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2.4.1 電場中での仕事

A

B

q dr

−F

与えられた電場の中で，「微小な電荷」(与えら
れた電場への影響を無視できる)を点 Aから点
Bまで運ぶのに必要な仕事を考える．クーロン
力Fに「抗して」微小電荷を動かすから，仕
事は，

W = −
∫ B

A
F · dr. (1)

線積分� �
スカラー関数 f (x, y, z)の曲線 Γ(ガンマ)に沿う積分∫

Γ

f dr := lim
∆ri→0

∑
i∈Γ

fi ∆ri (2)

fi は Γ上の点 iでの f の値，∆ri は点 iと点 i + 1の間の線分の
長さを表す．� �
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A

B

1

2

3

i

n1∆r1

n2∆r2

ni∆ri

Γ

式 (1)の場合は，∫
Γ

F · dr = lim
∆ri→0

∑
i

F i · ni ∆ri . (3)

ただし，niは点 iから点 i + 1に向かう単位ベ
クトル．つまり，F i · niは点 iでの力の運動方
向成分．(仕事は，力の運動方向成分×距離．)
注) 線要素 dr = n(r)dr．n(r)は rにおける Γ
の単位接ベクトル．

単位電荷当たりの仕事は，

w :=
W
q

= −
∫ B

A

F
q
· dr = −

∫ B

A
E · dr. (電場の線積分) (4)
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wの経路依存性
一般に線積分はその経路 Γに依存する．
しかし，静電場の場合，wは Γに依存しない．

証明のアイデア: まず 1つの点電荷について示し，重ね合せの原理
を用いて一般化する．

証明: 点電荷 qによる電場を考える．原
点に電荷 qがあるとき，

E(r) = q
4πε0

r̂
r2 . (5)

(i) 右図のAからBへの積分を考えると，
(経路A → A′ → B) O

q
A

B

A′

rA

rA

rB

w = −
∫ B

A
E(r) · dr = −

∫ A′

A
E(r) · dr −

∫ B

A′
E(r) · dr .
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第 1項はゼロ．なぜならば， A → A′では電場の向きは常に動径方

向 (r̂)で，電荷の運動方向 (dr)は円周方向だから，E · dr = 0.
A′ → Bでは，dr = r̂drゆえ

w = −
∫ rB

rA

q
4πε0

dr
r2 = − q

4πε0

(
1
rA

− 1
rB

)
. (6)

(ii) 次に下図の経路A → A′ → A′′ → · · · → Bを考える．

O
q

A

B

A′

A′′

円周方向の積分はすべてゼロだから，
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w = −
∫ rA′

rA

q
4πε0

dr
r2 −

∫ rA′′

rA′

q
4πε0

dr
r2 · · · −

∫ rB q
4πε0

dr
r2 (7)

= − q
4πε0

∫ rB

rA

dr
r2 = − q

4πε0

(
1
rA

− 1
rB

)
.

前と同じ結果．

=⇒ ギザギザの経路 (動径方向と円周方向から成る)の場合，wは
経路に依らない．

(iii) 滑らかな経路

O
q

A

B

E

θ

a

b c

x

y

r

田中 実 (大阪大学理学研究科) 2.4 静電ポテンシャル 第 2 章 静電場 6 / 33



三角形 abcはいくらでも小さくできるから，Eは一定と見倣せる．
(Eが bc方向となるように三角形 abcをとる．)∫

a→b→c
E · dr = |E|y = |E|r cos θ. (8)

∫
a→c

E · dr = |E|r cos θ. (|E| cos θはEの ac方向成分．) (9)

よって，滑らかな経路とギザギザの経路は同じ積分結果．

重ね合せの原理を用いると，一般の静電場E(r)について

w = −
∫ B

A
E(r) · dr

は，積分の経路に依存しない．
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2.4.2 静電ポテンシャル (電位)
基準点P0を決めて，スカラー場 φ(ファイ)を静電場下でのP0 → A
の単位電荷当りの仕事 (点 Aの座標を rAとする．)

φ(rA) := w(P0 → A) = −
∫ A

P0

E(r) · dr (10)

と定義する．(注: これは経路に依らない．) 点Bでは，

b

b

b

P0

A

B

φ(rB) = −
∫ B

P0

E(r) · dr. (11)

A → Bの仕事は，

w(A → B) = w(A → P0) + w(P0 → B) (12)
= −w(P0 → A) + w(P0 → B) = φ(rB)− φ(rA).
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一方，
w(A → B) = −

∫ B

A
E(r) · dr. (13)

よって，

−
∫ B

A
E(r) · dr = φ(rB)− φ(rA). (14)

(始点と終点の φだけで決まる．)
静電ポテンシャル (電位)

φ(r) = −
∫ r

P0

E(r ′) · dr ′ . (15)

点電荷の静電ポテンシャル

P0を無限遠にとれば，原点に置かれたの電荷 qのポテンシャルは，
式 (6)より，rA → ∞, rB = rとして，

φ(r) = q
4πε0

1
r
. (16)
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複数の点電荷の静電ポテンシャル

φ(r) =
∑

i

1
4πε0

qi

|r − r i |
. (17)

すなわち，ポテンシャルについても重ね合せの原理が成り立つ．

∵ 重ね合せの原理 (式 (2. 3. 4))，E(r) =
∑

i E i(r) (E iは i番目の
電荷がつくる電場)より，

φ(r) = −
∫ r

P0

E(r ′) · dr ′ = −
∫ r

P0

∑
i

E i(r ′) · dr ′ (18)

=
∑

i

−
∫ r

P0

E i(r ′) · dr ′ =
∑

i

φi(r)

(φiは i番目の電荷のポテンシャル)

=
∑

i

1
4πε0

qi

|r − r i |
.
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連続的な電荷分布の場合

体積密度を ρ(r)とすると，

φ(r) = 1
4πε0

∫
ρ(r ′)dV ′

|r − r ′|
. cf. 式 (2. 3. 5) (19)

静電ポテンシャルの単位

式 (15)より (N/C)m=J/C．

1 J/C =: 1 V (ボルト，Volt) (20)

Eの単位は，V/mと書ける．
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2.4.3 静電ポテンシャルから電場を求めること
b b

x x + dx

少し離れた 2点 (x, y, z)と (x + dx, y, z)を考え
る．(x, y, z) → (x + dx, y, z)の単位電荷当りの
仕事は，

∆w = −
∫

E · dr = −Ex dx . (21)

ポテンシャルを用いると，

∆w = φ(x + dx, y, z)− φ(x, y, z) = ∂φ

∂x
dx . (22)

よって，

Ex = −∂φ

∂x
.

y方向，z方向についても同様にして，

E = (Ex ,Ey,Ez) = (−∂φ

∂x
,−∂φ

∂y
,−∂φ

∂z
) . (23)
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ベクトル微分演算子 ∇

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
) (ナブラ)

用いると，

静電ポテンシャルによる電場の表式

E(r) = −∇φ(r) (24)

これは式 (15)の微分形．
一般にスカラー場 f について，∇f を f の gradient(勾配)といい，
grad f と書く場合もある．∇f はベクトル場になっている．
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2.4.4 電場の rotation(回転)
ベクトル場の rotation

∇× A(r) =
(
∂Az

∂y
− ∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)
(25)

(∇× A = rot A = curl A などとも書く．) 式 (24)から，

(∇× E)z =
∂Ey

∂x
− ∂Ex

∂y
= − ∂

∂x

(
∂φ

∂y

)
+

∂

∂y

(
∂φ

∂x

)
(26)

= − ∂2φ

∂x∂y
+

∂2φ

∂y∂x
= 0.

x, y成分についても同様．よって，

静電場の rotation
∇× E(r) = 0 (27)
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φの具体的な形は用いていない．これで，静電場の法則の一部を微
分形に書くことができた．(近接相互作用の考え方)
注) 一般にA(r) = ∇f (r) (f (r)はスカラー場)のとき，
∇× A(r) = ∇×∇f (r) = 0．
クーロン場が式 (27)を満すこと直接計算で確かめよう．

E(r) = q
4πε0

r − r0

|r − r0|3
(28)

の回転は，

(∇× E)z =
∂Ey

∂x
− ∂Ex

∂y
(29)

=
q

4πε0

(
∂

∂x
y − y0

|r − r0|3
− ∂

∂y
x − x0

|r − r0|3

)
=

q
4πε0

[
(y − y0)

∂

∂x
1

|r − r0|3
− (x − x0)

∂

∂y
1

|r − r0|3

]
= 0.

重ね合せの原理から，式 (27)が任意の静電場について成立するこ
とが確かめられる．問) 最後の等式を示せ．
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2.4.5 ストークス (Stokes)の定理
Γ

dr

A
At

Γを閉曲線 (ループ)とする．ベクトル場
A(r)の Γへの接線成分を，Γに沿って 1
周積分する．(反時計回りを正の方向と
する．)

ベクトル場の循環 (circulation)� �∮
Γ

At(r) dr =

∮
Γ

A(r) · dr. (30)

(
∮
は 1周積分，AtはAの接線成分を表す．)� �

cf. 式 (1)
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P1

P2

Γ1

Γ2

図のように循環を分割することを考える．

P1, P2間の積分は，Γ1では∫ P1

P2

A(r) · dr = −
∫ P2

P1

A(r) · dr ,

Γ2では ∫ P2

P1

A(r) · dr ,

で互いに打ち消し合う．よって，

循環の分割� �∮
Γ

A(r) · dr =

∮
Γ1

A(r) · dr +

∮
Γ2

A(r) · dr . (31)

� �
が成り立つ．
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ストークスの定理∮
Γ

A(r) · dr =

∫
S
(∇× A(r)) · dS (32)

(右辺は面積分で，S は Γを境界とする面．)
証明のアイデア: 左辺の循環を細かく分割して，それぞれについて
上の等式が成り立つことを示す．

証明: 図のように Γに沿う循環を Γを境
界とする面上の小ループの和に分割

する． ∮
Γ

=
∑∮

小ループ

(33)

分割を無限に小さくすれば，どの小ループも小さい正方形で近似で

きる．
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無限小正方形の周りの循環

(長方形でもよい)
図のように正方形を xy平面にとる．
正方形周りの循環は 4つの辺に沿う積分
の和で表わされる．

x

y

z

x0 x0+∆x

y0

y0+∆y

∮
A(r) · dr =

∫ x0+∆x

x0

Ax(x, y0, z) dx +

∫ y0+∆y

y0

Ay(x0 +∆x, y, z) dy

+

∫ x0

x0+∆x
Ax(x, y0 +∆y, z) dx +

∫ y0

y0+∆y
Ay(x0, y, z) dy

=

∫ x0+∆x

x0

[Ax(x, y0, z)− Ax(x, y0 +∆y, z)] dx

+

∫ y0+∆y

y0

[Ay(x0 +∆x, y, z)− Ay(x0, y, z)] dy (34)
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Ax(x, y0 +∆y, z) = Ax(x, y0, z) +
∂Ax(x, y0, z)

∂y
∆y + O((∆y)2)

などを用いると，(注: 右辺第 2項の偏微分は，∂Ax(x,y,z)
∂y |y=y0の意．)

被積分関数の∆x, ∆yの 2次以上を無視して，

=

∫ x0+∆x

x0

[
−∂Ax(x, y0, z)

∂y
∆y

]
dx +

∫ y0+∆y

y0

[
∂Ay(x0, y, z)

∂x
∆x

]
dy

= −∂Ax(x0, y0, z)
∂y

∆y∆x +
∂Ay(x0, y0, z)

∂x
∆x∆y

=

(
∂Ay

∂x
− ∂Ax

∂y

)
∆x∆y = (∇× A)z ∆x∆y = (∇× A)z dS

(∆x∆y =小正方形の面積 = dS を用いた．) 小正方形の法線ベク
トル n(単位ベクトル)は z軸の正の方向 (右手系)ゆえ，

= (∇× A) · n dS = (∇× A) · dS . (dS ≡ ndS , 面要素)

(座標系によらない形に書けた．)
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分割の議論，式 (33)から，S を Γを境界とする面とすると，∮
Γ

A(r) · dr =
∑∮

小正方形

A(r) · dr

=
∑

すべての小正方形

(∇× A) · dS =

∫
S
(∇× A) · dS (面積分) (35)

(証明終)
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例: 角速度ωで回転する円板

x

y

v

r

点 r = (x, y, 0)での速度は
v(r) = (−yω, xω, 0)で，|v(r)| = rω．∮

r=a
v(r) · dr = 2πa aω = 2πa2ω . (36)

一方，∇× v(r) = (0, 0, 2ω)より，∫
r≤a

∇× v(r) · dS = 2ω πa2 . (37)

確かに，ストークスの定理が成り立っている．

注) ∇× A = 0の場 ⇒ 渦なし．∇× A 6= 0の場 ⇒ 渦あり．
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2.4.6 保存場

線積分の経路依存性と場の回転

任意の 2点 P1, P2間の曲線に沿う積分がその経路に依存しないよ

うなベクトル場の回転は 0．
証明のアイデア: 閉曲線に沿う積分が 0であることを示し，ストー
クスの定理を用いる．

証明: 2点間の線積分が経路によらないから，∫
Γ1

A(r) · dr =

∫
Γ2

A(r) · dr . (38)
b

b

P1

P2Γ1

Γ2

このとき，任意の閉曲線に沿う積分は 0である．なぜなら，
Γ = Γ1 − Γ2として，∮

Γ

A(r) · dr =

∫
Γ1

A(r) · dr −
∫
Γ2

A(r) · dr = 0 . (39)
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(逆に，
∮
Γ

A(r) · dr = 0であれば，2点間の積分は経路によらな
い．) このとき，ストークスの定理 式 (32)より，∫

S
(∇× A) · dS = 0 . (40)

S は任意の面だから，

∇× A(r) = 0 . (至る所で rotationがゼロ．) (41)

(逆に，∇× A = 0なら
∮

A · dr = 0．)

回転が 0のベクトル場のスカラー場による表示
∇× A(r) = 0のとき，適当なスカラー場 f (r)を用いて，
A(r) = ∇f (r)と書ける．

証明のアイデア: 線積分を用いて f (r)を構成する．
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証明: 2点間の曲線に沿うA(r)の積分は，その経路に依存しない
から，基準点 P0を決めれば，

b

b

b

P0

P1

r1

P2
r2

b

b

P0

r

∫ P2

P1

A(r) · dr (42)

=

∫ P0

P1

A(r) · dr +

∫ P2

P0

A(r) · dr

= f (r2)− f (r1) .

ただし，

f (r) :=
∫ r

P0

A(r ′) · dr ′ . (43)

これより，

f (r + dr)− f (r) = A(r) · dr . (44)

(dr = (dx, dy, dz))
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一方，

f (r + dr)− f (r) = ∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz = ∇f (r) · dr . (45)

よって，

A(r) = ∇f (r) . (46)

(証明終)
このような場を保存場という．(f はポテンシャルに相当する．)
逆に，A = ∇f のとき，∇× A = 0．
(計算は式 (26)と同様．式 (27)の後の注を見よ．)
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ここで静電場 (クーロン場)のときの議論を見直してみよう．
式 (5)から式 (9)の議論で，w = −

∫ B
A E(r) · drが積分経路によら

ないことを示した．この議論はE(r) = g(r)r̂であれば，E(r)の r
依存性にはよらない．例えば，(ii)の経路では，

w = −
∫ B

A
E(r) · dr (47)

= −
∫ rA′

rA

g(r) dr −
∫ rA′′

rA′

g(r) dr − · · · = −
∫ rB

rA

g(r) dr .

wが経路に依らないことから，ポテンシャル φの存在を示し，
E = −∇φと書けることも示した．また，∇× E = 0も示した．
この結果は，静電場 (クーロン場)の r依存性 (1/r2則)には無関係
であることが分かる．

従って，∇× E = 0はクーロンの法則 (静電場の法則)の一部であ
り，(1/r2則を決定するような)さらなる (微分形の)方程式がある
はず．(=⇒ §2. 5)
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2.4.7 等電位面と電気力線

gradientの意味� �
∇f =

(
∂f
∂x

,
∂f
∂y

,
∂f
∂z

)
. (48)

(∇f )x = ∂f /∂xは，f の x方向への変化の速さ．同様に，∇f の
ある方向の成分は，その方向への変化率．(cf. 式 (45)) 従って，
∇f の方向は f が一番速く変化する方向である．� �
等電位面 (等ポテンシャル面)

φ(r) = const. (49)

となるような面を等電位面 (あるいは等ポテンシャル面)という．
電場は等電位面に垂直である．
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φ = const.

E

E? ∵
E = −∇φ (50)

であった．もし電場が等電位面に垂直でないな

らば，Eの等電位面に沿う方向の成分があるこ
とになり，ポテンシャルが面上で変化すること

になる．これは定義に反する．

注) Eは φが最も速く減少する方向を向いて
いる．

また，電場は各点で電気力線に接していたから，電気力線と等電位

面は垂直．

例: 1つの点電荷

+q 等電位面は球面になる．
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例題 1: 電気双極子
電気双極子の静電ポテンシャルを求め，それを用いて電場も求め

よ．(cf. 2.3.4の例 1)
z

O

b

b

+q

−q

d

2

−

d

2

式 (17)より，

φ(r) = q
4πε

[
1√

x2 + y2 + (z − d/2)2
(51)

− 1√
x2 + y2 + (z + d/2)2

]

=
q

4πε0

[(
r2 − zd +

d2

4

)−1/2

−
(

r2 + zd +
d2

4

)−1/2
]

=
q

4πε0

1
r

[(
1 − zd

r2 +
d2

4r2

)−1/2

−
(

1 +
zd
r2 +

d2

4r2

)−1/2
]
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遠方 (r =
√

x2 + y2 + z2 � d)では，

φ(r) = q
4πε0

1
r

[
1 +

zd
2r2 −

(
1 − zd

2r2

)
+ O((d/r)2)

]
(53)

' q
4πε0

zd
r3 .

qdを一定にしたまま，d → 0の極限を考える．
電気双極子モーメントベクトル p = (0, 0, qd) を用いると，

電気双極子ポテンシャル

φ(r) = 1
4πε0

p · r
r3 . (54)

E(r) = −∇φ(r)から，(∂r−n/∂x = −nx/rn+2などを用いて)
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Ex = − 1
4πε0

[
px

r3 − p · r 3x
r5

]
, (55)

Ey = − 1
4πε0

[
py

r3 − p · r 3y
r5

]
,

Ez = − 1
4πε0

[
pz

r3 − p · r 3z
r5

]
.

まとめると，原点にある電気双極子 pがつくる電場は，

E(r) = 1
4πε0

[
3(p · r)

r5 r − p
r3

]
=

1
4πε0

3(p · r)r − r2p
r5 . (56)

p = (0, 0, qd)のときに書き下すと，(p · r = qdz)

Ex =
1

4πε0

3qdzx
r5 =

qd
4πε0

3xz
r5 , Ey =

qd
4πε0

3yz
r5 , (57)

Ez =
qd

4πε0

3z2 − r2

r5 =
qd

4πε0

(
3z2

r5 − 1
r3

)
.
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z軸上 (r = (0, 0, z))では，

(58)

式 (2. 3. 17)と一致．xy平面上 (z = 0)では，

(59)

(xy平面は等ポテンシャル面．)
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