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2.3.1 クーロンの法則と電場
クーロンの法則，式 (2. 1. 2)を

F12 = q1E12, E12 =
1

4πε0

q2

r2
12

r̂12, (1)

と書く．(E12 =電荷 q2が r1につくる「電場」)
クーロン力についての重ね合せの原理 (式 (2. 2. 4))より，

F =
n∑

i=1

F i =
n∑

i=1

qE i , E i =
1

4πε0

qi

|r − r i|3
(r − r i). (2)

F = qE(r) (3)
と比較して，

点電荷が作る電場

E(r) =
n∑

i=1

E i =
1

4πε0

n∑
i=1

qi(r − r i)

|r − r i|3
(4)
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E(r)は点 rにおける電場を表し，上の式は，電場についての重ね
合せの原理を表している．

式 (2. 2. 7)に対応する式は，

電荷分布が作る電場

E(r) = 1
4πε0

∫
V

ρ(r ′)(r − r ′)

|r − r ′|3
dV ′ (5)

式 (3)より，Eの単位は，N/C.
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2.3.2 場とは何か．

F = qE(r) (6)

点 rに置かれた電荷 qに働く力は，その点 (r)での電場によっ
て決定される．=⇒ 近接相互作用
(しかし，電場自身はまだ遠隔相互作用的な考え方で記述され
ている．式 (4))
一方，式 (2. 1. 2)では，離れた位置にある電荷から力を受ける
と考えている．=⇒ 遠隔相互作用
静電場ではどちらも同じ．

動的な場合 (時間的な変化がある場合)は，近接相互作用で考
える方が電磁場の法則は簡単になる．この場合，電場は空間座

標 (r) と時間 (t)のベクトル関数となる．(磁場も同様．)
E = E(r, t) (7)

(当面は静電場を扱うので，E = E(r)．)
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場の例: 温度の場
熱した鉄板の温度 T(x, y, t)．
各時刻に鉄板上の各点で「温度」という物理量

が決まっている．鉄板は 2次元面だから，この
場は 2次元面 (+1次元の時間)上の場．図の様
に「等温線」を描けば，場のイメージが掴みや

すい．

大気の温度を考えると，

T = T(x, y, z, t), (3+1)次元時空上の場. (8)

今度は「等温面」を考えればよい．
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2.3.3 電場と電気力線
各時刻 tに 3次元空間の各点 rで「電場」という
物理量が決まっている．(注: 温度の場合と異な
り，電場はベクトル．) これを数学的なベクトル
関数と考える．

E = E(r, t). (9)

電気力線

?

空間の各点の電場のベクトルを接ベクトルに持

つような線．

ベクトルの向きに電気力線も向くとする．

電気力線は交わらない� �
?

空間の各点で電場のベクトルは一意的に決

まっているはず．(左図は間違い．)� �
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電気力線による電場の大きさの表現

各点でベクトルの大きさ (電場の強さ)は，電気力線の面密度に比
例するとする．

例: 点電荷 1つの場合

+q

原点に置き，q > 0とする．電場は，

E(r) = 1
4πε0

q
r2 r̂. (10)

電気力線の面密度 nは電場の大きさに比例するとしたので，半径 r
の球面上では，

n ∝ q
4πε0

1
r2 . (11)
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電気力線の全本数N は,

N = 4πr2n ∝ q
ε0
. (rに依らない．電荷に比例．) (12)

比例定数を 1にとることにすれば，

N =
q
ε0
. (13)

すなわち，電荷 qからは q/ε0本の電気力線が出る．

(q < 0の場合は，−q/ε0本入る．)
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2.3.4 電荷分布が与えられている場合の電場

点電荷の場合 (式 (4))

E(r) = 1
4πε0

n∑
i=1

qi(r − r i)

|r − r i|3
(14)

例 1: 電気双極子

y

z

x

O

b

b

+q

−q

d

2

−

d

2

電荷 1: +q, r1 = (0, 0, d/2)，
電荷 2: −q, r2 = (0, 0,−d/2)．

E(r) = q
4πε0

[
r − r1

|r − r1|3
− r − r2

|r − r2|3

]
(15)
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rとして，z軸上の点 P(0, 0, z)を考える．対称性から電場は z成分
のみ持つ．

Ez(z) =
q

4πε0

[
z − d/2
|z − d/2|3

− z + d/2
|z + d/2|3

]
. (16)

十分遠方を考えることにして，|z| � dとすると，

Ez(z) =
q

4πε0

z
|z|3

[
1 − d/(2z)
|1 − d/(2z)|3

− 1 + d/(2z)
|1 + d/(2z)|3

]
(17)

' q
4πε0

z
|z|3

[
(1 − d

2z
)(1 + 3 d

2z
)− (1 +

d
2z

)(1 − 3 d
2z

)

]
=

q
4πε0

z
|z|3

2d
z

=
q

4πε0

2d
|z|3

.

(注: (1 + ε)n = 1 + nε+ O(ε2)．)
十分遠方では，1/|z|3のように振舞う．
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連続分布の場合 (式 (5))

E(r) = 1
4πε0

∫
V

ρ(r ′)(r − r ′)

|r − r ′|3
dV ′ (18)

例 2: 無限に長い一様に帯電した細い棒

y

z

x

ℓ

O

dℓ
r

y
θ
θ

棒を z軸にとる．単位長さ当たり
の電荷 (線密度)を λとすると，
微小な長さ d`の棒が持つ電荷は
λd`．z軸方向の並進対称性から，
z依存性はなく，電場の z成分も
ない．また，z軸の周りの回転対
称性から，y–z平面でのみ考えれ
ばよい．
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このとき，電場は y成分のみ．d`からの Eyへの寄与は，

dEy =
1

4πε0

cos θ

r2 λd` = 1
4πε0

cos θ

(y/ cos θ)2 λd` (19)

=
λ

4πε0

cos3 θ

y2 d` = λ

4πε0

cos θ

y
dθ.

(r cos θ = y, `/y = tan θ, d` = dθを用いた．)
棒全体の寄与を加えて (積分して)，

Ey(y) =
∫

dEy =
λ

4πε0

1
y

∫ π/2

−π/2
cos θdθ =

λ

2πε0

1
y
. (20)

棒からの距離に反比例．
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