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Taken from Aoyama, Kinoshita and Nio ‘19

Feynman diagrams

it is the most powerful toolto calculate physical quantities



Draw diagrams,
multiply propagators and vertices, and
integrate over loop momenta.

In QED, this diagram gives O(a) correction to the Dirac’s g=2.

g T 2 — (Homework)

[Schwinger 48]



State-of-the-art computation:

5-loops 1 2,672 diagrams!
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electron g-2: agreed!

a.(theory : (Rb)) = 1159 652 182.037 (720)(11)(12) x 10~12,
a.(theory : 2(Cs)) = 1159 652 181.606 (229)(11)(12) x 1012,

a.(expt.) = 1159 652 180.73 (28) x 102, [Harvard '08]

RERR

1 2 3 4 5-loop

[Aoyama, Hayakawa, Kinoshita, Nio..]
[taken from Review: Aoyama, Kinoshita, Nio '19]

A =(g-2)/2
n a2 a3
A= (2)aPy (2) AP (5) AP0, fri=123.
T T T
1-loop 2-loop 3-loop

Coefficient A,(z") Value (Error) References
A@ 0.5 [5] :
A%Z) (me/ ) 0 1 diagram
A%Z) (me/mz) 0
A32) (me/my, me/mz) 0
AW —0.328 478 965579193 - - - [23,24] ,
A%‘“ (me/my) 0.519 738 676 (24) x 106 [27] 7 diagrams
AW (me/me) 0.183 790 (25) x 108 [27]
A§4) (me/mﬂ,me/m.,) 0
A® 1181241 456 587 - - - [25,33] ,
A (me/my) —0.737 394 164 (24) x 105 pss 72 diagrams
AE“ (me/mz) —0.658 273 (79) x 107 [28-31]
AP (me /my, me /me) 0.1909 (1) x 10712 [43]
A® ~1912245764 - - - [26,39]
A (me/m) 0.916 197 070 (37) x 103 3235 891 diagrams
A® (me/mz) 0.742 92 (12) x 105 [32,35]
AEB’ (e /my, me/mz) 0.746 87 (28) 106 [32,35]
Aiw) 6.737 (159) new,[40]
A%“’) (me/my) —0.003 82 (39) 35,39]
A%w)(me/mr) 0(107) 12,672 diagrams
A310) (me/my,me/mz) 0(107%)

6-loop 202,770 diagrams

} ° | h/m{Rb) [Recent Rb update,
Morel et al, ’20]
a, '_._i
him('33Cs) |t
h/m(*Rb) @
8t9 ' 910 9?1 9t2

(@' - 137.035990) x 10°



There seems to be a discrepancy in 5-loop computations between two groups...

both Monte Carlo integration and analytical calculations. For example, the ,
uncertainty in is entirely determined by that contribution. Also, it is the [VO”(OV 1 9]
contribution that suffered the most from found mistakes and corrections; see

Ref. [34]. The value

(Agm) [no lepton loops, AKN] = 7.668(159)) (3)

can be obtained by using (2) and the value of the remaining part that can
be extracted from Ref. [34]. By 2019, there was no independent calculations
of A&“’) [no lepton loops] .

We recalculated this contribution with the help of the supercomputer
“Govorun” (JINR, Dubna, Russia). 40000 GPU-hours of Monte Carlo inte-
gration on NVidia Tesla V100 that were spread over several months have led
to the result

(Aﬁ“’) [no lepton loops, Volkov] = 6.793(9()D (4)

where the uncertainty corresponds to 1o limits. It is in good agreement with

the preliminary value 6.782(113) published in Ref. [35]. The descrepancy
between this result and (3) is approximately{ 4.80.)This means that the

values are probablv different. The reason of this difference is unknown. Sec.

Nice to have some independent methods to calculate this?



I’ll try to develop a numerical method to evaluate the
perturbative coefficients in QED, which does not use
the Feynman diagrams (because I’'m lazy).

What I’m going to explain today is really just QED computations.
Nothing fancy or deep. But, it’s fun!

It is going to be a lattice calculation. But don’t sleep now. It won’t be too technical.



[Di Renzo, Marchesini, Marenzoni, Onofri 94, Di Renzo, Scorzato ’00, ...]

Stochastic Numerical Perturbation Theory

Path integral quantization:

(¢(2)d(y)...) = / dg]d(2)(y)...e” > / / dgle>

Equivalent! [Parisi, Wu "81]

Stochastic quantization:

<¢($)¢(y)> — <¢($7 T)¢(y7 7_)-°->Stochastic Long "time” average
Op(x, T) oS

_ | . .
a — 5¢( ) i 77 (CE, 7') (Langevin equation)
T ZE’ T Gaussian noise ' e
0.012 [W‘ﬂhk\“rlﬂ,qj’wv‘n/\mw"mwﬂ”'"V\-, Jf\\ﬂvw' vwf\‘fw\‘ﬁfu‘\*f/ ‘\N\M'\n

“time” evolution Eq. of motion | o |
) < ’

0.008 | / average

0.006 —/

0.004 -l

Averaging them gives quantum correlators! l

<FF>

Basically, the field value scans around the classical solutions.




coupling constant

|
(A(2)d()...) = (p(@)d(y)..) D + Xd(z)d(y)..) D + -

\ We want to calculate these.

Now perturbative expansion:

Recipe:
Expand fields by couplings
0 1 1o EEmbme
¢ ( x) 7—) — ¢( ) (a’;) 7-) _I_ A¢( ) ( :C, 7‘) _|_ .« o e 002 | W.v'v"ﬂh'\,,‘JJWW\M \V“‘yﬂm’{w‘y’"”»’”Aﬂ“\a‘““"'""’g’;?]ﬂwd“' '/ *\M‘W' 4
Solve the Langevin equations for @ach @) numerically ger"’:ﬁ(e)rlgvr\]/gzeo(%r!% £ | | >
(n) / Vo el average |
8¢K”)Cr,7) 58 o] 1
= — + n(x, 7)on.0 Jooooopast ]
oT do(x) 2nd
QS: ¢ (.CU 3 7_) oo I I I0 8(I)0 1000

Combine

(D@)p(y)..) ™ = > (") ()" (y)...)stochastic

ni+ng+--=n



Yes, that’s it!

What we need to do is to solve a set of stochastic differential equations numerically. Very simple.

The degrees of freedom can be made finite by putting the theory on the lattice.

Indeed, in lattice QCD the expectation value of the Wilson loop has been calculated up to O(O.835)!
[Bali, Bauer, Pineda, 14, Del Debbio, Renzo, Filaci ’18]

Maybe even simpler in QED?



Anyway, let’s try.

UV regulator (suppress log divergence)

Sg=1 3 [V (Vudu(n) - Vo4, (m)]

)Il”
kinetic term gets large for high virtuality k2 >> Ayy2

2
1

Sut = 5¢ 2 |¢ ! T VA

=32 [ ae]
n,

This factor takes care of doublers.
Justified in perturbative calculations.\

1
Sf = _E IndetD.

Dirac operator:

Lattice unit:

(a=1)

Non-compact QED action
(Link variable U not used here. Simple.)

Vuf(n) = f(n+p)— f(n), V,f(n)=f(n)-fln-p),

Gauge fixing term

(Necessary. Otherwise A, random walks in
the gauge direction.)

Photon mass (IR regulator)

(Necessary. Otherwise zero mode part of
A, random walks. Gauge invariance broken,
but in a rather controlled way.)

Fermion determinant
(Fermions loops are all included)

Naive fermion

1 :
(D)nm = mdnm + 5 Z ['Y#ezeA#(n)(S’n-l-ﬂ,m Ve —ieAu(n— /_L)(Sn _am ]
m

(There are 16 doublers. Chiral symmetry is

Link variable, U, is used here for gauge invariance. maintained on the lattice.)



Doublers?

—isin(py)y, +m

Momentum space propagator: 24 = 16 poles!
b 2 2 ’ 1 T T T T T T
sin“(p,) + m Y, \ o
doubler |
c
-
.(7) -0.2 \
«a} physical \
16 fermions \ /
N - , . LN 7
16 fermions
momentum

16 fermions run in the loops. * x 1/16 for each loop gives the correct answer.

—Indet D — —1—161ndetD

Wow. That sounds a pretty rude idea.

But it is just true in the perturbative calculations as long as ys is not involved.

* OK in QED



—1
a<<mf

/Physical quantity o 4 | o

Energy scale in question: mf (Fermion mass) | LT | | | Lattice spacinga

Continuum limit:

+—>
Compton wave length ms 1

One should keep this finite while the lattice spacing to be zero. mf a % O

Chiral symmetry is maintained on the lattice: mf XM < >

Lattice size L

Parameter in the Lagrangian
No additive renormalization

Continuum limit is realized by taking small main the Lagrangian.

Note:

ma % O Coupling constant “e” is not a parameter.

We formally expand everything in terms of
“e”. There is nowhere we need an explicit
value of “e”.

Also, one should take the limits of

Zero photon mass: mv/m — O
Large volume: L =00 T — oo
Infinite UV cutoff: Auyv/m — oo

We’ll come back how those limits are taken.



Perturbative expansion:

Langevin equation

o0
A,(n,1)= Z epAff’)(n, T),
For example, p=0

0Sg __—2V2/A2 * (p) * (p)
S| = (Vv ) - ViV A m)

/ (p) v

Discretize the T direction.

We update the gauge field A, according to the equation:

aAu(na T) _ 0 Slattice

— + n,T).
or dA,(n,T) T (Noise)
Pretty simple except for 0.5t _ ir_ﬁ' oD D1
6A,(n) 16 '

We need to calculate the inverse of the Dirac operator for each Langevin step.

That can be quite effectively done by using the following recursion formula and FFT:  [Di Renzo, Scorzato "00]

R
(DY) =Do" @] =-|Ds'DY et (D7)

(q)

q=0 (p)



Well, it’s essentially the same as the usual perturbative expansion: [Di Renzo, Scorzato "00]

i@ +m + ied d|agonal in the position space.
FFT I;FT ’L@A FFT ... FFT Z@A FFT FET
X . «—X X—p . «X X<p o «—X

ip + ip + m p ip + m

diagonal in the momentum space

No integration or linear solver is necessary. Sequence of multiplying diagonal matrices.

Very effectively done on computers. Cost of FFT is also similar to the
multiplication of a diagonal
matrix, O(N log N).
.. Wait a minutes.

d.S¢ 1 oD 1 Yes. But, for this, one can use a stochastic trick.
=~ Ty(——-D1).
dA,(n) 16 dA,(n) . ( 5D D—l) <<* 5D D_1<>
64, (n) A,m) - /0
This is integration. We generate a random spinor, {(x), with the

Do we need to repeat the calculation V=L3T times? gaussian weight and take the inner product.

That’s practically not possible.
P y P Over many Langevin steps, it averages to the trace.



Now all fermion loops are taken care.

Let’s calculate Pphoton 2-point functions:

Ay Ay
‘ ‘ stochastic
transverse This part is exact
(Au(k) A, (K)) =e /A0 | { g, - by : 4 by &

k2 ) k2 + m2 — (k%) k2 k2+ Em2
x (2m)*6% (k + k'),

Wave function renormalization:

i .2
Z (k%) = 2 /A0v [ 1 - &) T stoohastio ve
3 2 stochastic vs diagrammatic .
.+ 1-loop e
Parameter in o
1/2 A/ the Lagrangian }ﬁ
Charge renormalization: €p = Z3 (0)6,

Physical tI \ Z5?(0) (.

ysical quantity et 23 &34 .

2 1 2 ) } .

_e_Pf\J
a_47r_137



Fermion 2-point functions

A A
% % stochastic

<D p,q)> Z((D Y ) €~ P Tn g0

» Full propagator:  §(p) = % <l~) " -p )>

[ A AU S A
_ .. Tree
The on-shell fermion o5, , 4 a4 s® " 1 Statistic error not shown
energy can be Fa 1-loop ¢ but invisible.
extracted. ‘Ii _
L oo Actually, the
& diagrammatic exact
%, - j results are overlaid
Y E L hasans ‘e (difference invisible).
me:a:’z:jj l ® O ¢ O ¢ O @ O




3-point functions

A
A A ) ‘ >
Kk stochastic
connected
: 2

p+k

1 /s —ip- n —i(—p—k)- m —ik- 2
Gu(p, k) = 1% Z(w(n)w(m)Au(l))e Pt HmpmR) B g ik (Tt u/2), disconnected
n,m,l
1 =~ 1 ~ 3-point function
= V<D (p’ P k)AM(k» (All diagrams included.)
Remove external legs. — Vertex function. — full propagators

<4

—iepl,(p, k) =KD;,/1(k)S(p)_lG,,(p, k)S(p+ k)™t
Sandwich by wave functions. = Form factors.

—iept(p)Tu(p, k)u(p + k) = —iepu(p) (Fl(fcz)"m — Fy(k?)

quku

5 ) u(p + k) + O(a?),
my

This part is already done.
2

- g F1 (O) . n Fz(O) Express this quantity as a series of % = 46%. ep = Z§/2(0)e,
g-factor: = = .

FI(O) (0) s 0@ a2 @)
(F1(0) =1) » g:g?"‘(;)g?—i—(;) 974_




How to get to on-shell?

We are working in the Euclidean space. We need analytic continuation to the on-shell momentum.

(k, 0)

(k/27p4) (—k/Q,p4)

We want 3-point func at ps=iE.

The continuation can be done

by evaluating these integrals: doubler pole

(double pole)
(unwanted)

d R )
FE(t) = / %tr ['}/404] e'Pat

3
d . NE TP
Fum (t) — / —21:_1 Z 1€k tr |:’}’5’7iGj:| ke Pat

i,J,k=1

z = e'P4

(unwanted)

fermion(s)
+photon(s) cut

2 2w (T — 1)

p4207Ta"' T

Euclidean energy (periodic b.c.)

Integration contour
(Euclidean lattice calculates

Gy on this line.)

separated by my

vév%‘-?

fermion pole
(double pole)

We want the residue of this pole.

This is a double pole since both external
fermion lines get on-shell.

The double pole gives O(t) terms whose coefficients are proportional to the on-shell amplitudes.



d N d
* Fu(t) = / 2%:’01' [’74G4] e, Fu(t) = 217): Z 1€k tT ['}’S'YzG]] ket

i,5,k=1
o<F1 + ... <F1+Fo+...

g(t) _ Fu(t)/Fe(t)
2 (norm) ( t) / (norm) ( t) !

Take the double ratio: t — 00 of this quantity is the g-factor!

(Here, (norm) denotes the tree level form factors.)

Unwanted terms are suppressed by 1/t and/or exp(-myt).

Doubler contributions cancel in the ratio.
(At even t, Fe and Fm vanish due to doublers, and doubled at odd t.)



(k, 0)

Parameter choices é

(k/2, pa) (—k/2,p4)
We have many parameters, and we need to take various limits.
mass? scale (unit 1/a)
A
Our choice:
Should be large,
but shouldn’t be 2
too large to I 1 ‘/\UV/2
suppress UV div.
T v Large UV cut-off
T 2
Just took the .
value in between S111 L m
l v Non-relativistic fermion momentum
Smallest lattice .2 T R 2 4
momentum? S111 L | | /
v Small photon mass
Shouldn’t be too . 3T 2
small to  ——— S111 m /4
suppress IR div. L R

By this choice, L— oo limit is the continuum theory with the massless photon. Errors are of O (f)

L

O(a few - 10%) in the realistic simulations.



243x48 |lattice results:

1.5 ;
a"=0.93+0.00+0.01
1 L - 0-oop (ansiytc é ;
0.5
\
S 0
@ -
-05 F
-1 F
24°x48
_1 .5 i i 1 i 1 i i
0 0.050.10.150.20.250.30.350.4
14
1 .5 H T ¥
q‘-":-O.ZBx0.0S:0.0G
0.5 :
— oddt —8—
(Y] v o : event —&—
= S (BT S
3@ 0 f |
-0.5 S B 2"°99(°“°‘Y“2°). b
-1
24°x48
_1.5 feoriiiid i I TETTOTUUN FOPTUTIN FRPRTON |

0 0.050.10.150.20.250.3 0.35 0.4

11

1.5  —
g a?= 0.43:0.02;0.01
1 -
0.5 @ 1-|o§p (analytic)
0 : G E .
-0.5
| e
g 243x48
-1.5 Arsssbsbudsasmmusssamsnlosmsssbsssmsiussss
0.050.1 0.150.2 0.25 0.3 0.35 0.4
14
1.5 T
| % s ot
T T " a9212620102010 |
0.5 |
]
L ] o
0 - - | :
N A - o
-0.5 - |
-1 |
. 24°x48
15 L TR i i i N

Finite volume +
IR contamination

0 0.050.10.150.20.25 0.3 0.350.4

1h

cut

contribution

L*xT | ma | (Ayva)? | € | mya | € | Neons

123 x 24 | 0.51 2.0
162 x 32 | 0.44 2.0
202 x 40 | 0.39 2.0
243 x 48 | 0.36 2.0

gt)  Fu(t)/Fe(t)

1.0 | 0.26 | 0.02
1.0 | 0.17 | 0.02
1.0 | 0.12 | 0.02
1.0 | 0.094 | 0.02

2 f-j(\,x;orm) (t)/}-]g:norm) (t) !

~ o) 4 p(0) /.

4800
6400
7040
9600

We see the @ + /T behavior.

Extrapolating
te[L/2—3,L/2]

we get gray shaded
values at each order.

We should use this region for extrapolation to large t.



L dependence

Continuum, infinite volume, infinite UV cut-off, zero photon mass

<
12°x24 —H— i 12°x24 —5—
16°x32 i i 16°x32 —m—
20°x 40 9~ : : 20°x 40 O
247x 48 — @~ : . 24°x48 e
150 — 1 |
5 0-loop (analyuc)' & Hoop (analytic) .
s 1 . B g 05 oo 4
05 0
0 i i i i -0.5 i i i i
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 006 0.08 0.1
1/L 1/L
o5t 224G ol s
: = 20°x 40 O : . 20°x40-6
24°x 48 —— i 24°x 48 —o—
0 b—1— 15 :
- % 2-400p (analyc) — : :Hoop (analytic)
= i ' i S ‘ } '
-1 F 0.5
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 006 0.08 0.1

1/L 1/L

Remember that L— e limit is the continuum theory.

Well, may be good

enough for the first try.

L}*xT | ma | (Ayya)? | I3 ‘ mya ‘ € | Neont
123 x 24 | 0.51 2.0 1.0 | 0.26 | 0.02 | 4800
16% x 32 | 0.44 2.0 1.0 | 0.17 | 0.02 | 6400
20% x 40 | 0.39 2.0 1.0 | 0.12 | 0.02 | 7040
243x48 1036 | 20 | 1.0 | 0.094 | 0.02 | 9600
I3xT a0 a@ a® a(6)

123 x 24 | 0.85(0)(4) | 0.46(2)(6) | —0.54(2)(11) | 1.14(4)(17)
16% x 32 | 0.90(0)(2) | 0.45(2)(2) | —0.43(3)(6) | 0.96(6)(6)
203 x 40 | 0.92(0)(1) | 0.43(2)(2) | —0.38(4)(5) | 1.03(8)(8)
243 x 48 | 0.93(0)(1) | 0.43(2)(1) | —0.28(5)(3) | 1.26(10)(10)
(analytic) | 1 0.5 —0.328... 1.18...




Tone down a little bit....

There are a few problems which we need to take care in future works.

1. Log divergences

The result actually has a large Nuv dependence.

1.5
16°x32
ma=0.44
m,a=0.17 L . i .
i : This is mainly due to log divergence in
the mass renormalization.
@c 0.5 o = 1-loop (analytic)
@
0r o}
-0.5 -
1 10 100

(Auva)®

If we didn’t introduce Auv, the continuum limit gets far away.

One should carefully choose UV cut-off. Or, maybe we need some improved methods.



2. IR divergences
Finite my regulates the IR divergence, but we need to make sure there is no 1/my effects in the final formula.

There is a little bit of complication in a finite volume.

on-shell on-shell

If this photon momentum is zero, we have

i 1 Photon propagator
V m?2 (1/V suppressed by the measure.)
Y
1 2
( 5 5 ) Two extra on-shell fermion propagators
sa(p)? +E
3
This gives O ( 2V> contributions to Fe and Fm.  This is much larger than leading O(t) effects for a large t.
m

3

(soft theorem)
In fact, those are largely cancelled in the ratio Fm/Fe just as in the continuum theory, but not exactly in a finite volume.

The effects are small enough in the current O(10%) measurements, but will be important when we need more accuracy.

(Not so serious, though. We can fit and remove the IR contributions.)



3. Finite volume effects

The accuracy is already 1/L. Yes, finite volume effect is large.

There are actually annoying effects in the perturbation theory in a finite volume.

We take the periodic boundary conditions for the fermion.

» g(t) ]:M (t)/fE(t) We want to see the large t behavior, but
= ’ h. f . . ] d- .
2 fj(\:llorm) (t)/]:glorm) (t) this function is periodic

. backward forward
® O ® ® O

t=-T t=0 t=T

ON

Correlation functions have a contribution from the backward propagation.

leading IR divergence

For example, / backward propagation

Fio(t) ~ tehe™™ + (T — )t Ve

~ te—Bto—at’ | (% _ 1) e~ E(T—2t) ,—aT(T 2t):|

=/te;”5te‘ﬂ”t2 ( 1) e~ Bo(T—2t) ( (E1 5 L31 2) (T —2t) + - )] :

This part cancels in the ratio. The contrlbutlon gives higher power of t in the higher order in the perturbations.
It gets important at large t.




We already see such a tendency: Deviation from the straight line gets larger for higher orders.

g9/2

g2

1.5 : : ! T T
: _ 0" =0.93+0.00+0.01
1 Oi-loog (an:rync) . i ]
0.5 e
0t
cvent —a—
-0.5 ]
At ,
24°x48
-1.5 i i i i i i i
0.050.10.150.20.250.30.350.4
1
1 .5 4 ! T ¥ T
i a=.0.280.05+0.03
0.5 |-
R =
0k 'igflﬂ u : ]
-05 ot 2‘°°9 (N‘Y‘;ﬂ ]
-1t
24°x 48
_1 .5 i i i i i i i

0.050.10.150.20.250.3 0.35 0.4

11

g®@/2

T — e
! 7=0.4320.0220.01
1
0. 5 . ’ 1-lot;p (analytic)
0 - s .
0.5 b
- Ees
-1 F e
: 243x 48
I IIIE ]
0 0.050.10.150.20.250.30.350.4
14
.o esggt:é: B
0.5 Fteeted i E
-1 - |
. L 24°x48
-1.5 ¢ 1 L A i L i O

0 0.050.10.150.20.250.30.350.4

14

This is going to be an obstacle for
higher order computations.

>

g(6)/2

It turns out, manipulating the
fermion boundary condition can
avoid this problem.

We actually have better

understanding now.

.\ T P e T T
1 5 T <a(B)> + <b(B)>t + <c(6)>t
3-loop (analytic)
loop (quench)

1 odd t &

0 N

0.5 N
1

157 Preliminary |
-2

0 0.050.10.150.20.250.30.350.4

11



5-loop no lepton loop (preliminary)

The discrepancy is in the subset of diagrams with no lepton
loops — quenched QED.

[Volkov ’19]
.o . Photon is a free field = Langevin evolution not necessary.
both Monte Carlo integration and analytical calculations. For example, the
uncertainty in (2) is entirely determined by that contribution. Also, it is the Very easy!

contribution that suffered the most from found mistakes and corrections; see
Ref. [34]. The value

A{”[no lepton loops, AKN] = 7.668(159). (3) [RK, Takaura in progress]
can be obtained by using and the value of the remaining part that can I llllllll I o IIIII AR A AR
be extracted from Ref. [34]. By 2019, there was no independent calculations Prel IMmin ary
of Aﬁ“’) [no lepton loops] . 8 [ AKN g

We recalculated this contribution with the help of the supercomputer
“Govorun” (JINR, Dubna, Russia). 40000 GPU-hours of Monte Carlo inte-

gration on NVidia Tesla V100 that were spread over several months have led Volkov ]
to the result 6 .
A}“’) [no lepton loops, Volkov] = 6.793(90), (4) 7
where the uncertainty corresponds to 1o limits. It is in good agreement with Q 4 g B
the preliminary value 6.782(113) published in Ref. [35]. The descrepancy 8
between this result and (3) is approximately 4.80. This means that the ~—
values are probablv different. The reason of this difference is unknown. Sec. \6
[Aoki, Kinoshita, Nio "19] 0t 1

1
|

V | 0 0.02 0.04 0.06 0.08 0.1
6354 diagrams 1/L

We need larger volumes for more precise measurements, but looks doable.



Summary

2 :
12°x 24—
16°x32 —m—
20°x 40 -0~
247x 48 —8—
15 ¢
5 1 0-loop (analytic)
o ¢ & g B
0.5
o 1 1 i L
0 0.02 0.04 0.06 0.08 0.1
1/L
05} Toones e 1
: 20°x 40 —6—
247x 48 —e—
0 L
< : $ o zewean
S i i
0.5 pd Thd %
-1k

0 0.02 0.04 0.06 0.08 0.1
1L

q®@

1.5

0.5

-0.5

.
12%x24 —E
16°x32 —m—
20°x 40 —0—
24°x 48 —e—

1-loop (analytic) T

& 5

0 0.02 0.04 0.06 0.08 0.1
1/L

Continuum, infinite volume, infinite UV cut-off, zero photon mass
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| tried. It worked up to 3-loops with O(10%) accuracy.

Maybe useful.
| don’t find a very serious problem to go to higher loops.

(Computational cost scales as Volume*(loop)?)

We used NEC SX-Aurora TSUBASA A500 at KEK.

Fugaku (wikipedia)

We expect a currently available larger scale computer with a
more optimized code will make larger lattice volumes such as
L=128 possible.

A few percent level measurements will be possible(?)

Anyway, the stochastic method works for physical quantities like g-2.

If people want 6-loops, this may be a good method for the first estimation.

Maybe useful for a wider class of physical quantities in general theories.



