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2.9.1 電荷分布のエネルギー

点電荷系のエネルギー
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証明のアイデア: まず 1対の点電荷につ
いて考える．

証明: 点電荷対のエネルギーは，q1を固

定して考えると，無限遠から q2を r2ま

で移動させるのに必要な仕事だから，
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式 (2. 4. 6)で rA → ∞，rB = |r1 − r2| = r12，q = q1として，

Ue = q2w =
q1q2

4πε0r12
. (2)
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次に点電荷が 3個以上あるときを考える．1つの電荷 qi に働く力は

qj(j 6= i)から受ける力の和であるから，qiを無限遠から r iまで運ぶ

のに必要な仕事は，qj(j 6= i)と qi の対のエネルギーの和になる．

従って，全静電エネルギーは，

Ue =
∑
i<j

qiqj

4πε0rij
=

1
2
∑
i 6=j

qiqj

4πε0rij
, rij = |r i − r j | . (3)

ここで，最初の和，
∑

i<j は，すべての対についての 和を表わして

いる．2番目の和，
∑

i 6=jに
1
2 の因子がかかっているのは，各対につ

いて 2回数えているからである．(証明終)
また，

Ue =
1
2
∑

i

qiφi(r i) , φi(r i) :=
∑
j 6=i

qj

4πε0rij
(4)

とも書ける．φi(r i)は qi 以外の電荷が r i に作るポテンシャル．
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連続的な電荷分布のエネルギー

Ue =
1
2

∫
ρ(r)φ(r) dV . (5)

∵ 式 (1)で和を積分に置き換えて，

Ue =
1
2

∫
ρ(r1)ρ(r2)

4πε0|r1 − r2|
dV1dV2 . (6)

後は，式 (2. 4. 19)

φ(r1) =
1

4πε0

∫
ρ(r2)

|r1 − r2|
dV2

用いればよい．
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例: コンデンサーのエネルギー

-Q+Q

φφ1 2

1 2 導体外では ρ(r) = 0ゆえ，

Ue =
1
2

∫
導体 1

ρ(r)φ(r) dV (7)

+
1
2

∫
導体 2

ρ(r)φ(r) dV

=
1
2φ1

∫
導体 1

ρ(r) dV +
1
2φ2

∫
導体 2

ρ(r) dV

(導体は等ポテンシャル)

=
1
2φ1Q − 1

2φ2Q =
1
2Q(φ1 − φ2)

=
Q2

2C ⇐ Q = C(φ1 − φ2) .

cf. (2. 8. 28)
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2.9.2 電場のエネルギー密度

Q. エネルギーはどこにあるのか？
A. 静電場ではどこともいえない．
式 (5)では電荷に付随しているように見える．しかし，電磁波は電
荷のない空間を伝わり，エネルギーを運ぶ．

⇒ 場に付随させるほうがもっともらしい．

電場のエネルギーとエネルギー密度

Ue =

∫
ue(r) dV , ue(r) :=

ε0

2 E2(r) (8)

(これは静電場以外にも拡張できる．)
証明のアイデア: ポアッソン方程式を用いて，式 (5)から ρを消去
する．

証明: ポアッソン方程式4φ = −ρ/ε0を用いると，
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Ue =
1
2

∫
ρ(r)φ(r) dV = −1

2ε0

∫
(∆φ)φ dV . (9)

φ4φ = φ∇2φ = ∇ · (φ∇φ)− (∇φ) · (∇φ)を用いると，

Ue = −ε0

2

[∫
∇ · (φ∇φ) dV −

∫
(∇φ)2 dV

]
. (10)

E = −∇φを用いて，

Ue =
ε0

2

[∫
∇ · (φE) dV +

∫
E2 dV

]
. (11)

R

第 1項の積分は，ガウスの定理を用いて，∫
V
∇ · (φE) dV =

∫
S
φE · dS (12)

電荷分布が有限の範囲にあるとして，V として十分大
きな球 (半径R)をとる．Sは半径Rの球面．十分遠方
では点電荷のように見えるはずだから，
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φ ∼ 1/R，E ∼ 1/R2，
∫

dS ∼ R2．よって，この積分は (R → ∞と
して)ゼロ．(証明終)

例: 一様に帯電した球
半径 a，電荷密度 ρ．§§2. 5. 2の例 1，式 (2. 5. 27)の E から，

Ue =
ε0

2

∫
E 2(r)4πr2 dr (13)

=
ε0

2

(
Q

4πε0

)2 [∫ a

0

r2

a6 4πr2 dr +
∫ ∞

a

1
r4 4πr2 dr

]
=

3
5

Q2

4πε0a
. cf. 式 (2. 8. 32)

(a → 0の極限で電荷Qの点電荷となるが，このとき，Ue → ∞．)
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