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Let me introduce myself first.

My major is particle physics, in particular, numerical simulation of lattice
QCD(quantum chromo-dynamics).

During 2009-2010 | was an assistant professor here in Nagoya U. specially
appointed for the GCOE program “Quest for Fundamental Principles in
the Universe”.

At the interview, Prof. Naoshi Sugiyama asked me that

“In this GCOE program, please study something interdisciplinary among
different fields.”

| tried but | could not write any papers, which was my regret.

But after >10 years, | finally found something interdisciplinary with

mathematicians and wrote some papers. This talk on a work using K-
theory is one of them.



What is the index of Dirac operators ?

D¢ — O D = }/'”((9/1 + iAll) we consider

U(1) or SU(N) group

Index theorem
Ind(D) — E . B
4

\ N Topological charge
#sol with + chirality #sol with - chirality

Important both in physics and mathematics to understand
gauge field topology, which is non-perturbative.



What is lattice gauge theory? a

It is a (non-perturbative) regularization of Uy q

guantum field theory with lattice spacing a

Gauge fields(gluons) live on links
Un., = exp(igad,(n+ /2))

Fermions (quarks) live on sites  4n = q(n)

The Lagrangian is given by for example,

Un,uQn—{—niu o UJL—Triu,uqn_ﬂ
>

% +m

L=p Z Tr[Un,uUnﬂLu,VUJLJrv,uU?TL’V] T Gn

p,r=1

dn

7

which converges to QCD Lagrangian in the a — 0 limit.



Our goal

= A mathematical formulation of the index (theorem) on a lattice.

In continuum, Dirac operator is a differential operator.

Dip =" (0 +14,)9.

On lattice, Dirac operator is a difference operator.
D = AU, (2)3(x+pa) — ()] /a.

Mathematically nontrivial.
[Related works by mathematicians: Kubota 2020, Yamashita 2021]



Difficulty in lattice gauge theory

Both of Dirac index and topology are difficult on the lattice:

* |t is difficult to define the chiral zero modes, since the
standard lattice Dirac operators break the chiral
symmetry.

e Lattice discretization of space time makes the topology
not well-defined.



A traditional solution = overlap Dirac operator

With the overlap Dirac operator [Neuberger 1998] satisfying
the Gingparg-Wilson relation [1982],

’75D0'U =+ DOU’VS — aDov’75Dov
a modified chiral symmetry is exact (Luescher 1998,

DO’U
and the index is well-defined: IndD,, = Trvs <1 _ 2 > )

[Hasenfratz et al. 1998]

but this definition is so far limited to the even-dimensional flat
periodic lattice.



This work = an alternative mathematical
formulation of the lattice Dirac index.

In our formulation,

* No exact chiral symmetry is needed : the standard Wilson
Dirac operator is good enough.

* Ktheory is used to show equality to the continuum Dirac
index.

* Wider application than the overlap Dirac operator to the
systems with nontrivial boundaries in any dimensions.
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Physicist-friendly Dirac index project

 Physicist-friendly Atiyah-Patodi-Singer (APS) index on a flat space [F, Onogi,
Yamaguchi 2017]

* Mathematical proof for the physicist-friendly index on general curved
manifold [F, Furuta, Matsuo, Onogi, Yamaguchi, Yamashita 2019]

* Mod-two index version [F, Furuta, Matsuki, Matsuo, Onogi, Yamaguchi,
Yamashita 2020]

* Lattice version (without boundary) [Aoki, F, Furuta, Matsuo, Onogi,
Yamaguchi 2024] = this work.

Q. How physicist-friendly?
A. We do not need to take care of chiral symmetry and unphysical
boundary conditions in our formulation.
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Continuum-> Lattice : derivative -> difference

Continuum Dirac operator
D) = (0,)0(x) = [ dpy (i, )0 p)e™

(A naive) lattice Dirac operator

Di(e) LU+ ,ua (z — f1a) / etp(z+pa) _ cip(z—pa) _
x)=ry

dpq/“ ¥(p)
a :lattice spacing sin p Ma,

dpyHi (p)e'P*.

{1 : unit vector in p direction.

T (phys) Doublers appear!

which has zero points at pu =0,
@ (math) Ellipticity is lost!



Wilson Dirac operator a lattice spacing

{1 : unit vector in p direction.

The Wilson Dirac operator is commonly used in lattice gauge theory.

Vit Vb o, ey — Lt i) = v)

Dw = Z ~5VaVa o) = )~ bl — )

The additional term corresponds the Laplacian and the Fourier
transformation

w,SIP,a (1 —cospua) - Large mass term
ZV ! a +Z a Except for D, = 0
ifidicates that th'é doublers cannot excite (recovering ellipticity)due to heavy

mass but chiral symmetry (Z, grading) is lost:

Vs Dw + Dwys # 0.



Nielsen-Ninomiya theorem [1981]

Nielsen-Ninomiya theorem [1981]:
If vs D + D~s = e cannot avoid fermion doubling.

(we have to give up Z, grading to recover ellipticity)

Ginsparg-Wilson relation [1982]
V5D + Dvys = aDvysD.

can avoid NN theorem.
But no concrete form was found in ~20 years.



Overlap Dirac operator [Neuberger 1998]

1
Dov = E (1 +75sgn(HW)) Hyy = ’}/5(DW — M) M = 1/&

satisfies the GW relation: Y5 Doy,

Dov’75 — aD0v75Dov

/y5(1 R aDOU/2)75DO’U _|_ /}/5DO’U/Y5(1 o afDofv/z) — O

> I'sH + HI's = 0. = a modified exact chiral

H =7v5Dyy, I's =15 (1— 5

aDOU) symmetry but Fg # 1.

[Luescher 1998]



We can define the index |  tasenfratzetal. 199%)

Overlap Dirac spectrum lies on a
circle with radius 1/a

For complex eigenmodes Do,y = Ay
alD,,
GGt (1— ; )wzo.

(therefore, no contribution to the trace).
The real 2/a (doubler poles) do not contribute.

DO’U
TTrys (1 ¢ )z Ir 5

2 zero-modes

a :lattice spacing

A

‘ DO'U

OUWCL

— Ny —N—



But D,, is defined with the Wilson Dirac operator.

1
Dy, = - (1+vssgn(Hy)) Hw=7%Dw-M) M=1/a

IndD,, = Tr~s (1 _ 4 5 ) = Tr% —§Tr sgn(Hy)
——
=0

1
= —iTI' Sgn(HW)



But D,, is defined with the Wilson Dirac operator.

1
Dy, = - (1+vssgn(Hy)) Hw=7%Dw-M) M=1/a

aD gy,
2

1
IndD,, = Tr~s (1 — ) = Tr% —§Tr sgn(Hy)

N——
=0

1
= —iTI' Sgn(HW)

What is this ???



n invariant of the massive Wilson Dirac operator

This quantity is known as the Atiyah-Patodi-Singer n invariant (of the massive
Wilson Dirac operator).

[Atiyah, Patodi and Singer, 1975]



The Wilson Dirac operator and K-theory

1 (D —
ndDy, = —=n(Hy) Hw = 5(Dw = M)
2 M=1/a

In this talk, we try to show a deeper mathematical meaning of the
right-hand side of the equality,
and try to convince you that the massive Wilson Dirac operator is an

equally good or even better object than D_, to describe the gauge
field topology in terms of K-theory [Atiyah-Hilzebruch 1959, Karoubi 1978...]
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What is fiber bundle (for physicists)?

A united manifold of spacetime (= base manifold) and field (fiber)

o(z) = (x,0) € X X F

Spacetime Field space
= er sp

The direct product structuré&s¥ealized only locally.
In general, it is “twisted” by gauge fields (connections).

In mathematics, the (isomorphism class of) total space is denoted
by or

E E— X



What is fiber bundle? Analogy for (phys) students

X base space (space-time) Figure from Wolfram Math world
= your head

F fiber (field)
= your hair

E (= locally XxF) (total space)
= your hair style

Connection wse il \ |
= hair wax (local hair design) e




Classification of vector bundles

Let us consider the case F = some vector space.
Compare two vector bundles and?/q : Eo

It was proved that the homotopy theory can completely classify the vector
bundles. But concrete computation is very difficult.

K-theory can classify the vector bundles when their rank is large enough,
detecting some topological invariants.
(more powerful than the standard (de Rham) cohomology theory).



KO(X) group

The element of K9(X) group is given by [El, EQ]
[ ] denotes the equivalence class (concrete definition is given later).

Equivalently, we can consider an operator and its conjugate,

E % E D;I‘-_Q . E2 % E1 * To be precise,Dactson

h f E.
to represen% the same elerfent by the sections 0

where [E, D, ”y]

D (1
* KO group Ré&sérines %1a55|ﬁcgt|l@h of D|ra>c’03e_raéor whlc)) anticommutes with
chirality operator.



K-theory pushforward

When we are interested in global structure only,
We can forget about details of the base manifold X by taking
“one-point compactification” or the K-theory pushforward :

. 0 0 .
G: K'(X)— K" (point) The map just forgets all
[Eijﬂ N [HE,D,W] but the chiral symmetry.
Hpg : The whole Hilbert space on which D acts.

Many information is lost but one (the Dirac operator index) remains.



Suspension isomorphism

The “point” can be suspended to an interval:

O I

There is an isomorphism between
K"(point) = K—(1,0I)
[HE, D, ”7] < [p*HE, Dt] p* : pull-back of p : I — point.

we omit in the following.

where the superscript “-1” reflects removal of the chirality operator. Instead,
the Dirac operator must become one-to-one (no zero mode) at the two
endpoints : ol

Physical meaning of the isomorphism will be given soon later .



Bott periodicity theorem

We have another isomorphism
(Bott periodicity theorem) :

KY{X, V)2 K '(X,Y)

”+1” adds a Clifford generator.

In the following, we simply denote it by

In this talk, K1 (L @fh)e most important.
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Atiyah-Singer index

Index theorem
Ind(D)

—n_ = d4xe”"p“tr(vaFpa)

3272
\ N

#sol with + chirality #sol with - chirality

In the standard formulation, we need a massless Dirac operator
and its zero modes with definite chirality : [Hg, D,~] € K°(point)
But we will show that it is isomorphic to

Hg,v(D+m)] € K'(I,0I)



Eigenvalues of continuum massive Dirac operator

on Euclidean even-dimensional manifold.

H(m) — ’75(Dcont. + m) Gauge group is U(1) or SU(N)

For Dcontﬂb — 07 H(m)¢ — ’}/577’L§b — == me
chirality
For Dcont.¢ 7é 07 {H(m), Dcont.} = 0.

The eigenvalues are paired: H(m)gbA = N
H(m)DCOHt-¢>\m — _)\chont.¢>\m

As H(m)> =—-D2 . +m? ,wecanwritethem A, = :I:\/)\% + m?




SDECtrum of H(m) — W5(Dcont. + m)

Ay = —m

n_ modes




Spectral flow = Atiyah-Singer index = n invariant

"+ =# of zero-crossing eigenvalues from - to + H(m) = v5(Deont. + m)
1 _ =# of zero-crossing eigenvalues from + to -

ny — n_ =:spectral flow of H(m) m € [—-M, M]

Equivalent to the eta invariant: whenever an eigenvalue

Crosses zero, res res
n(H(m)) jumps by two. n(H) = y:_y:
1 1 A>0  A<O
SH(H(M)) = Sn(H(=M)) =ny —n_.

Pauli-Villars subtraction



Suspension isomorphism in K theory

Am

| =y
A, = —M %% Am = +m

n_ modes . n4 modes

Massless= ; - Massive=

—M ‘M .
counting index e\ counting

e Z—— NN

by points : ; Inaex by lines

K" (point) = K* (I, 0I)

point line=interval
with chirality operator without chirality operator

=> The two definitions of the index agree.



With chiral symmetry breaking regularization (on a lattice),
counting points (massless) is difficult but counting lines
(massive) still works.

Standard ; M, | Eta invariant:
definition: | ' If m= £ M points

Where is are gapped, we
m=07? can still count the
What are zero _ crossing lines.
modes? m

1982 and other literature, but its
mathematical meaning was not
discussed. See also Adams, Kikukawa-
Yamada, Luescher, Fujikawa, and Suzuki

\ Note) this fact is known even before
% overlap Dirac by Itoh-lwasaki-Yoshie
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Dirac operator in continuum theory

E : Complex vector bundle

Base manifold M: 2n-dimensional flat torus T2"

Fiber F : vector space of rank r with a Hermitian metric
Connection : Parallel transport with gauge field A,L-

D : Dirac operator on sections of E

Dcont. — /Yz(az + Az)

Chirality (Z, grading) operator: 7y — P H Vi
)

{7, D} =0,{v,7}=0.



Wilson Dirac operator on a lattice

We regularize T?" is by a square lattice with lattice spacing @
(The fiber is still continuous.)
We denote the bundle by F'®and

link variables : ] ¢ Note: In our paper, we
Uk (w) = P eXp () / Ak« (w,)dl s  consider "generalized
0

link variables” to

determine the gauge

f b fields both in continuum
DW — g 77’ VZ T V'L _ gvab and on a lattice
9 9 v simultaneously. But the
7 B | standard Wilson line

Wilson term works, t0o.

aVip(z) = U(z)d(z + €;) — ¥(x)
an@b(w) = (x) — U;r(w —e;)Y(x — e;)



Definition of K'(I,0I) group
Let us consider a Hilbert bundle with
Base space [ = range of mass [-M, M]
boundary @1 = £ M points
Fiber space 7{ = Hilbert space to which D acts
Dm : one-parameter family labeled by m.

We assume that DiM has no zero mode.

The group element is given by equivalence classes of the pairs:
[(’H7 Dm)] having the same spectral flow.

Note: K! group does NOT require any chirality operator.



Definition of K*'(I,0I) group
Group operation: (1! D!} + {(H2,D?)] = [(H' & H>, ( Dy,
Identity element: |[(H, Din)||spec.flow=0

We compare [(Heont.,Y(Deont. +m))]  and  [(Hias., v(Dw +m))]

taking their difference, and confirm if the lattice-continuum combined

pirac operator f) _ ( ’Y(Dcont. + m) fa )
Ja —y(Dw + m)

*
has Spectral flow =0 where fa fa are “mixing mass term” with
some “nice” mathematical properties.



pa(z — a)

fa, : Hlat. N Hcont.

O o—eo—o—
L

maps from finite-dimensional Hilbert space on a discrete lattice to infinite-
dimensional continuum one :

fad(x) :=a" Z pa(x — 2)U(x,2)0h(2).

zelattice sites
U(x, 2) : parallel transport (or Wilson line) to ensure the gauge invariance.

pa(x — 2): weight function (multi-) linearly interpolating the nearest-neighbors.
To control the norm before/after the map, it satisfies

/ pa(x —2)d"x =1 a” Z pa(T — 2) =
xel™

zclattice sites



f; : Hcont. N Hlat.

Is defined by

o (z) = / oz — VU (0, 2)~ Vb (2)d" .

xe’ '™

*
Note) fa fa is not the identity but smeared around nearest-neighbor sites.
(The gauge invariance is maintained by the Wilson lines.)



Elliptic estimate

In continuum theory, For any ¢ - F(E) and i,
a constant c exists such that

[Dig||* < e(||8]]* + [ Do]]?)

When a covariant derivative is large, D is also large.

This property is nontrivial on a lattice.

1V]ol1? < c(llol” + ||IDw ¢l )

Without Wilson term, doubler modes would have small Dirac eigenvalue with
large wave number.

-> Wilson term is mathematically important to make the Dirac operator elliptic.



Continuum limit of f. fa

lat.
1. For arbitrary Qb &

. = t. 2
hm fa®®" weakly converges to a ~ @5 """ € L1

where L js a subspace of H™" where the elements and their first derivatives are
square mtegrable

2. li_l% fav(Dyw 4+ m) @™ weakly converges to (D + m)¢iemt € L2
a
3. There exists c s.t. Hf;faéblat' — (blat'H%2 < Ca2||¢lat°HQL§

4.Forany ¢ ¢ L7 hm fafloe™ = oo™



Main theorem

Consider a continuum-lattice combined Dirac operator

lA) _ ( V(Dcont. + m) tfa )
tfa —y(Dw +m)

on the path P :

e
] 1 }
M 0 +M m



Main theorem

There exists a finite lattice spacing agsuch thatforany a < ag

ﬁ _ ( ’Y(Dcont. =+ m) tfa, )
tfq —y(Dw + m)

is invertible (having no zero mode) on the staple-shaped path P
[which is a sufficient condition for Spec.flow=0]

= Y(Deont. + M), Y(Dw +m) have the same spec.flow
1

o Sn((D = M)PY "5 = Z(y(Dy — M)

The continuum and lattice indices agree.



Proof (by contradiction)

Assume A ( Y(Deont. +m) tfa )
tf —y(Dw +m)

has zero mode(s) at arbitrarily small lattice spacing.
= For a decreasing series of {aj}

( /Y(Dcont. ‘|‘m3) t%faj ) ( Uj ) —(
tifa, —(Dyr + my) vj

is kept.



Continuum limit

1
Multiplying ( f ) and taking the continuum limit
a;

/Y(Dcont. + moo) too Uo _ O
too _’V(Dcont. "I' moo) Voo

is obtained. Uoo UO§> are
Ll weakly convergent

D2 = Dione. + Moo +15, =
requires
Moo = too = 0.

2
L strongly convergent
(Rellich’s theorem)

Contradiction with m? + +2 > (0 along the path P.



Numerical test

We consider a two-dimensional
square lattice (or torus)
We set link variables as

2 Q(x — xo)a]

Uy(z,y) =exp |1

_ L3
S -
N R
L
others = 1.

Then every green plaguette has a

constant curvature

2mQa?
Ur(a.) = exp | 275" |
1

so that geometrical index will be Q.

L

This constant curvature background can be extended to any
even dimensions with SU(N) gauge connections
[Cf. Hamanaka-Kajiura 2002].

"L



Massive Wilson Dirac

_Z_ZVZ_I_Vs a

vDw (m) = v 7= —§V{V§ +m

L 1

aViv(@) = U(@)i(e + ) — (@) aVi(@) = v(@) - U (@ - e)b(z - e,

with periodic b.c. in x-direction and anti-periodic b.c. iny
direction. We set L=32 and L1=10.

We compute near-zero eigen-spectrum
in the range —1 <m < +1



Numerical result at Q=0

1.5 — | . 1
lattice data ! 08 _
1% " 18 o6 There is no
¥ « L 0.4 zZero crossing :
0.5 & X X 1L g2 > index=0.
7R XX =
< 0 - — 0 S
e N 025
05, F x |k -0.4
PR * |5 -06
f I -0.8
_1 5 | I I _1
-1 -0.5 0 0.5 1

Flow time t



Numerical result at Q=+1

1.5

I I
lattice data

X

Flow time t

0.8
0.6
0.4
0.2

rality

026
0.4
0.6
-0.8

There is one
crossing from
positive to
negative:
index=+1.



SH7RONN

Nur¥rical result at Q=+1 X

% N % There is one

: & crossing from
/\)Q positive to

;%«x negative:
‘> < index=+1.

;

N’

PN\



Numerical result at Q=-2

1.5

I I
lattice data

X

Flow time t

0.8
0.6
0.4
0.2

rality

026
0.4
-0.6
-0.8

There is two
crossings from
negative to
positive:
index=-2.



=-2

%merical result at Q

X



Our 32x32 lattice reproduces the Atiyah-Singer

index theorem on a torus.

1.5 — T . 1 1.5 — T
£ lattice data X = 08 £ lattice data X
1 % § >< s 06 1 i %
0.5 ¥ O[] % ost R e
L >
S KR 02 = AR AR
0 4 0<C 0 —or
B — 025 gL N
05 ¥ X 1 o 51 % X
: % X — -0.4 ¥ X
_1 % X 1 ‘06 1 %
| 05 f
-15 ‘ ‘ ‘ -1 -1.5 : ‘ ‘
-1 0.5 0 0.5 1 -1 0.5 0 0.5
Flow time t Flow time t

Index=Q=0 Index=Q=+1

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6

0.8
1

>

hiralit

[&)

I T
lattice data X

y X
05 | K ¥
R SR
0 %S
B e
0.5 - | "%
_1 T -
-15 | | |
-1 0.5 0 0.5
Flow time t

Index=Q=-2

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6

0.8
1
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Wilson Dirac operator is equally good as D, to
describe the index.

1 1
IndD,, = — 577(HW) = — 5U(’Y5(Dcom. — M)) = IndDcon.
t t
By K (I,01) Suspension
for sufficiently small lattice isomorphism

spacings



Wilson Dirac operator is equally good as D, to
describe the index.

1 1
IndD,, = —577(HW) = —§U(’Y5(Dcont. — M)) = IndDon.

By K*'(I,0I) Suspension
for sufficiently small lattice isomorphism
spacings

Or even better?



Application to the manifolds with boundaries

Periodic b.c.

1 1
IHdDOU — —577(HW) — _577(/75(Dcont. — M)) — Ind-l)cont.

Dirichlet b.c. (Shamir doinain—wall fermion) we can show
—=n(vsDpw) = ——77(75(D%)‘r/1[;')) T Ind s pg DO

2 1 2
[perturbative equality F, Kawai, Matsuki, Mori,

: , [F, Furuta, Matuso, Onogi, Yamaguchi,
Nakayama, Onogi, Yamaguchi 2019].

Yamashita 2019].
But the overlap Dirac is missing because Ginsparg-Wilson

relation is broken by the boundary [Luescher 2006].



Real Dirac operators and the mod-two index

For general complex Dirac operators,

1

KY(1,0I) mp _%U(HW) = —577(%(1) — M))

For real Dirac operators, for example, in SU(2) gauge
theory in 5D (origin of Witten anomaly), WeE will be able to show

KOl(I, (9]) » —% ll—sgndet (gg;%)] - _% ll_sgndet (g:i J_r%)]

— Ind—mod —two Dcont :

But there is no overlap Dirac counterpart.
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Summary

1
IndDOU — —QU(HW)
Hy = v5(Dw — M)
We have shown a deeper mathematical meaning of the right-hand
side of the equality,

and that the massive Wilson Dirac operator is an equally good or
even better object than D, to describe the gauge field topology in
terms of K-theory [Atiyah-Hilzebruch 1959, Karoubi 1978...]



Summary K'(I,01)

/,

1
IndDOU — _QU(HW) — _577(75(Dcont. — M)) — Inchont.

Hyw = ~v5(Dw — M)
We have shown a deeper mathematical meaning of the right-hand
side of the equality,

and that the massive Wilson Dirac operator is an equally good or
even better object than D, to describe the gauge field topology in
terms of K-theory [Atiyah-Hilzebruch 1959, Karoubi 1978...]



Backup slides



What are the weak convergence and
strong convergence?

The sequence U; weakly converges to Voo

when for arbitrary W
lim ((v; — Vo0 ), w) = 0.
97— 00

Note) lim (v; —veo)(@) = lim ™ is weakly convergent.

: 5
Strong convergence means Jlgglo HUJ' o UOOH = 0.

Rellich’s theorem:
% %
1 weak convergence = convergence



