continuum

* Physicist-friendly Atiyah-Patodi-Singer (APS) index on a flat
space [F, Onogi, Yamaguchi 2017]

 Mathematical proof for the physicist-friendly APS index
on general curved manifold [F, Furuta, Matsuo, Onogi,
Yamaguchi, Yamashita 2019]

 Mod-two APS index [F, Furuta, Matsuki, Matsuo, Onogi,
Yamaguchi, Yamashita 2020]

Q. How physicist-friendly?
A. We do not need to take care of chiral symmetry
and boundary conditions in our formulation.



This work = the first lattice version.

We mathematically “reformulate” the standard Atiyah-Singer
index on an even-dimensional flat periodic lattice(, whose
continuum limit is the Dirac index on a torus).

In our formulation

* No chiral symmetry is needed : massive Wilson Dirac operator
is enough to consider.

* Ktheory is used to show equality to the continuum Dirac index.
* Wider application than the overlap Dirac operator.
 Mathematically very nontrivial (main dish for mathematicians).
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Nielsen-Ninomiya theorem [1981]

Nielsen-Ninomiya theorem [1981]:
If ~5D + Dvs =0, we cannot avoid fermion doubling.

since the lattice discretization

I
Pp =~ sin(ppa) gives unphysical poles Pu =0,

a :lattice spacing

Ginsparg-Wilson relation [1982]
V5D + Dvys = aDvysD.

can avoid NN theorem.
But no concrete form was found in ~20 years.



Overlap Dirac operator [Neuberger 1998]

1
D,, = - (1 +vssgn(Hy)) Hw =v(Dw—-M) M=1/a

satisfies the GW relation: V5 Doy + DoyYs = aD oy Y5 Doy

and the action
=Y G(z)Dovq(x

is invariant under the modlﬁed chiral rotation:

q % 627:04’7/5(]‘_a’-DO’U)q7 q % q_e?/afy5.

[Luescher 1998]



Anomaly and index of the overlap Dirac operator

Moreover, it reproduces the anomaly.

q % eza’}/5(1_a’DO’0)q, q_ % q_eza’y5.

Dqq — exp [2iaTr(ys + v5(1 — aDoy))/2] Dqq

and the index is well-defined:

DO’U
IndD,, = Trs (1 _ 2 5 )

[Hasenfratz et al. 1998]



The overlap Dirac operator index

Q :lattice spacing
Overlap Dirac spectrum lies on a

circle with radius 1/a D,

For complex eigenmodes D, = Ay m
a/DO’U

Pivs (1— > )¢A=0- Ov”“

(therefore, no contribution to the trace).
The real 2/a (doubler poles) do not contribute.

zero-modes

al,,
Tr%(l— ): Ir v =ng. —n_



But D,, is defined with the Wilson Dirac operator.

1
Dov — a (1 —|—*y5sgn(HW)) HW = ’)/5(DW — M) M = ]./CL

IndD,, = Trs (1 _ 4 5 ) = Tr% —§Tr sgn(Hyy )
——
=0

1
= —§Tr sgn(Hyy)



But D,, is defined with the Wilson Dirac operator.

1
Dov — a (1 —|—*y5sgn(HW)) HW = ’)/5(DW — M) M = ]./CL

D,, 1
IndD,, = Trs (1 _ ¢ ) 15

5 = TrE —§Tr sgn(Hyy)
——

=0

1
= —§Tr sgn(Hyy)

What is this ?7??



n invariant of the massive Wilson Dirac operator

1
—§T1” sgn(Hw) = —2 Z sgn(Agy, ) = ——n(HW)

AHW

HW:’}/5(Dw—M) M = 1/CL

This quantity is known as the Atiyah-Patodi-Singer n invariant
(of the massive Wilson Dirac operator).

[Atiyah, Patodi and Singer, 1975]



The Wilson Dirac operator and K-theory

1 _ _
IndDOU — __U(HW) HW —VS(DW M)
2 M =1/a

In this talk, we try to show a deeper mathematical
meaning of the right-hand side of the equality,

and try to convince you that the massive Wilson Dirac
operator is an equally good or even better object than
D., to describe the gauge field topology in terms of K-
theory [Atiyah-Hilzebruch 1959, Karoubi 1978+
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What is fiber bundle?

A united manifold of spacetime (= base manifold) and
field (fiber)
o(z) = (x,¢0) € X X F

Spacetime Field space
= base space = fiber space

The direct product structure is realized only locally.
In general, it is “twisted” by gauge fields (connections).

In mathematics, the (isomorphism class of) total space
is denotedby F or ff - X



What is fiber bundle? Analogy for M1 students

X base Space (Space—tlme) Figure from Wolfram Math world

= your head \ W VI
F fiber (field) SAZANURLTAN

= your hair /\.é/‘y* B
E (= locally XxF) (total space) | .'.,J })

= your hair style ~
Connection

= hair wax (local hair design) E———



Classification of vector bundles

Let us consider the case F = some vector space.
Compare two vector bundles FE7; and £Ea .

It was proved that the homotopy theory can completely classify
the vector bundles. But concrete computation is very difficult.

K-theory can classify the vector bundles when their rank is large
enough, detecting some topological invariants to characterize
the bundles with sophisticated computational techniques (more
powerful than the standard (de Rham) cohomology theory with
respect to characteristic classes).



What is K-theory?

« A mathematical theory which classifies the fiber
(vector) bundles tor more general additive categories].

« One of generalized cohomology theories (stronger
than ordinary cohomology) : without the dimension

Axiom. H™"(point) = {0}

« |t is weaker than homotopy theory but easier to
“‘compute”.



KO(X) group

The element of KO(X) group is given by |[F1, Fo]
[ ] denotes the equivalence class (concrete definition is given

later).

Equivalently, we can consider an operator and its conjugate,

D1 : E{ — Eo DIQ:EZ%El
to represent the same element by [E, D, ’y]

where D 1
E:El@Eg,D:< , 12>,7:< )
DI, 1

* KO group describes classification of Dirac operator which
anticommutes with chirality operator.



K-theory pushforward (Gysin map)

When you are interested in global structure only,
You can forget about details of the base manifold X by taking
“one-point compactification” by the K-theory pushforward :

. 0 0 .
G: K'(X)— K" (point) The map just forgets all
[E’Djfy] N [HE,D,’Y] but the chiral symmetry.
Hpg : The whole Hilbert space on which D acts.

Many information is lost but one (the Dirac operator index)
remains.



Suspension isomorphism

“point” can be suspended to an interval:

@
There is an isomorphism between

K°(point) = K~'(I,01)
[HEaDafy] NS [HE X I7Dt]

where “-1" denotes removal of the chirality operator.
Instead, the Dirac operator must become one-to-one (no zero
mode) at the two endpoints : 01

Physical meaning of the isomorphism will be given soon later .



Bott periodicity theorem

Interestingly, we have another isomorphism
(Bott periodicity theorem) :

K'{X, V)2 K '(X,Y)

"+1" adds a Clifford generator.

In the following, we simply denote it by Kt

In this talk, K 1 ([, (9]) is the most important.
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Atiyah-Singer index

Ind(D)

Index theorem

—n_ = d4xe“Vp“tr(Fﬂvag)

3272
\ AN

#sol with + chirality #sol with - chirality

In the standard formulation, we need a massless Dirac operator
and its zero modes with definite chirality : [Hg, D, € K°(point)
But we will show that it is isomorphic to

[Hg x I,v(D+m)] € K'(I,0I)



Eigenvalues of continuum massive Dirac operator

on Euclidean even-dimensional manifold.

H(m) = 75(Dcont. - m) Gauge group is U(1) or SU(N)

For Dcont.¢ =0, H(m)qb = Y5 = + mao.
chirality
For Dcont.¢ 7é 07 {H(m)7 Dcont.} = 0.

The eigenvalues are paired: H(m)px = Ao

H(m)DCOHt-¢>\m — _)\chont.¢)\m

As H(m)>=—-D2 . +m? ,wecanwritethem A, = :t\/)\(z) + m?

con



Spectrum of H(m) = v5(Deont. + m)

)\m:i\/)\(2)+m2

%g A\ = 4+m

n_ modes ny4 modes

A = —M




Spectral flow = Atiyah-Singer index = n invariant

T+ =# of zero-crossing eigenvalues from - to + H(m) = v5(Deont. +m)
T _ = # of zero-crossing eigenvalues from + to -

ny — n_ =:spectral flow of H(m) m € [-M, M]

Equivalent to the eta invariant: whenever an eigenvalue

Ccrosses zero, reg  reg
n(H(m)) jumps by two. n(H) =) -
1 1 A>0 A<0
SN (M)) = Sn(H(=M)) = ny —n_.

Pauli-Villars subtraction



Suspension isomorphism in K theory

A
| A = 4 /A2 £ m2
Ay = —M ~~——T1 A = +m
n._ modes \/ n modes

Massive=

Massless=

counting index %%M counting
by points - | index by lines

K°(point) = K~'(I,01)
point line=interval

With chirality operator Without chirality operator

=> The two definitions of the index agree.



With chiral symmetry breaking regularization (on a lattice),
counting points (massless) is difficult but counting lines
(massive) still works.

Standard ; A, ; Eta invariant:
definition: ' o If m= = M points
Where is / are gapped, we
m=07? / can still count the
What are zero f> crossing lines.
modes? m

1982 and other literature, but its
mathematical meaning was not
discussed. See also Adams, Kikukawa-
Yamada, Luescher, Fujikawa, and Suzuki

%\ Note) this fact is known even before
/% overlap Dirac by Itoh-lwasaki-Yoshie
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Dirac operator in continuum theory

E : Complex vector bundle

Base manifold M: 2n-dimensional flat torus T2"

Fiber F : vector space of rank r with a Hermitian metric
Connection : Parallel transport with gauge field A,L-

D : Dirac operator on sections of E

Dcont. — ’V@(az + Az)

Chirality (Z, grading) operator: 7y — " H Vi
)

{7, D} =0,{v,7}=0.



Wilson Dirac operator on a lattice

We regularize T?" is by a square lattice with lattice spacing @
(The fiber is still continuous.)
We denote the bundle by F'%and
link variables : a Note: In our paper, we
Uk (:13) = PeXp [Z/ Ak (m/)dl] , consider "generalized
0

link variables” to
determine the gauge

f b fields both in continuum
DW — fy’b VZ _|_ VZ o gvab and on a lattice
Z 9 9 vt simultaneously. But the
7 standard Wilson line

Wilson term works, t0o.



Definition of K*(I,01) group
Let us consider a Hilbert bundle with
Base space [ = range of mass [-M, M]
boundary 01 = =M points
Fiber space 7{ = Hilbert space to which D acts
D,m : one-parameter family labeled by m.

We assume that DiM has no zero mode.

The group element is given by equivalence classes of the pairs:
[(7—[, Dm)] having the same spectral flow.

Note: K! group does NOT require any chirality operator.



Definition of K*(I,0I) group
Dl

Group operation: (1, D)} (2, D3)] = (W' o w2, ( P
|dentity element: [(7‘[, Dm)] ‘SpeC.ﬂoW:()

We compare [(Heont.: V(Deons. +m))] and  [(Hias., Y(Dw + m))]
taking their difference, and confirm if the lattice-continuum combined

Dirac operator ﬁ _ ( V(Dcont. ‘|‘m) fa >
fa —y(Dw +m)

*
has Spectral flow =0 where fa fa are “mixing mass term” with
some “nice” mathematical properties (see our paper for the details).



Main theorem

Consider a continuum-lattice combined Dirac operator

ﬁ _ ( /V(Dcont. + m) tfa )
tfq —y(Dw + m)

on the path P :




Main theorem

There exists a finite lattice spacing agsuch that forany a < ag

l") _ ( W(Dcont. + m) tfa )
tfa —y(Dw +m)

is invertible (having no zero mode) on the staple-shaped path P
[which is a sufficient condition for Spec.flow=0]

= Y(Deont. +m), v(Dw +m) have the same spec.flow

o 0D = M)V = Sn(y(Dy — M))

The continuum and lattice indices agree.



Proof (by contradiction)

Assume D . < V(Dcont. + m) tfa )
tfa —y(Dw +m)

has zero mode(s) at arbitrarily small lattice spacing.
= For a decreasing series of {Clj

( V(Dcont. —|_m_]) t]&faj ) ( Uj ) — ()
tjfa, —y(Dy + my) v;

is kept.



Continuum limit

1
Multiplying ( f ) and taking the continuum limit
a;

’Y(Dcont. + moo) too Uoso _ O
too _V(Dcont. _|_ moo) Voo B

is obtained. Uosoy Voo are

L% weakly convergent
N2 2 2 2 —
Doo_Dcont.—l_moo—l_too -

L2
strongly convergent

requires .
(Rellich’s theorem)

Moo = too = 0.

Contradiction with 2 -+ 2 >0 along the path P.



Mathematical details

Because of time limitation, we may not be able to explain the followings.

 The map fa, f; between lattice and continuum Hilbert spaces
« Convergenceof fofs, — 1, fofa— 1.

« Convergence of f. Dy fo — Dcont.

* Elliptic estimate for the Wilson Dirac operator

* Relich theorem

Please see our paper [S. Aoki, HF, M. Furuta, S. Matsuo, T. Onogi, S. Yamaguchi, arXiv:2407.17708 ]



https://arxiv.org/abs/2407.17708

Bz —1)
fa

fa:Hlat. %Hcont. . ——o >x

From finite-dimensional vector bundle on a discrete lattice
we need to make infinite-dimensional vector bundle on
continuous X :

fa,gblat Z 5 T — l Qf . l)¢lat.(l)
leCy
Cg; . a hyper cube containing L . [ :lattice sites

P(x —1) = Pexp [z/ d:c’iAi(a:’)] Wilson line.
l

6(37 o l) : linear partition of unity s.t.

B(0) = 1,8(Fae,) =0, D BHilz)=

leCy




fa
* cont. lat.
£ O™ 5 |

Is defined by

Freomt (1) = / dyB(l— )Pl — y)é™ (y)

yeC;

*
Note) fa fa is not the identity but smeared to nearest-
neighbor sites. (The gauge invariance is maintained by the
Wilson lines.)



Continuum limit of f: f.

lat.
1. For arbitrary ¢a

hm fad'™* weakly converges to a ¢Cont c L%

where L1 is the square-integrable subspace of Hc<°"*

to the first derivatives.

2. lim f,v(Dw + m)gblat' weakly converges to
a—0

7(D —l‘m) cont. c L2
3. There exists cs.t. || f* f olat — glat (12, < ca2||¢1at'\|%%

4. Forany ¢ ¢ L2 CILE)]%) fafugeont

converges to Sont- c L% and hm Fafrpoomt: = ggont:



Elliptic estimate

In continuum theory, Forany ¢ € F(E) and i,
a constant c exists such that

1Dig||* < c([|8]]* + [[Do]])

When a covariant derivative is large. D is also large.
This property is nontrivial on a lattice.

V1ol < c(llol” + ||IDw el )

Doubler modes have small Dirac eigenvalue with large wave
number.

-> Wilson term is mathematically important, too!
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Wilson Dirac operator is equally good as D, to
describe the index.

1 1
IDdDOU — —577(Hw) — _577(’75(Dcont. — M)) — Inchont.

By K'(I,0I) Suspension
for sufficiently small Isomorphism

lattice spacings



Wilson Dirac operator is equally good as D, to
describe the index.

1 1
IDdDOU — —577(Hw) — _577(’75(Dcont. — M)) — Inchont.

By K'(I,0I) Suspension
for sufficiently small Isomorphism

lattice spacings

Or even better?



Application to the manifolds with boundaries

Periodic b.c.

1 1

IndDOU — _in(HW) — _577(75(Dc0nt. — M)) — Inchont.

Dirichlet b.c. (Shamir doinain—wall fermion) we can show
— -1 Dpw) = —5n(1s(DHw ) T Indpps D™

2 1 2
[perturbative equality F, Kawai, Matsuki,

. . . [F, Furuta, Matuso, Onogi,
Mori, Nakayama, Onogi, Yamaguchi 2019].

Yamaguchi, Yamashita 2019].
But the overlap Dirac is missing because Ginsparg-Wilson

relation is broken by the boundary [Luescher 2006].



Real Dirac operators and the mod-two index

For general complex Dirac operators,

K'(I,0I) wp —%n(Hw) — —%n(%(D — M))

For real Dirac operators, for example, in SU(2) gauge
theory in 5D (origin of Witten anomaly), WE will be able to show

KO(I,01) W —|1-smie (57 )| = =5 [t -smae (520 )

= Indmod—twoDcont.

But there is no overlap Dirac counterpart.
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Summary

1
IndD,, = — 577(HW)

Hy =v5(Dw — M)
We have shown a deeper mathematical meaning of the
right-hand side of the equality,

and that the massive Wilson Dirac operator is an equally
good or even better object than D, to describe the

gauge field topology in terms of K-theory [Atiyah-Hilzebruch
1959, Karoubi 1978:--]



Summary K'(1,0I)

/,

1
IndDOU — _577(HW) — _577(’75(Dcont. — M)) = IndDcont.

Hy =v5(Dw — M)
We have shown a deeper mathematical meaning of the
right-hand side of the equality,

and that the massive Wilson Dirac operator is an equally
good or even better object than D, to describe the

gauge field topology in terms of K-theory [Atiyah-Hilzebruch
1959, Karoubi 1978:--]



Backup slides



What are the weak convergence and
strong convergence?

The sequence U; weakly converges to Voo
when for arbitrary W
lim ((v; — Vs ), w) = 0.
]—>OO

Note) hm — Vo) () = lim e**®

o is weakly convergent.

2 __
Strong convergence means ji)n;lo ij o UOOH = 0.

Relllch’s theorem: )
Ll weak convergence = L convergence



